00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 73-year-old man presents to the emergency department with complaints of severe cramping...

    Incorrect

    • A 73-year-old man presents to the emergency department with complaints of severe cramping pain in his leg at rest. He has a medical history of peripheral vascular disease, chronic obstructive pulmonary disease, and hypertension.

      During the examination, his blood pressure is measured at 138/92 mmHg, respiratory rate at 22/min, and oxygen saturations at 99%. The healthcare provider performs a neurovascular exam of the lower limbs and palpates the pulses.

      Which area should be palpated first?

      Your Answer: Behind the knee, in the popliteal fossa

      Correct Answer: First metatarsal space on dorsum of foot

      Explanation:

      To assess lower leg pulses, it is recommended to start from the most distal point and move towards the proximal area. This helps to identify the location of any occlusion. The first pulse to be checked is the dorsalis pedis pulse, which is located on the dorsum of the foot in the first metatarsal space, lateral to the extensor hallucis longus tendon. Palpating behind the knee or in the fourth metatarsal space is incorrect, as no pulse can be felt there. The posterior tibial pulse can be felt posteriorly and inferiorly to the medial malleolus, but it should not be assessed first as it is not as distal as the dorsalis pedis pulse.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      254.4
      Seconds
  • Question 2 - Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and...

    Incorrect

    • Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and swollen ankles that have been worsening for the past four months. During the consultation, the doctor observes that Sarah is using more pillows than usual. She has a medical history of hypertension, hypercholesterolemia, type 2 diabetes mellitus, and a previous myocardial infarction. The doctor also notices a raised jugular venous pressure (JVP) and suspects congestive heart failure. What would indicate a normal JVP?

      Your Answer: 6 cm from the vertical height above the sternal angle

      Correct Answer: 2 cm from the vertical height above the sternal angle

      Explanation:

      The normal range for jugular venous pressure is within 3 cm of the vertical height above the sternal angle. This measurement is used to estimate central venous pressure by observing the internal jugular vein, which connects to the right atrium. To obtain this measurement, the patient is positioned at a 45ยบ angle, the right internal jugular vein is observed between the two heads of sternocleidomastoid, and a ruler is placed horizontally from the highest pulsation point of the vein to the sternal angle, with an additional 5cm added to the measurement. A JVP measurement greater than 3 cm from the sternal angle may indicate conditions such as right-sided heart failure, cardiac tamponade, superior vena cava obstruction, or fluid overload.

      Understanding the Jugular Venous Pulse

      The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.

      The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.

      Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      94.9
      Seconds
  • Question 3 - A 55-year-old male complains of central chest pain. During examination, a mitral regurgitation...

    Incorrect

    • A 55-year-old male complains of central chest pain. During examination, a mitral regurgitation murmur is detected. An ECG reveals ST elevation in leads V1 to V6, but no ST elevation is observed in leads II, III, and aVF. What is the diagnosis?

      Your Answer: Pulmonary embolism

      Correct Answer: Anterior myocardial infarct

      Explanation:

      An anterior MI is the most probable diagnosis, given the absence of ST changes in the inferior leads. Aortic dissection is therefore less probable.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      58.7
      Seconds
  • Question 4 - A 68-year-old female complains of fatigue and occasional palpitations. During one of these...

    Correct

    • A 68-year-old female complains of fatigue and occasional palpitations. During one of these episodes, an ECG shows atrial fibrillation that resolves within half an hour. What would be the most suitable subsequent investigation for this patient?

      Your Answer: Thyroid function tests

      Explanation:

      Diagnosis and Potential Causes of Paroxysmal Atrial Fibrillation

      Paroxysmal atrial fibrillation (AF) can have various underlying causes, including thyrotoxicosis, mitral stenosis, ischaemic heart disease, and alcohol consumption. Therefore, it is crucial to conduct thyroid function tests to aid in the diagnosis of AF, as it can be challenging to identify based solely on clinical symptoms. Additionally, an echocardiogram should be requested to evaluate the function of the left ventricle and valves, which would typically be performed by a cardiologist. However, coronary angiography is unlikely to be necessary.

      Conversely, a full blood count, calcium, erythrocyte sedimentation rate (ESR), or lipid profile would not be useful in determining the nature of AF or its potential treatment. It is essential to consider the various causes of AF to determine the most effective course of treatment. The sources cited in this article provide further information on the diagnosis and management of AF.

    • This question is part of the following fields:

      • Cardiovascular System
      46
      Seconds
  • Question 5 - Which of the following is not a hepatic artery branch? ...

    Incorrect

    • Which of the following is not a hepatic artery branch?

      Your Answer: Cystic artery

      Correct Answer: Pancreatic artery

      Explanation:

      The Coeliac Axis and its Branches

      The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.

      The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.

      Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.

    • This question is part of the following fields:

      • Cardiovascular System
      11.9
      Seconds
  • Question 6 - Which ions are responsible for the plateau phase of the cardiac action potential...

    Incorrect

    • Which ions are responsible for the plateau phase of the cardiac action potential in stage 2?

      Your Answer: Sodium in, calcium in

      Correct Answer: Calcium in, potassium out

      Explanation:

      The Phases of Cardiac Action Potential

      The cardiac action potential is a complex process that involves four distinct phases. The first phase, known as phase 0 or the depolarisation phase, is initiated by the opening of fast Na channels, which allows an influx of Na ions into the cell. This influx of positively charged ions creates a positive current that rapidly depolarises the cell membrane.

      In the second phase, known as phase 1 or initial repolarisation, the fast Na channels close, causing a brief period of repolarisation. This is followed by phase 2 or the plateau phase, which is characterised by the opening of K and Ca channels. The influx of calcium ions into the cell is balanced by the efflux of potassium ions, resulting in a net neutral current.

      The final phase, phase 3 or repolarisation, is initiated by the closure of Ca channels, which causes a net negative current as K+ ions continue to leave the cell. It is important to note that the inward movement of sodium alone would not result in a plateau, as it represents a positive current. The normal action of the sodium-potassium pump involves the inward movement of potassium combined with the outward movement of sodium.

    • This question is part of the following fields:

      • Cardiovascular System
      48.7
      Seconds
  • Question 7 - A 67-year-old man with a stable angina history for two years visits his...

    Correct

    • A 67-year-old man with a stable angina history for two years visits his cardiologist for a regular check-up. During the review, the cardiologist observes that the patient's heart rate is low at 46 bpm. As a result, the cardiologist decides to replace his beta-blocker with a new anti-anginal drug called nicorandil.

      What is the mode of action of the patient's new medication?

      Your Answer: Potassium channel activator through activation of guanylyl cyclase

      Explanation:

      Nicorandil activates potassium channels, leading to vasodilation. This activation triggers guanylyl cyclase, which increases the production of cyclic GMP (cGMP) and activates protein kinase G (PKG). PKG phosphorylates and inhibits GTPase RhoA, reducing Rho-kinase activity and increasing myosin phosphatase activity. As a result, the smooth muscle becomes less sensitive to calcium, leading to dilation of the large coronary arteries and improved perfusion. Nicorandil does not significantly affect calcium or sodium channels. This mechanism helps alleviate anginal symptoms.

      Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.

    • This question is part of the following fields:

      • Cardiovascular System
      142.5
      Seconds
  • Question 8 - A 57-year-old man is diagnosed with angina and prescribed medications for symptom control...

    Incorrect

    • A 57-year-old man is diagnosed with angina and prescribed medications for symptom control and secondary prevention. The doctor advises him to make dietary changes to address excess fat in the blood that can lead to angina. During the explanation, the doctor asks which apolipoprotein macrophages recognize to uptake lipids under normal circumstances?

      Your Answer: ApoA-I

      Correct Answer: ApoB100

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      114.1
      Seconds
  • Question 9 - A 22-year-old man was admitted earlier in the day with a fractured fibula...

    Correct

    • A 22-year-old man was admitted earlier in the day with a fractured fibula following a skateboarding accident. He underwent surgical repair but has suddenly developed a tachycardia on the recovery ward. His vital signs reveal a heart rate of 170 beats/minute, respiratory rate of 20 breaths/minute, and blood pressure of 80/55 mmHg. His ECG shows ventricular tachycardia. The physician decides to perform synchronised DC cardioversion.

      What is the most appropriate course of action for this patient?

      Your Answer: DC cardioversion shock synchronised to the ECG R wave

      Explanation:

      When a patient displays adverse features such as shock, syncope, heart failure, or myocardial ischaemia while in ventricular tachycardia, electrical cardioversion synchronized to the R wave is the recommended treatment. If the patient does not respond to up to three synchronized DC shocks, it is important to seek expert help and administer 300mg of IV adenosine. Administering IV fluids would not be an appropriate management choice as it would not affect the patient’s cardiac rhythm.

      Cardioversion for Atrial Fibrillation

      Cardioversion may be used in two scenarios for atrial fibrillation (AF): as an emergency if the patient is haemodynamically unstable, or as an elective procedure where a rhythm control strategy is preferred. Electrical cardioversion is synchronised to the R wave to prevent delivery of a shock during the vulnerable period of cardiac repolarisation when ventricular fibrillation can be induced.

      In the elective scenario for rhythm control, the 2014 NICE guidelines recommend offering rate or rhythm control if the onset of the arrhythmia is less than 48 hours, and starting rate control if it is more than 48 hours or is uncertain.

      If the AF is definitely of less than 48 hours onset, patients should be heparinised. Patients who have risk factors for ischaemic stroke should be put on lifelong oral anticoagulation. Otherwise, patients may be cardioverted using either electrical or pharmacological methods.

      If the patient has been in AF for more than 48 hours, anticoagulation should be given for at least 3 weeks prior to cardioversion. An alternative strategy is to perform a transoesophageal echo (TOE) to exclude a left atrial appendage (LAA) thrombus. If excluded, patients may be heparinised and cardioverted immediately. NICE recommends electrical cardioversion in this scenario, rather than pharmacological.

      If there is a high risk of cardioversion failure, it is recommended to have at least 4 weeks of amiodarone or sotalol prior to electrical cardioversion. Following electrical cardioversion, patients should be anticoagulated for at least 4 weeks. After this time, decisions about anticoagulation should be taken on an individual basis depending on the risk of recurrence.

    • This question is part of the following fields:

      • Cardiovascular System
      49.8
      Seconds
  • Question 10 - How many valves are present between the right atrium and the superior vena...

    Incorrect

    • How many valves are present between the right atrium and the superior vena cava (SVC)?

      Your Answer: One

      Correct Answer: None

      Explanation:

      Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.

      The Superior Vena Cava: Anatomy, Relations, and Developmental Variations

      The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.

      Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.

      Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      46.2
      Seconds
  • Question 11 - An 80-year-old woman comes to the hospital complaining of chest pain, vomiting, and...

    Incorrect

    • An 80-year-old woman comes to the hospital complaining of chest pain, vomiting, and sweating for the past two hours. She has a medical history of hypertension and peripheral arterial disease. Despite using sublingual nitrate spray at home, the pain has not subsided. Upon admission, she is found to be tachycardic and tachypneic, but no other respiratory or cardiac abnormalities are detected. An ECG reveals ST segment elevation in leads II, III, and aVF, as well as ST segment depression in leads I and aVL. Which coronary artery is most likely affected?

      Your Answer: Left anterior descending artery

      Correct Answer: Right coronary artery

      Explanation:

      The observed ECG alterations are indicative of an ischemic injury in the lower region of the heart. The ST depressions in leads I and aVL, which are located in the lateral wall, are common reciprocal changes that occur during an inferior myocardial infarction. Typically, the right coronary artery is the most probable site of damage in cases involving lesions in the lower wall.

      Understanding Acute Coronary Syndrome

      Acute coronary syndrome (ACS) is a term used to describe various acute presentations of ischaemic heart disease. It includes ST elevation myocardial infarction (STEMI), non-ST elevation myocardial infarction (NSTEMI), and unstable angina. ACS usually develops in patients with ischaemic heart disease, which is the gradual build-up of fatty plaques in the walls of the coronary arteries. This can lead to a gradual narrowing of the arteries, resulting in less blood and oxygen reaching the myocardium, causing angina. It can also lead to sudden plaque rupture, resulting in a complete occlusion of the artery and no blood or oxygen reaching the area of myocardium, causing a myocardial infarction.

      There are many factors that can increase the chance of a patient developing ischaemic heart disease, including unmodifiable risk factors such as increasing age, male gender, and family history, and modifiable risk factors such as smoking, diabetes mellitus, hypertension, hypercholesterolaemia, and obesity.

      The classic and most common symptom of ACS is chest pain, which is typically central or left-sided and may radiate to the jaw or left arm. Other symptoms include dyspnoea, sweating, and nausea and vomiting. Patients presenting with ACS often have very few physical signs, and the two most important investigations when assessing a patient with chest pain are an electrocardiogram (ECG) and cardiac markers such as troponin.

      Once a diagnosis of ACS has been made, treatment involves preventing worsening of the presentation, revascularising the vessel if occluded, and treating pain. For patients who’ve had a STEMI, the priority of management is to reopen the blocked vessel. For patients who’ve had an NSTEMI, a risk stratification tool is used to decide upon further management. Patients who’ve had an ACS require lifelong drug therapy to help reduce the risk of a further event, which includes aspirin, a second antiplatelet if appropriate, a beta-blocker, an ACE inhibitor, and a statin.

    • This question is part of the following fields:

      • Cardiovascular System
      135.5
      Seconds
  • Question 12 - A 54-year-old man comes to the Emergency Department complaining of central chest pain....

    Incorrect

    • A 54-year-old man comes to the Emergency Department complaining of central chest pain. After a brief history and physical examination, the emergency medicine physician suspects a myocardial infarction. During the examination, the physician detects a 4th heart sound. What is the underlying reason for a 4th heart sound?

      Your Answer:

      Correct Answer: Forceful atrial contraction

      Explanation:

      S4 occurs late in diastole and is caused by the atria contracting forcefully to compensate for a stiff ventricle. It is commonly observed in patients with heart failure. In contrast, S3 occurs earlier in diastole and is caused by rapid blood flow into the ventricle.

      A pericardial effusion can produce a rubbing sound when the pericardium is examined. A systolic murmur may be caused by a ventricular septal defect, while a diastolic murmur may be caused by mitral regurgitation.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A 33-year-old woman delivers a baby boy in the delivery room. The midwife...

    Incorrect

    • A 33-year-old woman delivers a baby boy in the delivery room. The midwife observes microcephaly, polydactyly, and low-set ears during the neonatal assessment. Trisomy 13 is confirmed through rapid genetic testing. What is the most commonly associated cardiac abnormality with this condition?

      Your Answer:

      Correct Answer: Ventricular septal defect

      Explanation:

      Understanding Ventricular Septal Defect

      Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.

      There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.

      Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.

      Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.

      In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A 32-year-old woman who is 34 weeks pregnant with her first baby is...

    Incorrect

    • A 32-year-old woman who is 34 weeks pregnant with her first baby is worried about the possibility of her child having a congenital heart defect. She was born with patent ductus arteriosus (PDA) herself and wants to know what treatment options are available for this condition.

      What treatment will you recommend if her baby is diagnosed with PDA?

      Your Answer:

      Correct Answer: The baby receives indomethacin as a neonate

      Explanation:

      The preferred treatment for patent ductus arteriosus (PDA) in neonates is indomethacin or ibuprofen, administered after birth. While PDA is more common in premature infants, a family history of heart defects can increase the risk. Diagnosis typically occurs during postnatal baby checks, often due to the presence of a murmur or symptoms of heart failure. Doing nothing is not a recommended approach, as spontaneous closure is rare. Surgery may be necessary if medical management is unsuccessful. Prostaglandin E1 is not the best answer, as it is typically used in cases where PDA is associated with another congenital heart defect. Indomethacin or ibuprofen are not given to the mother during the antenatal period.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and...

    Incorrect

    • A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and swollen ankles over the past 10 months. She has a medical history of ischaemic heart disease, but an echocardiogram reveals normal valve function. During the examination, the doctor detects a low-pitched sound at the start of diastole, following S2. What is the probable reason for this sound?

      Your Answer:

      Correct Answer: Rapid movement of blood entering ventricles from atria

      Explanation:

      S3 is an unusual sound that can be detected in certain heart failure patients. It is caused by the rapid movement and oscillation of blood into the ventricles.

      Another abnormal heart sound, S4, is caused by forceful atrial contraction and occurs later in diastole.

      While aortic regurgitation causes an early diastolic decrescendo murmur and mitral stenosis can cause a mid-diastolic rumble with an opening snap, these conditions are less likely as the echocardiogram reported normal valve function.

      A patent ductus arteriosus typically causes a continuous murmur and would present earlier in life.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 57-year-old woman comes to see her GP to discuss the findings of...

    Incorrect

    • A 57-year-old woman comes to see her GP to discuss the findings of her ABPM, which revealed a blood pressure reading of 145/90 mmHg, leading to a diagnosis of stage 1 hypertension. What is the most common symptom experienced by patients with this condition?

      Your Answer:

      Correct Answer: None

      Explanation:

      Symptoms are not typically caused by hypertension.

      Hypertension is a common medical condition that refers to chronically raised blood pressure. It is a significant risk factor for cardiovascular disease such as stroke and ischaemic heart disease. Normal blood pressure can vary widely according to age, gender, and individual physiology, but hypertension is defined as a clinic reading persistently above 140/90 mmHg or a 24-hour blood pressure average reading above 135/85 mmHg.

      Around 90-95% of patients with hypertension have primary or essential hypertension, which is caused by complex physiological changes that occur as we age. Secondary hypertension may be caused by a variety of endocrine, renal, and other conditions. Hypertension typically does not cause symptoms unless it is very high, but patients may experience headaches, visual disturbance, or seizures.

      Diagnosis of hypertension involves 24-hour blood pressure monitoring or home readings using an automated sphygmomanometer. Patients with hypertension typically have tests to check for renal disease, diabetes mellitus, hyperlipidaemia, and end-organ damage. Management of hypertension involves drug therapy using antihypertensives, modification of other risk factors, and monitoring for complications. Common drugs used to treat hypertension include angiotensin-converting enzyme inhibitors, calcium channel blockers, thiazide type diuretics, and angiotensin II receptor blockers. Drug therapy is decided by well-established NICE guidelines, which advocate a step-wise approach.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - A 70-year-old male patient with a history of rheumatic heart disease presents to...

    Incorrect

    • A 70-year-old male patient with a history of rheumatic heart disease presents to the Emergency Room (ER) with complaints of paroxysmal nocturnal dyspnoea, shortness of breath on exertion, and orthopnoea. During physical examination, bilateral pitting oedema and malar flush are observed. On auscultation, bibasal crepitations and a grade IV/VI mid-diastolic rumbling murmur following an opening snap are heard, loudest in the left 5th intercostal space midclavicular line with radiation to the axilla.

      The patient is stabilized and scheduled for echocardiography to confirm the underlying pathology. Additionally, Swan-Ganz catheterization is performed to measure the mean pulmonary capillary wedge pressure (PCWP). What are the most likely findings?

      Your Answer:

      Correct Answer: Mitral stenosis, raised PCWP

      Explanation:

      Mitral stenosis results in an elevation of left atrial pressure, which in turn causes an increase in pulmonary capillary wedge pressure (PCWP). This is a typical manifestation of acute heart failure associated with mitral stenosis, which is commonly caused by rheumatic fever. PCWP serves as an indirect indicator of left atrial pressure, with a normal range of 6-12 mmHg. However, in the presence of mitral stenosis, left atrial pressure is elevated, leading to an increase in PCWP.

      Understanding Pulmonary Capillary Wedge Pressure

      Pulmonary capillary wedge pressure (PCWP) is a measurement taken using a Swan-Ganz catheter with a balloon tip that is inserted into the pulmonary artery. The pressure measured is similar to that of the left atrium, which is typically between 6-12 mmHg. The primary purpose of measuring PCWP is to determine whether pulmonary edema is caused by heart failure or acute respiratory distress syndrome.

      In modern intensive care units, non-invasive techniques have replaced PCWP measurement. However, it remains an important diagnostic tool in certain situations. By measuring the pressure in the pulmonary artery, doctors can determine whether the left side of the heart is functioning properly or if there is a problem with the lungs. This information can help guide treatment decisions and improve patient outcomes. Overall, understanding PCWP is an important aspect of managing patients with respiratory and cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - A 68-year-old man arrives at the emergency department complaining of intense abdominal pain...

    Incorrect

    • A 68-year-old man arrives at the emergency department complaining of intense abdominal pain that spreads to his back. His medical history shows that he has an abdominal aortic aneurysm. During a FAST scan, it is discovered that the abdominal aorta is widely dilated, with the most significant expansion occurring at the point where it divides into the iliac arteries. What vertebral level corresponds to the location of the most prominent dilation observed in the FAST scan?

      Your Answer:

      Correct Answer: L4

      Explanation:

      The abdominal aorta divides into two branches at the level of the fourth lumbar vertebrae. At the level of T12, the coeliac trunk arises, while at L1, the superior mesenteric artery branches off. The testicular artery and renal artery originate at L2, and at L3, the inferior mesenteric artery is formed.

      The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - You are shadowing a cardiologist during a clinic session and the first patient...

    Incorrect

    • You are shadowing a cardiologist during a clinic session and the first patient is an 80-year-old man who has come for his annual check-up. He reports experiencing swollen ankles, increased shortness of breath, and difficulty sleeping flat. He has a history of heart failure but has been stable for the past 10 years. He believes that his condition has worsened since starting a new medication, but he cannot recall the name of the drug. Unfortunately, the electronic medical records are down, and you cannot access his medication history. Which of the following medications is most likely responsible for his symptoms?

      Your Answer:

      Correct Answer: Hydralazine

      Explanation:

      Hydralazine is unique among these drugs as it has been known to cause fluid retention by elevating the plasma concentration of renin. Conversely, the other drugs listed are recognized for their ability to reduce fluid overload and promote fluid elimination.

      Hydralazine: An Antihypertensive with Limited Use

      Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.

      Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly...

    Incorrect

    • In phase 0 of the atrial cardiomyocyte action potential, the cell is rapidly depolarised.

      What ion influx causes this rapid depolarisation?

      Your Answer:

      Correct Answer: Na+

      Explanation:

      Rapid depolarisation is caused by a rapid influx of sodium. This is due to the opening of fast Na+ channels during phase 0 of the cardiomyocyte action potential. Calcium influx during phase 2 causes a plateau, while chloride is not involved in the ventricular cardiomyocyte action potential. Potassium efflux occurs during repolarisation.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 30-year-old man visits his GP with complaints of fever and malaise. Upon...

    Incorrect

    • A 30-year-old man visits his GP with complaints of fever and malaise. Upon further inquiry, the GP discovers that the patient has been using intravenous drugs for several years and suspects infective endocarditis after a thorough examination. Which embryological structure is most likely affected in this patient?

      Your Answer:

      Correct Answer: Endocardial cushion

      Explanation:

      The AV and semilunar valves originate from the endocardial cushion during embryonic development. When a patient is positive for IVDU, infective endocarditis typically affects the tricuspid valve. It is important to note that all valves in the heart are derived from the endocardial cushion.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - A 54-year-old man is admitted to the coronary care unit after being hospitalized...

    Incorrect

    • A 54-year-old man is admitted to the coronary care unit after being hospitalized three weeks ago for an ST-elevation myocardial infarction. He reports chest pain again and is concerned it may be another infarction. The pain is described as sharp and worsens with breathing. The cardiology resident notes a fever and hears a rubbing sound and pansystolic murmur on auscultation, which were previously present. A 12-lead ECG shows no new ischemic changes. The patient has a history of diabetes, hypertension, and heavy smoking since his teenage years. What is the most likely cause of his current condition?

      Your Answer:

      Correct Answer: Autoimmune-mediated

      Explanation:

      Dressler’s syndrome is an autoimmune-mediated pericarditis that occurs 2-6 weeks after a myocardial infarction (MI). This patient, who has been admitted to the coronary care unit following an MI, is experiencing chest pain that is pleuritic in nature, along with fever and a friction rub sound upon examination. Given the timing of the symptoms at three weeks post-MI, Dressler’s syndrome is the most likely diagnosis. This condition results from an autoimmune-mediated inflammatory reaction to antigens following an MI, leading to inflammation of the pericardial sac and pericardial effusion. If left untreated, it can increase the risk of ventricular rupture. Treatment typically involves high-dose aspirin and corticosteroids if necessary.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - A 55-year-old man is scheduled for CABG surgery and your consultant has tasked...

    Incorrect

    • A 55-year-old man is scheduled for CABG surgery and your consultant has tasked you, a foundation doctor on the surgical ward, with explaining the procedure to him. You are aware that the bypass will involve using the left internal thoracic artery to supply the affected coronary vessel. Can you identify the artery from which the left internal thoracic artery arises?

      Your Answer:

      Correct Answer: Left subclavian artery

      Explanation:

      The left internal thoracic artery originates from the left subclavian artery near its source and runs down the chest wall beneath the ribs to supply blood to the front of the chest and breasts. During coronary artery bypass grafting (CABG), the proximal portion of the ITA is preserved while the distal end is grafted beyond the atherosclerotic segment of the affected coronary vessel to restore blood flow to the heart.

      The left axillary artery is a continuation of the left subclavian artery and is referred to as the axillary artery beyond the lateral border of the first rib. It becomes the brachial artery after passing the lower border of the teres major muscle.

      The left common carotid artery emerges from the aortic arch and divides into the internal and external carotid arteries at the fourth cervical vertebrae.

      The aortic arch is a continuation of the ascending aorta and branches off into the right brachiocephalic trunk, the left common carotid artery, and the left subclavian artery before continuing as the descending aorta.

      The thyrocervical trunk, which arises from the subclavian artery, is a brief vessel that gives rise to four branches: the inferior thyroid artery, suprascapular artery, ascending cervical artery, and transverse cervical artery.

      Coronary Artery Bypass Grafting (CABG)

      Coronary artery bypass grafting (CABG) is a surgical procedure commonly used to treat coronary artery disease. The procedure involves using multiple grafts, with the internal mammary artery being increasingly used instead of the saphenous vein due to its lower likelihood of narrowing. The surgery requires the use of a heart-lung bypass machine and systemic anticoagulation. Suitability for the procedure is determined by cardiac catheterisation or angiography. The surgery is carried out under general anaesthesia, and patients typically stay in the hospital for 7-10 days, with a return to work within 3 months.

      Complications of CABG include atrial fibrillation (30-40% of cases, usually self-limiting) and stroke (2%). However, the prognosis for the procedure is generally positive, with 90% of operations being successful. Further revascularisation may be needed in 5-10% of cases after 5 years, but the mortality rate is low, at 1-2% at 30 days.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 60-year-old woman who was discharged from the hospital 3 days ago presents...

    Incorrect

    • A 60-year-old woman who was discharged from the hospital 3 days ago presents to the emergency department with complaints of chest tightness and severe shortness of breath. While being evaluated, the patient suddenly becomes unresponsive and experiences cardiac arrest. Despite receiving appropriate life-saving measures, there is no return of spontaneous circulation and the patient is declared dead. Upon autopsy, a slit-like tear is discovered in the anterior wall of the left ventricle.

      What factors may have contributed to the cardiac finding observed in this patient?

      Your Answer:

      Correct Answer: Coronary atherosclerosis

      Explanation:

      Left Ventricular Free Wall Rupture Post-MI

      Following a myocardial infarction (MI), the weakened myocardial wall may be unable to contain high left ventricular (LV) pressures, leading to mechanical complications such as left ventricular free wall rupture. This occurs 3-14 days post-MI and is characterized by macrophages and granulation tissue at the margins. Patients are also at high risk of papillary muscle rupture and left ventricular pseudoaneurysm. The patient’s autopsy finding of a slit-like tear in the anterior LV wall is consistent with this complication.

      Coronary atherosclerosis is the most likely cause of the patient’s MI, as it is a common underlying condition. Prolonged alcohol consumption and recent viral infection can lead to dilated cardiomyopathy, while recurrent bacterial pharyngitis can cause inflammatory damage to both the myocardium and valvular endocardium. Repeated blood transfusion is not a known risk factor for left ventricular free wall rupture.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - A 82-year-old man visits the urology department complaining of a painful swelling in...

    Incorrect

    • A 82-year-old man visits the urology department complaining of a painful swelling in his left testicle that has been present for the past month. Upon examination, it is diagnosed as a left varicocele. Further CT scans reveal enlarged lymph nodes obstructing the venous drainage in the middle portion of his abdomen. Which vein is most likely to be compressed?

      Your Answer:

      Correct Answer: Left renal vein

      Explanation:

      The left renal vein collects venous blood from the left testis through the left testicular/gonadal vein.

      Both the left and right testes are drained by their respective testicular/gonadal veins. The right testicular vein empties directly into the inferior vena cava, while the left testicular vein drains into the left renal vein before joining the inferior vena cava.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - As a medical student in general practice, you encounter a 68-year-old female patient...

    Incorrect

    • As a medical student in general practice, you encounter a 68-year-old female patient who has come in for her routine blood pressure check. She informs you that she has GTN spray at home. Can you explain how nitric oxide leads to vasodilation?

      Your Answer:

      Correct Answer: Activates guanylate cyclase

      Explanation:

      Smooth muscle relaxation and vasodilation are caused by the release of nitric oxide in response to nitrates. Nitric oxide activates guanylate cyclase, which converts GTP to cGMP. This leads to the opening of K+ channels and hyperpolarization of the cell membrane, causing the closure of voltage-gated Ca2+ channels and pumping of Ca2+ out of the smooth muscle. This results in vasodilation. Nitric oxide does not inhibit the release of Bradykinin.

      Understanding Nitrates and Their Effects on the Body

      Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.

      The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.

      However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - A 56-year-old man visits his GP complaining of congestive heart failure, angina, and...

    Incorrect

    • A 56-year-old man visits his GP complaining of congestive heart failure, angina, and exertional syncope. During the examination, the doctor observes a forceful apex beat and a systolic ejection murmur at the upper right sternal border.

      What condition is most likely causing these symptoms?

      Your Answer:

      Correct Answer: Aortic stenosis

      Explanation:

      Symptoms and Diagnosis of Heart Valve Disorders

      Heart valve disorders can cause a range of symptoms depending on the type and severity of the condition. Aortic stenosis, for example, can lead to obstruction of left ventricular emptying, resulting in slow rising carotid pulse and a palpated murmur that may radiate to the neck. Aortic valve replacement is necessary for symptomatic patients to prevent death within three years or those with severe valve narrowing on ECHO. On the other hand, aortic regurgitation may not show any symptoms for many years until dyspnoea and fatigue set in. A blowing early diastolic murmur is typically found at the left sternal edge, and a mid-diastolic murmur may also be present over the apex of the heart.

      Mitral regurgitation, whether acute or chronic, can cause pulmonary oedema, exertional dyspnoea, and lethargy. A pansystolic murmur is audible at the apex. Mitral stenosis, meanwhile, initially presents with exertional dyspnoea, but haemoptysis and a productive cough may also occur. A rumbling mid-diastolic murmur is indicative of mitral stenosis. Finally, a prolapsing mitral valve is common in young women and is usually asymptomatic, although atypical chest pain may be present. Overall, proper diagnosis and treatment of heart valve disorders are crucial to prevent complications and improve quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - A 65-year-old man presents to the GP for a routine hypertension check-up. He...

    Incorrect

    • A 65-year-old man presents to the GP for a routine hypertension check-up. He has a medical history of hypertension, ischaemic heart disease, osteoarthritis, rheumatic fever and COPD.

      During the physical examination, the GP hears a mid-late diastolic murmur that intensifies during expiration. The GP suspects that the patient may have mitral stenosis.

      What is the primary cause of this abnormality?

      Your Answer:

      Correct Answer: Rheumatic fever

      Explanation:

      Understanding Mitral Stenosis

      Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.

      Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.

      Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.

      Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - A 50-year-old woman comes to you complaining of increased urinary frequency and lower...

    Incorrect

    • A 50-year-old woman comes to you complaining of increased urinary frequency and lower abdominal pain. She has a medical history of hypertension that is managed with a high dose of ramipril.

      Upon conducting a urine dipstick test, the results indicate a urinary tract infection. You prescribe a 5-day course of trimethoprim.

      What blood test will require monitoring in this patient?

      Your Answer:

      Correct Answer: Urea and electrolytes

      Explanation:

      Patients taking ACE-inhibitors should be cautious when using trimethoprim as it can lead to life-threatening hyperkalaemia, which may result in sudden death. Therefore, it is essential to monitor the potassium levels regularly by conducting urea and electrolyte tests.

      When using trimethoprim with methotrexate, it is crucial to monitor the complete blood count regularly due to the increased risk of myelosuppression. However, if the patient is only taking trimethoprim, there is no need to monitor troponins and creatine kinase.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - A 75-year-old man with confirmed heart failure visits the GP clinic for wound...

    Incorrect

    • A 75-year-old man with confirmed heart failure visits the GP clinic for wound dressing on his left leg. During the visit, the nurse informs the GP that she suspects the patient's legs are swollen. Upon examination, the GP observes bilateral pitting edema that extends up to the knee and decides to prescribe a diuretic. Which diuretic inhibits the sodium-potassium-chloride cotransporter?

      Your Answer:

      Correct Answer: Furosemide (loop diuretic)

      Explanation:

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (3/11) 27%
Passmed