00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 55-year-old man comes in for his regular check-up with his GP. He...

    Incorrect

    • A 55-year-old man comes in for his regular check-up with his GP. He has a medical history of chronic pancreatitis and diabetes mellitus and is currently taking the maximum doses of metformin and gliclazide. During a random plasma glucose test, his levels show 18.0 mmol/l and his urinalysis reveals glycosuria with minimal ketones. The GP suspects that his body is not producing enough insulin and decides to initiate insulin therapy. Can you identify the location in the body where insulin is produced?

      Your Answer:

      Correct Answer: Pancreatic beta cells

      Explanation:

      Diabetes mellitus in this patient is most likely caused by chronic pancreatitis, which has resulted in the destruction of the pancreatic endocrine cells responsible for producing endogenous insulin. These cells are located in the Islets of Langerhans and are known as pancreatic beta cells (β-cells). Other cells in the pancreas, such as alpha cells (which secrete glucagon) and delta cells (which secrete somatostatin), do not produce insulin. Similarly, gastric G cells secrete gastrin and are not involved in insulin production.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 2 - A 39-year-old male presents to an endocrine clinic with acromegaly caused by a...

    Incorrect

    • A 39-year-old male presents to an endocrine clinic with acromegaly caused by a growth hormone-secreting tumor. The patient is prescribed Octreotide, a somatostatin analogue, to suppress growth hormone release.

      What additional hormonal effects can be attributed to somatostatin?

      Your Answer:

      Correct Answer: Decreases secretion of glucagon

      Explanation:

      Somatostatin has an inhibitory effect on the secretion of glucagon, but it does not affect the secretion of estrogen. It also decreases the secretion of insulin, and overproduction of somatostatin can lead to diabetes mellitus. Additionally, somatostatin reduces the secretion of gastrin, which in turn decreases the production of gastric acid by parietal cells. It also decreases the secretion of thyroid stimulating hormone (TSH), resulting in a decrease in the production of thyroxine in the thyroid.

      Somatostatin: The Inhibitor Hormone

      Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.

      Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.

      The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.

      In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 3 - A 20-year-old woman arrives at the emergency department complaining of abdominal pain, nausea,...

    Incorrect

    • A 20-year-old woman arrives at the emergency department complaining of abdominal pain, nausea, and vomiting. She reports having a cough and fever for the past few days. Upon examination, she has dry mucous membranes and her breath has a fruity odor. Her vital signs are as follows: blood pressure 95/55 mmHg, heart rate 120/min, respiratory rate 29/min, temperature 37.8ºC (100ºF), and oxygen saturation 98% on room air. Laboratory results show:

      - Sodium (Na+): 124 mmol/L (135 - 145)
      - Potassium (K+): 5.5 mmol/L (3.5 - 5.0)
      - Bicarbonate: 13 mmol/L (22 - 29)
      - Serum glucose: 30 mmol/L (4 - 7.8)
      - pH: 7.15 (7.35 - 7.45)
      - Serum ketones: 3.5 mmol/L (0 - 0.6)

      What is the most likely cause of the increased ketones in this patient?

      Your Answer:

      Correct Answer: Lipolysis

      Explanation:

      DKA is a condition that arises due to uncontrolled lipolysis, leading to an excess of free fatty acids that are converted to ketone bodies. This life-threatening complication of diabetes is characterized by elevated levels of blood glucose, ketones, and acidosis, with symptoms such as nausea, vomiting, abdominal pain, dehydration, and fruity breath odor. DKA is commonly observed in type 1 diabetes mellitus and can be triggered by non-compliance with treatment or an infection. Insulin deficiency and increased levels of counterregulatory hormones cause lipolysis in adipose tissue, leading to the release of free fatty acids that undergo hepatic oxidation to form ketone bodies. In DKA, increased gluconeogenesis and glycogenolysis occur due to insulin deficiency and counterregulatory hormones, leading to the synthesis of glucose from non-carbohydrate precursors and breakdown of glycogen, respectively. Glycolysis is not involved in DKA as it does not lead to the breakdown of fatty acids.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 4 - A 56-year-old man visits the breast clinic with a solitary lump in the...

    Incorrect

    • A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?

      Your Answer:

      Correct Answer: Liver disease

      Explanation:

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 5 - Samantha, a 75-year-old woman, presents to the GP with a complaint of breast...

    Incorrect

    • Samantha, a 75-year-old woman, presents to the GP with a complaint of breast growth that has developed rapidly over the past 3 months. She has never experienced this issue before and is worried about how it will affect her relationship with her husband. Despite her concern, Samantha insists that she has no trouble with sexual function. She has recently been diagnosed with a heart problem and is taking multiple medications for it, although she cannot recall their names. Other than that, she claims to be in good health.

      Upon examination, all of Samantha's vital signs are within normal limits. After measuring her height and weight, her body mass index is calculated to be 24 kg/m². Each breast is approximately 10 cm in diameter, with large nipples and tenderness but no pain. Moderate cardiomegaly and a 3rd heart sound are noted during chest assessment. No abnormalities are found during an abdominal examination. Pitting edema is present up to her mid calf.

      Based on the history and examination, what is the most probable cause of Samantha's gynaecomastia?

      Your Answer:

      Correct Answer: Digoxin

      Explanation:

      Digoxin is the correct answer as it can lead to drug-induced gynaecomastia. Ronald is likely taking digoxin due to his heart failure, and this medication has a side effect of causing breast tissue growth in men. This is thought to occur because digoxin has a similar structure to oestrogen and can directly stimulate oestrogen receptors.

      While cirrhosis can also cause gynaecomastia, it is unlikely in this case as there are no signs or symptoms of liver disease. Cirrhosis typically causes gynaecomastia due to the liver’s reduced ability to clear oestrogens from the bloodstream.

      Obesity is not the correct answer as Ronald is not obese, with a BMI of 24 kg/m². However, obesity is a common cause of gynaecomastia as excess fat can be distributed to the breasts and result in increased aromatisation of androgens to oestrogens.

      An oestrogen-secreting tumour is not the correct answer as there is no evidence in Ronald’s history or examination to suggest he has one, although these tumours can cause gynaecomastia in men.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 6 - A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her...

    Incorrect

    • A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.

      What is the mechanism of action of the newly prescribed medication?

      Your Answer:

      Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)

      Explanation:

      DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.

      The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.

      Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.

      Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 7 - A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to...

    Incorrect

    • A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?

      Your Answer:

      Correct Answer: Increased risk of mania

      Explanation:

      Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A 28-year-old woman comes to her outpatient appointment after being diagnosed with Grave's...

    Incorrect

    • A 28-year-old woman comes to her outpatient appointment after being diagnosed with Grave's disease. This condition is known for having three distinct signs, in addition to thyroid eye disease. What are the other signs?

      Your Answer:

      Correct Answer: Thyroid acropachy & pretibial myxoedema

      Explanation:

      Grave’s disease is commonly linked to several other conditions, including thyroid eye disease, thyroid acropachy, and pretibial myxoedema.

      This autoimmune disease, known as Grave’s thyroiditis, is caused by antibodies that target the thyroid stimulating hormone (TSH) receptor, leading to prolonged stimulation.

      One of the most noticeable symptoms of Grave’s disease is exophthalmos, which occurs when TSH receptor antibodies bind to receptors at the back of the eye, causing inflammation and an increase in glycosaminoglycans. This results in swelling of the eye muscles and connective tissue.

      Pretibial myxoedema is a skin condition that often develops in individuals with Grave’s disease. It is characterized by localized lesions on the skin in front of the tibia, which are caused by an increase in glycosaminoglycans in the pretibial dermis.

      Thyroid acropachy is another condition associated with Grave’s disease, which involves swelling of soft tissues, clubbing of the fingers, and periosteal reactions in the extremities.

      Graves’ Disease: Common Features and Unique Signs

      Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.

      Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 9 - A man in his early 50s comes to the hospital with a fever...

    Incorrect

    • A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.

      What is the primary way the body reacts to a drop in blood pressure?

      Your Answer:

      Correct Answer: Insertion of AQP-2 channels in collecting ducts

      Explanation:

      When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).

      RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.

      Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 10 - A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for...

    Incorrect

    • A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for evaluation. He is currently on maximum doses of metformin and glibenclamide, but his HbA1c levels have increased from 58 mmol/mol to 67 mmol/mol over the past six months. The consultant recommends adding sitagliptin as a third antidiabetic medication. What is the mechanism of action of this new medication?

      Your Answer:

      Correct Answer: Inhibit the peripheral breakdown of incretins, enhancing their ability to stimulate insulin release

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 11 - A patient with a recent diagnosis of schizophrenia at the age of 40...

    Incorrect

    • A patient with a recent diagnosis of schizophrenia at the age of 40 is prescribed risperidone. During their consultation with the doctor, they are informed that some of the potential side effects are caused by elevated levels of prolactin.

      What is the mechanism behind this occurrence?

      Your Answer:

      Correct Answer: Inhibition of dopamine activity

      Explanation:

      Dopamine plays a crucial role in inhibiting the release of prolactin. As atypical antipsychotics like risperidone block dopamine activity, they can lead to increased levels of prolactin. While these drugs may also inhibit histamine and serotonin to varying degrees, it is the inhibition of dopamine that is directly linked to prolactin release. Stimulation of dopamine or serotonin activity would not interfere with prolactin release in the same way that dopamine inhibition does.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 12 - Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running...

    Incorrect

    • Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running group. As her physician, it is important to inform her of the potential impact this increase in physical activity may have on her blood sugar levels. What advice do you give her?

      Your Answer:

      Correct Answer: He is at risk of an early and a late drop, hours later, in his blood glucose due muscle uptake and replacement of glycogen

      Explanation:

      Glucose levels are impacted by exercise in various ways. Firstly, there is an initial decrease due to the increased uptake of glucose in the muscles through GLUT-2, which does not require insulin. Secondly, during high-intensity sports, the release of adrenaline and cortisol can cause a temporary increase in blood glucose levels, especially during competitive events. Finally, there is a delayed decrease as the muscles and liver glycogen are utilized during exercise and then replenished over the following hours.

      Glycogenesis – the process of storing glucose as glycogen

      Glycogenesis is the process of converting glucose into glycogen for storage in the liver and muscles. This process is important for maintaining blood glucose levels and providing energy during times of fasting or exercise. The key enzyme involved in glycogenesis is glycogen synthase, which catalyzes the formation of α-1,4-glycosidic bonds between glucose molecules to form glycogen. Branching enzyme then creates α-1,6-glycosidic bonds to form branches in the glycogen molecule. Glycogenin, a protein that acts as a primer for glycogen synthesis, is also involved in the process. Glycogenesis is regulated by hormones such as insulin and glucagon, which stimulate and inhibit glycogen synthesis, respectively. Understanding the process of glycogenesis is important for understanding how the body stores and utilizes glucose for energy.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 13 - An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness...

    Incorrect

    • An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness upon standing up, which is interfering with her daily activities. Gwyneth is in good health and does not take any regular medications. The physician diagnoses Gwyneth with orthostatic hypotension and prescribes fludrocortisone as a treatment.

      What is the most probable side effect that Gwyneth may encounter?

      Your Answer:

      Correct Answer: Fluid retention

      Explanation:

      Corticosteroids are a class of medications commonly prescribed for various clinical uses, such as treating allergies, inflammatory conditions, auto-immunity, and endogenous steroid replacement.

      There are different types of corticosteroids, each with varying levels of glucocorticoid and mineralocorticoid activity. Glucocorticoids mimic cortisol, which is involved in carbohydrate metabolism and the stress response, while mineralocorticoids mimic aldosterone, which regulates sodium and water retention in response to low blood pressure.

      The clinical uses and side effects of corticosteroids depend on their level of glucocorticoid and mineralocorticoid activity. Fludrocortisone, for example, has minimal glucocorticoid activity and high mineralocorticoid activity.

      Therefore, fluid retention is the most associated side effect with mineralocorticoid activity, while depression, hyperglycemia, osteoporosis, and peptic ulceration are side effects associated with glucocorticoid activity.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - A 10-year-old girl with type 1 diabetes arrives at the emergency department with...

    Incorrect

    • A 10-year-old girl with type 1 diabetes arrives at the emergency department with vomiting. After a brief history, you discover she had a recent bout of strep throat. Upon examination, you detect ketones in her urine and elevated blood sugar levels, indicating a likely case of diabetic ketoacidosis. What is the primary ketone body implicated in diabetic ketoacidosis?

      Your Answer:

      Correct Answer: Acetoacetate

      Explanation:

      The liver produces water-soluble molecules called ketone bodies from fatty acids, with acetoacetate being the primary ketone body involved in diabetic ketoacidosis, along with beta-hydroxybutyrate and acetone. Ketone bodies are generated during fasting/starvation, intense exercise, or untreated type 1 diabetes mellitus. These molecules are taken up by extra-hepatic tissues and transformed into acetyl-CoA, which enters the citric acid cycle and is oxidized in the mitochondria to produce energy.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities...

    Incorrect

    • A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.

      What is the reason for the facial muscle twitching observed during the examination?

      Your Answer:

      Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia

      Explanation:

      Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.

      Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.

      Understanding Hypoparathyroidism

      Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.

      Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type...

    Incorrect

    • A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type II diabetes mellitus has been admitted to the respiratory ward due to breathlessness after contracting SARS-CoV-2. Despite receiving 60% oxygen via a venturi mask, her oxygen saturation remains at 91%. The doctor decides to prescribe dexamethasone. What is the expected effect of this medication?

      Your Answer:

      Correct Answer: Increased blood glucose levels

      Explanation:

      The use of corticosteroids, such as dexamethasone, can worsen diabetic control due to their anti-insulin effects. Dexamethasone, which is commonly used to manage severe SARS-CoV-2 infection, has a high glucocorticoid activity that can lead to insulin resistance and increased blood glucose levels. However, it is unlikely to cause an asthma exacerbation or a flare-up of rheumatoid arthritis or gout. While psychosis is a known side effect of dexamethasone, it is less common than an increase in blood glucose levels.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - A 10-year-old girl visits her pediatrician with her mother. She is worried that...

    Incorrect

    • A 10-year-old girl visits her pediatrician with her mother. She is worried that she hasn't started puberty yet while some of her classmates have.

      The pediatrician explains to the young girl and her mother that the onset of puberty can vary and that it is considered delayed if there are no signs of puberty by the age of 13 years. The pediatrician reassures the girl that there is no need to worry and that she should be patient.

      What is the first sign the girl should expect?

      Your Answer:

      Correct Answer: Testicular enlargement

      Explanation:

      The initial indication of male puberty is the growth of the testicles. This typically happens between the ages of 9.5 and 13.5 years and is the first sign of male puberty. Testicular enlargement is the only pubertal change present in Tanner stage 1.

      During Tanner stage 2, which usually occurs between the ages of 10.5 and 14.5 years, penis growth begins.

      Pubic hair development also starts during Tanner stage 2, between the ages of 9.9 and 14.0 years.

      The height growth spurt occurs at age 14 and reaches a maximum of 10cm/year in Tanner.

      The voice changes during Tanner stage 3, which typically happens around 13.5 years old.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed...

    Incorrect

    • A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed treatment with carbimazole and radio-iodine for Grave's disease. What is the potential complication that he is at a high risk of developing during this procedure?

      Your Answer:

      Correct Answer: Recurrent laryngeal nerve palsy

      Explanation:

      The risk of complications during thyroidectomy is relatively low, but there are still potential risks to be aware of. One of the most common complications is damage to the recurrent laryngeal nerve, which can result in vocal cord paralysis and hoarseness. However, the vagal nerve and phrenic nerve are rarely damaged during the procedure as they are not in close proximity to the operating site. Trauma to the esophagus is also uncommon. If the parathyroid glands are inadvertently removed during the procedure, it can result in hypoparathyroidism rather than hyperparathyroidism.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending...

    Incorrect

    • A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending a clinic for a check-up on his glucose control.

      Despite being on treatment for a few months, his latest Hb1Ac and home blood glucose readings are still high. The healthcare provider decides to start the patient on gliclazide. The patient is informed that this medication may cause hypoglycaemia as a side effect by increasing insulin production and release.

      Which pancreatic cell membrane channels does gliclazide bind to?

      Your Answer:

      Correct Answer: ATP-dependent potassium

      Explanation:

      Gliclazide is a medication used to treat diabetes by increasing insulin release from pancreatic beta cells. It works by binding to ATP-dependent potassium channels on these cells, causing depolarization and an increase in intracellular calcium. This leads to the secretion of insulin.

      Dipeptidyl peptidase-4 (DDP) inhibitors are another type of medication used to manage diabetes. They work by increasing levels of incretin hormones such as GLP-1 and GIP, which stimulate insulin secretion and decrease blood glucose levels.

      Chloride channels are not affected by sulfonylureas, and they play a role in regulating fluid transport in various organs.

      Insulin binds to tyrosine kinase receptors on the cell membrane, which triggers a signal transduction pathway that activates enzymes and transcription factors within the cell. Sulfonylureas do not affect these receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A 25-year-old woman presents for her first-trimester review at the antenatal clinic. She...

    Incorrect

    • A 25-year-old woman presents for her first-trimester review at the antenatal clinic. She reports feeling well with no specific concerns. Due to complications in her previous pregnancy, she undergoes several screening blood tests, including thyroid function testing. The results reveal a TSH level of 4.2 mIU/L (normal range: 0.4-4.0), thyroxine (T4) level of 220 nmol/L (normal range: 64-155), and free thyroxine (fT4) level of 15 pmol/L (normal range: 12.0-21.9). Despite having no symptoms of thyrotoxicosis and a normal physical examination, what thyroid-associated protein primarily causes these findings to occur?

      Your Answer:

      Correct Answer: Thyroid binding globulin

      Explanation:

      During pregnancy, thyroid function can be affected, leading to a range of conditions. However, in the case of a patient with a nodular goitre, antithyroid antibodies are not a likely cause. Thyroglobulin levels may increase slightly in the final trimester, but this is not the primary issue. Similarly, while TSH levels may be raised in pregnancy, this is a secondary effect caused by an increase in TBG.

      During pregnancy, there is an increase in the levels of thyroxine-binding globulin (TBG), which causes an increase in the levels of total thyroxine. However, this does not affect the free thyroxine level. If left untreated, thyrotoxicosis can increase the risk of fetal loss, maternal heart failure, and premature labor. Graves’ disease is the most common cause of thyrotoxicosis during pregnancy, but transient gestational hyperthyroidism can also occur due to the activation of the TSH receptor by HCG. Propylthiouracil has traditionally been the antithyroid drug of choice, but it is associated with an increased risk of severe hepatic injury. Therefore, NICE Clinical Knowledge Summaries recommend using propylthiouracil in the first trimester and switching to carbimazole in the second trimester. Maternal free thyroxine levels should be kept in the upper third of the normal reference range to avoid fetal hypothyroidism. Thyrotropin receptor stimulating antibodies should be checked at 30-36 weeks gestation to determine the risk of neonatal thyroid problems. Block-and-replace regimes should not be used in pregnancy, and radioiodine therapy is contraindicated.

      On the other hand, thyroxine is safe during pregnancy, and serum thyroid-stimulating hormone should be measured in each trimester and 6-8 weeks postpartum. Women require an increased dose of thyroxine during pregnancy, up to 50% as early as 4-6 weeks of pregnancy. Breastfeeding is safe while on thyroxine. It is important to manage thyroid problems during pregnancy to ensure the health of both the mother and the baby.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 21 - A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to...

    Incorrect

    • A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?

      Your Answer:

      Correct Answer: Chromaffin cells

      Explanation:

      The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.

      Calcitonin is secreted by the parafollicular C cells in the thyroid gland.

      The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - A 32-year-old female patient visits your clinic complaining of fatigue and unexplained weight...

    Incorrect

    • A 32-year-old female patient visits your clinic complaining of fatigue and unexplained weight gain. She mentions feeling extremely sensitive to cold temperatures. You suspect hypothyroidism and decide to conduct a test on her serum levels of thyroid stimulating hormone (TSH) and free thyroxine (T4). Which of the following hormones is not secreted from the anterior pituitary gland, where TSH is released?

      Your Answer:

      Correct Answer: antidiuretic hormone

      Explanation:

      The hormone ADH (also known as vasopressin) is secreted by the posterior pituitary gland and acts in the collecting ducts of the kidneys to increase water reabsorption. Unlike ADH, all of the other hormone options presented are released from the anterior pituitary. ACTH is a component of the hypothalamic-pituitary-axis and increases the production and release of cortisol from the adrenal gland. GH (also called somatotropin) is an anabolic hormone that stimulates growth in childhood and has metabolic effects on protein, glucose, and lipids. FSH is a gonadotropin that promotes the maturation of germ cells.

      Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.

      Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.

      Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - A 9-year-old girl is being treated by a paediatrician for bedwetting at night....

    Incorrect

    • A 9-year-old girl is being treated by a paediatrician for bedwetting at night. Non-invasive methods have not yielded any results and her family is interested in trying medication. The paediatrician has approved a trial of desmopressin.

      What is the site of action of this drug?

      Your Answer:

      Correct Answer: The collecting ducts of the kidney

      Explanation:

      Desmopressin is a synthetic version of antidiuretic hormone (ADH) that acts on the collecting ducts in the kidneys. ADH is released by the posterior pituitary gland in response to increased blood osmolality. By increasing the reabsorption of solute-free water in the collecting ducts, ADH reduces blood osmolality and produces small volumes of concentrated urine. This mechanism is effective in reducing the volume of urine produced overnight in cases of nocturnal enuresis (bed-wetting). The distal tubule, glomerulus, and proximal tubule are not sites of ADH action. Although the posterior pituitary gland produces ADH, it exerts its effects on the kidneys.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 59-year-old man with a known history of type-2 diabetes comes for a...

    Incorrect

    • A 59-year-old man with a known history of type-2 diabetes comes for a check-up. He is currently on metformin only for his diabetes and reports compliance with the prescribed regimen.

      His HbA1c is 63 mmol/mol (target = 53mmol/mol) and the patient and clinician agree to initiate a sulfonylurea along with his metformin.

      What is the primary mode of action of the new treatment?

      Your Answer:

      Correct Answer: Increases stimulation of insulin secretion by pancreatic B-cells and decreases hepatic clearance of insulin

      Explanation:

      Sulfonylureas are a type of oral hypoglycemic agent that stimulate insulin secretion by pancreatic B-cells and reduce the clearance of insulin by the liver. They are known as insulin secretagogues.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - What is the half life of insulin in the circulation of a typical...

    Incorrect

    • What is the half life of insulin in the circulation of a typical healthy adult?

      Your Answer:

      Correct Answer: Less than 30 minutes

      Explanation:

      Enzymes in the bloodstream break down insulin, resulting in a half-life of under 30 minutes. In type 2 diabetes, there may be irregularities in the insulin clearance process.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g...

    Incorrect

    • A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g twice daily for the past 6 months. Despite this, his HbA1c has remained above target at 64 mmol/mol (8.0%).

      He has a history of left ventricular failure following a myocardial infarction 2 years ago. He has been trying to lose weight since but still has a body mass index of 33 kg/m². He is also prone to recurrent urinary tract infections.

      You intend to intensify treatment by adding a second medication.

      What is the mechanism of action of the most appropriate anti-diabetic drug for him?

      Your Answer:

      Correct Answer: Inhibition of dipeptidyl peptidase-4 (DPP-4) to increase incretin levels

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A teenage girl and her mother come to the doctor's office with concerns...

    Incorrect

    • A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. Upon conducting a thorough medical history and various tests, the doctor diagnoses the girl with congenital adrenal hyperplasia. What is the reason for adrenal hyperplasia being a characteristic of this condition?

      Your Answer:

      Correct Answer: Inefficient cortisol synthesis

      Explanation:

      Low cortisol production and compensatory adrenal hyperplasia are caused by 21-hydroxylase deficiency, leading to increased androgen production and ambiguous genitalia. The enzymes 11-beta hydroxylase and 17-hydroxylase are also involved. Testosterone and estrogen synthesis is not affected as they are produced in the testes and ovaries, respectively. Congenital adrenal hyperplasia is not caused by aldosterone synthesis, despite it occurring in the adrenal cortex.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - A 39-year old male visits the GP complaining of nipple discharge. Upon examination,...

    Incorrect

    • A 39-year old male visits the GP complaining of nipple discharge. Upon examination, it is found that his serum prolactin levels are significantly high. Besides prolactin releasing hormone, which other hypothalamic hormone can stimulate the secretion of prolactin?

      Your Answer:

      Correct Answer: Thyrotropin releasing hormone (TRH)

      Explanation:

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A patient currently being treated for bipolar disorder with lithium is referred to...

    Incorrect

    • A patient currently being treated for bipolar disorder with lithium is referred to hospital after developing severe polyuria. She denies polydipsia.

      Blood tests reveal the following:

      Na+ 154 mmol/L (135 - 145)
      K+ 3.5 mmol/L (3.5 - 5.0)
      Bicarbonate 24 mmol/L (22 - 29)
      Urea 8 mmol/L (2.0 - 7.0)
      Creatinine 110 µmol/L (55 - 120)
      Blood glucose 7mmol/L (4 - 11)

      Based on the results, a decision is made to carry out a water deprivation test. The patient is considered to have capacity and agrees to this. As part of this test, desmopressin is given.

      Considering the most likely diagnosis, which of the following results would be most likely to be seen in a 45-year-old patient?

      Your Answer:

      Correct Answer: Low urine osmolality after fluid deprivation and low urine osmolality after desmopressin provision

      Explanation:

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - What is the association between brown tumours of bone and a specific condition...

    Incorrect

    • What is the association between brown tumours of bone and a specific condition or disease?

      Your Answer:

      Correct Answer: Hyperparathyroidism

      Explanation:

      Brown tumors are bone tumors that develop due to excessive osteoclast activity, typically in cases of hyperparathyroidism. These tumors are composed of fibrous tissue, woven bone, and supporting blood vessels, but lack any matrix. They do not appear on x-rays due to their radiolucent nature. Osteoclasts consume the trabecular bone that osteoblasts produce, leading to a cycle of reparative bone deposition and resorption that can cause bone pain and involve the periosteum, resulting in an expansion beyond the typical shape of the bone. The tumors are called brown due to the deposition of haemosiderin at the site.

      Primary Hyperparathyroidism: Causes, Symptoms, and Treatment

      Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.

      Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.

      The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.

      In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Passmed