-
Question 1
Incorrect
-
In which cell types can mesenchymal pluripotent stem cells undergo differentiation?
Your Answer: Leukocytes, erythrocytes, and mesenchymal stromal cells
Correct Answer: Osteoblasts, adipocytes and chondrocytes
Explanation:Mesenchymal Stem Cells: A Versatile Type of Connective Tissue
The mesenchyme is a type of connective tissue that originates from the embryonic mesoderm and is composed of undifferentiated cells. During fetal development, these mesenchymal stem cells differentiate into various types of adult cells, including osteoblasts, adipocytes, and chondrocytes. Mesenchymal stem cells have a remarkable ability to self-renew, making them a valuable resource for regenerative medicine.
Osteoblasts are cells that generate bone tissue, while adipocytes are responsible for storing fat in the body. Chondrocytes, on the other hand, produce cartilage, which is essential for maintaining healthy joints. These three cell types are the primary products of mesenchymal stem cells.
It’s important to note that the other answer options are incorrect because they don’t arise from mesenchymal stem cells. Mesenchymal stem cells are a versatile type of connective tissue that holds great promise for treating a wide range of medical conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 2
Incorrect
-
Which muscles are responsible for flexing the knee joint?
Your Answer: Quadriceps femoris
Correct Answer: Semitendinosus
Explanation:The Flexors of the Knee Joint and Other Related Muscles
The muscles responsible for flexing the knee joint are the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. On the other hand, the quadriceps femoris and sartorius muscles are involved in hip flexion, although the latter is weak despite being the longest muscle in the body. Lastly, the soleus muscle is responsible for ankle plantar flexion.
In summary, the flexors of the knee joint are composed of four muscles, while other related muscles are involved in hip flexion and ankle plantar flexion. the functions of these muscles is essential in diagnosing and treating injuries or conditions that affect the lower extremities.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 3
Correct
-
At 3 days old, a newborn receives a routine check and is discovered to have a murmur. The following week, an echo reveals the most prevalent congenital heart defect. What is the specific abnormality present?
Your Answer: Ventricular septal defect
Explanation:Common Congenital Cardiac Defects
The most frequent congenital cardiac defect is a ventricular septal defect (VSD), which can be classified into different types depending on its location within the intraventricular septum. The perimuscular VSD is the most common type and is located at the apex of the septum. VSDs that are closer to the base of the heart, such as perimembranous or sub-aortic VSDs, are less likely to close spontaneously. However, most VSDs can be monitored and do not require surgery.
Atrial septal defects (ASD) are the second most common abnormality and result in a murmur due to increased flow through the pulmonary trunk. Atrioventricular septal defects (AVSD) cross the atrioventricular septum and can cause mixing between the right and left sides of the heart. AVSDs range from minor defects that behave like a VSD to complete AVSDs that cause congenital cyanosis. They are strongly associated with Down syndrome.
Patent ductus arteriosus is another non-cyanotic congenital cardiac malformation that typically causes a continuous murmur. Tetralogy of Fallot is the most common congenital cyanotic heart disease, characterized by right ventricular hypertrophy, pulmonary infundibular stenosis, ventricular septal defect, and an overriding aorta. Although many children with Tetralogy of Fallot are not grossly cyanosed in the first few days, it is often diagnosed antenatally. When associated with an ASD, it is known as the pentad of Fallot.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 4
Incorrect
-
What blood test result indicates hypoglycaemia?
Your Answer:
Correct Answer: A young child with a plasma glucose concentration of 2.2 mmol/L
Explanation:Hypoglycaemia
Hypoglycaemia occurs when the blood glucose level falls below the typical fasting level. This condition is common and may not always require treatment, especially if it is mild and asymptomatic. However, the diagnosis of true hypoglycaemia requires the satisfaction of Whipple’s triad, which includes the presence of hypoglycaemia, symptoms/signs consistent with hypoglycaemia, and resolution of symptoms/signs when blood glucose level normalises.
Symptoms of hypoglycaemia are caused by sympathetic activity and disrupted central nervous system function due to inadequate glucose. Infants may experience hypotonia, jitteriness, seizures, poor feeding, apnoea, and lethargy. On the other hand, adults and older children may experience tremor, sweating, nausea, lightheadedness, hunger, and disorientation. Severe hypoglycaemia can cause confusion, aggressive behaviour, and reduced consciousness.
In summary, hypoglycaemia is important to recognise its symptoms and provide appropriate treatment. While mild hypoglycaemia may not always require intervention, true hypoglycaemia should be diagnosed based on Whipple’s triad. Symptoms of hypoglycaemia vary depending on age, and severe hypoglycaemia can cause serious complications.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 5
Incorrect
-
What is the intracellular pathway that is triggered by NK cells and CD8+ T cells in infected cells to induce apoptosis?
Your Answer:
Correct Answer: Caspase system
Explanation:Mechanisms of Cell Killing and Metabolic Pathways
NK cells and cytotoxic T cells have two ways of killing virally infected cells. The first way is through the release of perforin and granzyme, which creates small holes in the membrane of the target cell, allowing entry of granzyme. Granzyme then activates the caspase cascade, resulting in apoptosis. The second way is through ligation of Fas-receptors, which triggers the caspase cascade, also resulting in apoptosis.
The pentose phosphate pathway is a metabolic pathway that produces NADPH and riboses, which are 5-carbon sugars. This pathway is involved in the production of energy and biosynthetic precursors for the cell.
The PI3K pathway is an intracellular signaling pathway that is used by some growth-related factors, such as insulin. This pathway plays a crucial role in regulating cell growth, proliferation, and survival.
The protein C cascade is a natural antithrombotic mechanism that helps prevent blood clots from forming. This cascade is activated when there is damage to the blood vessel wall, and it helps to break down blood clots that have already formed.
The Ras-kinase pathway is the main pro-growth pathway that is activated by growth factors. This pathway plays a crucial role in regulating cell growth, proliferation, and differentiation. It is involved in many cellular processes, including cell cycle progression, cell survival, and cell migration.
Overall, these mechanisms and pathways play important roles in maintaining the health and function of cells in the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 6
Incorrect
-
Which foods are rich in vitamin D?
Your Answer:
Correct Answer: Salmon
Explanation:Sources of Vitamin D
Vitamin D is a crucial nutrient that is primarily produced by the body when exposed to sunlight. However, in the absence of sunlight, it is important to obtain vitamin D from dietary sources. These sources include oily fish such as salmon, mackerel, and catfish, as well as meat, eggs, and some mushrooms. It is important to note that vitamin D-containing foods are mostly animal or fish-based, which may put strict vegetarians at a greater risk of deficiency.
Vitamin D exists in two forms, D2 and D3, with dietary sources containing vitamin D3 in greater abundance than D2. It is essential to ensure that the body receives an adequate amount of vitamin D, as it plays a crucial role in maintaining bone health, regulating the immune system, and reducing the risk of certain diseases. By incorporating vitamin D-rich foods into the diet, individuals can ensure that they are meeting their daily requirements for this important nutrient.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 7
Incorrect
-
After TLR activation on macrophages, which cytokine is secreted that enhances leukocyte adhesion and increases endothelial permeability?
Your Answer:
Correct Answer: TNF-alpha
Explanation:Toll-like Receptors and Cytokine Secretion by Macrophages
Toll-like receptors are a type of pattern-recognition receptor that enables granulocytes to detect general pathogenic molecules. When activated on macrophages, Toll-like receptors trigger the secretion of various cytokines. These cytokines include IL-1, which causes fever by acting on the hypothalamus, IL-6, which stimulates the liver to release acute phase proteins, IL-8, which attracts neutrophils, and TNF-alpha, which promotes Th1-type responses from CD4+ T cells, attracts macrophages, and increases endothelial permeability.
TGF-beta is another cytokine that is slightly different from the others. It is released by T regulatory cells and has the ability to reduce lymphocyte activity while promoting fibrosis. Overall, the activation of Toll-like receptors and subsequent cytokine secretion by macrophages play a crucial role in the immune response against pathogens.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 8
Incorrect
-
A 79-year-old falls at home and fractures his femoral neck, remaining immobile and unfound for three days without access to food. What lipid serves as a soluble metabolic fuel for skeletal and cardiac muscle, the kidney, and brain during periods of fasting?
Your Answer:
Correct Answer: Ketone bodies
Explanation:The Six Major Classes of Lipids and Their Functions
There are six major classes of lipids, each with their own unique functions in the body. Fatty acids are a type of lipid that can be used as a source of energy or stored in adipose tissue. Triacylglycerols serve as a storage depot and transport form for fatty acids. Ketone bodies are synthesized from fatty acids and amino acids in the liver during periods of starvation and in diabetic ketoacidosis, and are used as a fuel source by selected tissues. Patients with excess ketones may have a fruity smelling breath.
Cholesterol is a component of the plasma membrane and is used to synthesize bile acids, steroids, and vitamin D. Phospholipids are a major component of cell membranes and play a role in cell signaling. Sphingolipids are also part of the structure of membranes and act as surface antigens.
Overall, lipids play important roles in energy storage, membrane structure, and signaling in the body. the functions of each class of lipid can help us better understand the complex processes that occur within our bodies.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 9
Incorrect
-
A 65-year-old woman is preparing for surgery to remove her submandibular gland due to recurrent sialadenitis. What is a significant structure that is located medially to the gland?
Your Answer:
Correct Answer: Mylohyoid muscle
Explanation:Muscles and Arteries of the Head and Neck
The mylohyoid muscle is situated close to the superficial part of the submandibular gland. Meanwhile, the genioglossus muscle originates from the mandible and attaches to the tongue and hyoid bone. This muscle is responsible for tongue movement and swallowing. Another muscle in the head and neck region is the lateral pterygoid muscle, which is located in the infratemporal fossa of the skull. It is a two-headed muscle that aids in chewing and movement of the temporomandibular joint. Lastly, the maxillary artery arises posterior to the mandibular neck and passes between the sphenomandibular ligament and ramus of the mandible. This artery supplies blood to the deep structures of the face and maxilla. the anatomy of these muscles and arteries is crucial in diagnosing and treating various head and neck conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 10
Incorrect
-
A study investigating the effectiveness of D-dimer testing in detecting DVT analyzed the medical records of 800 patients. To be eligible for the study, D-dimer had to be measured and DVT must have been confirmed by ultrasound.
Out of the 800 patients, 720 had positive D-dimers and 80 had negative D-dimers.
What is the sensitivity of D-dimer measurement in identifying DVT?Your Answer:
Correct Answer: 95%
Explanation:Sensitivity in Medical Testing
Medical testing involves the use of various diagnostic tools to identify the presence or absence of a disease. One important aspect of medical testing is sensitivity, which refers to the proportion of individuals with the disease who are correctly identified by the test. For instance, if 950 out of 1000 people with deep vein thrombosis (DVT) are correctly identified as having the condition, the sensitivity of the test is 95%.
Highly sensitive tests are particularly useful for ruling out diseases. This means that if the test is negative, it is unlikely that the person has the disease. To remember this, you can use the mnemonic spin and snout, which stands for specificity for ruling in (spin) and sensitivity for ruling out (snout).
In addition to sensitivity, medical testing also involves positive predictive value and negative predictive value. Positive predictive value refers to the odds of having the disease if the test is positive, while negative predictive value refers to the odds of not having the disease if the test is negative. these values can help healthcare professionals make informed decisions about patient care.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 11
Incorrect
-
Which type of cell makes up the majority of yellow bone marrow?
Your Answer:
Correct Answer: Adipocytes
Explanation:Anatomy of Bones and Bone Marrow
Bones are composed of two types of bone tissue: compact bone and cancellous bone. The medullary cavity is located within the cancellous bone and contains trabeculae. Blood vessels and bone marrow are also present within the cavity. The bone marrow is responsible for producing blood cells, with red marrow being the site of active haematopoiesis. Yellow marrow, on the other hand, is predominantly made up of adipocytes and fibroblasts.
Chondrocytes are specialized cells found in cartilage that secrete the collagen matrix. Fibroblasts also contribute to the extracellular matrix by secreting collagen. Haematopoietic stem cells are found in bone marrow and are the common ancestor of all haematologic cells. Megakaryocytes, which are also found in bone marrow, are the precursor to platelets. the anatomy of bones and bone marrow is crucial in their functions and the processes that occur within them.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 12
Incorrect
-
A 27-year-old patient with anorexia nervosa has been admitted from home for nutritional support. Following her initial oral feed, her phosphate level has decreased from 0.5 mmol/L to 0.1 mmol/L (reference range 0.7-1.4). What could be the reason for her hypophosphataemia?
Your Answer:
Correct Answer: Phosphate enters the body's cells
Explanation:Refeeding Syndrome
Refeeding syndrome is a potentially fatal condition that can occur after a prolonged period of fasting or poor nutritional intake followed by a meal high in carbohydrates. It is characterized by a rapid decrease in the serum levels of phosphate, potassium, and magnesium, all of which are already depleted in the body. This happens because glucose availability within the blood causes insulin secretion while glucagon secretion is reduced. Insulin stimulates glycogen, adipose and protein synthesis and enhances the action of the Na-K-ATPase pump in cell membranes, which draws glucose into the cells. Many minerals and cofactors are also drawn into the cells to support these metabolic processes.
The condition is particularly dangerous for patients with starvation, anorexia nervosa, gastrointestinal conditions that impede adequate nutrition, and poor nutrition due to severe illness such as cancer cachexia. In healthy patients, phosphate ions enter the body’s cells under the influence of insulin after a meal, and the phosphate concentration in blood remains within the reference range. However, in patients with refeeding syndrome, a meal can stimulate marked phosphate entry into cells, causing profound hypophosphataemia. This can lead to cardiac arrhythmias and other life-threatening complications. Therefore, it is important to monitor patients at risk of refeeding syndrome closely and provide appropriate nutritional support to prevent this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 13
Incorrect
-
What is the leading reason for hypoglycemia in adults?
Your Answer:
Correct Answer: Treated diabetes mellitus
Explanation:Hypoglycaemia in Adults
Hypoglycaemia is a condition where the blood glucose level falls below the typical fasting level, which is around <4 mmol/L for an adult. This condition can cause various symptoms, including tremors, sweating, nausea, lightheadedness, hunger, and disorientation. Severe hypoglycaemia can even lead to confusion, aggressive behaviour, and reduced consciousness. Drug-treated diabetes mellitus is the most common cause of hypoglycaemia in adults, especially due to insulin or hypoglycaemia drugs like sulphonylureas. Type 1 diabetes patients are at a higher risk of hypoglycaemia due to hypoglycaemia unawareness and blunted glucagon response. However, mild hypoglycaemia is common during fasting, pregnancy, and minor illness. Apart from diabetes, other causes of hypoglycaemia in adults include non-diabetic drugs, alcohol, hepatic failure, critical illness, hormone deficiency, malignancy, insulinoma, non-insulinoma pancreatogenous hypoglycaemia syndrome (NIPHS), and bariatric surgery. It is essential to understand the causes and symptoms of hypoglycaemia to manage the condition effectively. Early diagnosis and treatment can prevent severe complications and improve the quality of life for individuals with hypoglycaemia.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 14
Incorrect
-
What is the hormone responsible for controlling blood sodium levels?
Your Answer:
Correct Answer: Antidiuretic hormone
Explanation:The Role of Antidiuretic Hormone in Regulating Blood Sodium Levels
Antidiuretic hormone (ADH) is a polypeptide hormone produced in the hypothalamus and released into the circulation by the posterior pituitary. Its main function is to promote the reabsorption of water from the kidney, preventing its loss in the urine. This, in turn, has a secondary effect on blood sodium levels.
ADH works by stimulating the production of a water channel called aquaporin, which is inserted into the cell membrane of cells lining the collecting duct of the kidney. This allows water molecules to move from the collecting duct lumen into the cells, from where they can move back to the interstitial fluid and the bloodstream. As a result, less water is lost in the urine, and blood sodium levels are regulated.
In summary, ADH plays a crucial role in regulating blood sodium levels by conserving water and preventing its loss in the urine. Its action on aquaporin production allows for the reabsorption of water from the kidney, which has a secondary effect on blood sodium levels.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 15
Incorrect
-
What is the most powerful muscle for extending the hip?
Your Answer:
Correct Answer: Gluteus maximus
Explanation:Muscles Acting on the Hip Joint
The hip joint is a synovial ball and socket joint that allows for a wide range of movements. There are several muscles that act over the hip, each with their own primary movement and innervation. The hip extensors include the gluteus maximus and the hamstrings, which are responsible for extending the hip joint. The hip flexors include the psoas major, iliacus, rectus femoris, and pectineus, which are responsible for flexing the hip joint. The hip abductors include the gluteus medius and minimus, as well as the tensor fascia latae, which are responsible for abducting the hip joint. Finally, the hip adductors include the adductor magnus, brevis, and longus, as well as the gracilis, which are responsible for adducting the hip joint.
The gluteus maximus is the strongest hip extensor, earning it the nickname of the power extensor of the hip. The hamstrings, while partially responsible for hip extension, are primarily responsible for knee flexion. However, their long course leaves them vulnerable to sports injuries. the muscles that act on the hip joint is important for both athletes and healthcare professionals in order to prevent and treat injuries.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 16
Incorrect
-
What is the enzyme responsible for catalyzing the rate limiting step in glycolysis?
Your Answer:
Correct Answer: Phosphofructokinase
Explanation:The Rate Limiting Step of Glycolysis
The conversion of fructose 6 phosphate to fructose 1,6,bisphosphate is the main rate limiting step of the glycolysis pathway. This conversion is catalysed by the enzyme phosphofructokinase in the presence of ATP. However, excessive cellular concentrations of ATP can inhibit the activity of phosphofructokinase. This inhibition encourages the storage of excess glucose as glycogen instead of making excessive ATP in times of abundance. On the other hand, when there is cellular abundance of ATP but it is undergoing rapid degradation to AMP, the rising levels of AMP reduce the effect of high concentrations of ATP on the inhibition of the enzyme. Although several other steps in the glycolysis pathway are under control or inhibition in times of cellular ATP abundance or due to an accumulation of the products of glycolysis, phosphofructokinase is considered the main rate limiting step of glycolysis.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 17
Incorrect
-
In which organ is aldosterone hormone synthesized?
Your Answer:
Correct Answer: Adrenal gland - zona glomerulosa of the cortex
Explanation:Hormones Produced by the Adrenal Glands
The adrenal glands are responsible for producing various hormones that are essential for the body’s proper functioning. The central core of the adrenal glands is called the medulla, where catecholamines such as adrenaline and noradrenaline are produced. On the other hand, the cortex surrounding the medulla is divided into three layers: zona glomerulosa, fasciculata, and reticularis. The zona glomerulosa is responsible for producing aldosterone, a mineralocorticoid hormone that promotes sodium retention and loss of potassium and hydrogen ions. Hyperaldosteronism, or excessive aldosterone production, is associated with hypertension.
Cortisol, a glucocorticoid hormone that is essential for life, is produced in the zona fasciculata. It causes increased blood sugar levels, stabilizes membranes, stimulates appetite, and suppresses the immune/hypersensitivity response. Adrenal androgens, such as DHEA and androstenedione, are produced in the zona reticularis in both males and females. However, their production is low until the adrenarche, which occurs around the time of puberty.
The renal juxtaglomerular apparatus is a specialized group of cells in the kidney that secretes renin and regulates the glomerular filtration rate to control sodium excretion. Overall, the adrenal glands play a crucial role in maintaining the body’s homeostasis by producing various hormones that regulate different physiological processes.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 18
Incorrect
-
For a healthy adult, how much moderate-intensity physical activity is recommended per week by the World Health Organization?
Your Answer:
Correct Answer: > 150 minutes
Explanation:WHO Physical Activity Recommendations for Adults
The World Health Organization (WHO) recommends that adults aged 18-64 engage in a minimum of 150 minutes of moderate-intensity physical activity per week. This can be achieved through 30 minutes of exercise on at least 5 days per week. However, additional health benefits can be gained by increasing the amount of exercise beyond this minimum level.
The recommended physical activity can be achieved through either moderate-intensity aerobic activity, vigorous-intensity aerobic activity, or a combination of both. Aerobic activity should be performed in bouts of at least 10 minutes duration. For even greater health benefits, adults should aim for 300 minutes of moderate-intensity aerobic activity per week, or 150 minutes of vigorous-intensity aerobic activity per week, or a combination of both.
In addition to aerobic activity, adults should also engage in muscle-strengthening activities involving major muscle groups on two or more days per week. By following these recommendations, adults can improve their overall health and reduce the risk of chronic diseases.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 19
Incorrect
-
A 10-year-old patient presents with recurrent skin cancer and is diagnosed with xeroderma pigmentosum. What is the defective biochemical mechanism in this disease?
Your Answer:
Correct Answer: DNA excision repair
Explanation:DNA and its Processes
Deoxyribonucleic acid (DNA) found in the epidermal cells absorbs UV light, which results in the formation of pyrimidine dimers. These dimers are then removed through the process of excision repair, where the DNA is copied and re-annealed. Failure in this process can lead to mutations in tumour suppressor genes or oncogenes, which can cause malignancy.
DNA polymerisation is the process of synthesizing DNA from nucleotides, which is driven by the enzyme DNA polymerase. On the other hand, mRNA splicing is the removal of introns from RNA to allow for exons to join together before coding. Lastly, nucleotide transition refers to a point mutation of nucleotides, such as in sickle cell anaemia. these processes is crucial in comprehending the role of DNA in the body and how it can affect our health.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 20
Incorrect
-
Which blood vessel in the systemic circulation causes the highest amount of resistance to blood flow?
Your Answer:
Correct Answer: Arterioles
Explanation:Arterioles and Total Peripheral Vascular Resistance
Arterioles play a crucial role in determining the total peripheral vascular resistance due to their small calibre, larger surface area, and higher tensile strength compared to capillaries. These vessels are responsible for regulating blood flow to the capillaries and organs by constricting or dilating. The constriction of arterioles increases resistance to blood flow, while dilation decreases resistance.
The high tensile strength of arterioles allows them to withstand the pressure of blood flow and maintain their shape, which is important for regulating blood pressure. Additionally, their larger surface area allows for more precise control of blood flow to specific areas of the body. Overall, arterioles are essential in regulating blood flow and maintaining proper blood pressure throughout the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 21
Incorrect
-
You are participating in a seminar about eating disorders. What renal alteration is common in individuals with extreme malnourishment?
Your Answer:
Correct Answer: Reduced glomerular filtration rate
Explanation:Renal Physiology Changes in Severe Malnutrition
Patients with severe malnutrition experience changes in their renal physiology due to reduced food intake. These changes include an increased secretion of aldosterone and a reduced glomerular filtration rate (GFR), which alters the excretion patterns of many solutes, electrolytes, and drugs. As a result, there is an increased urinary excretion of potassium, calcium, magnesium, and phosphate, leading to a tendency for hypokalaemia, hypocalcaemia, hypomagnesaemia, and hypophosphataemia over time.
Furthermore, the reduced muscle bulk in individuals with severe malnutrition causes low levels of production of urea and creatinine. However, reduced excretion causes plasma levels to remain normal or only slightly reduced. As muscle is broken down to provide substrates for gluconeogenesis, a negative nitrogen balance ensues. Additionally, urate excretion is reduced, causing a relative hyperuricaemia.
In summary, severe malnutrition affects renal physiology, leading to altered excretion patterns of various solutes, electrolytes, and drugs. These changes can result in imbalances in potassium, calcium, magnesium, and phosphate levels. Furthermore, the breakdown of muscle tissue can cause a negative nitrogen balance, while reduced urate excretion can lead to hyperuricaemia.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 22
Incorrect
-
A pair visits the clinic to inquire about the likelihood of their future offspring developing alpha thalassaemia. They both have thalassaemia trait. What is the accurate probability of their child being born with thalassaemia major?
Your Answer:
Correct Answer: 25% risk
Explanation:Thalassaemia Trait and the Risk of Inheriting Thalassaemia Major
Thalassaemia trait individuals, who are heterozygous for the condition, do not have thalassaemia themselves. However, if their partner is also a carrier, there is a high risk of having a child born with thalassaemia major, which occurs when both parents pass on the thalassaemia gene. The risk of this happening is 1 in 4.
It is important to note that individuals with thalassaemia trait have a 50% chance of passing on the gene to their children, who will also be carriers. There is also a 1 in 4 chance of their children not inheriting the thalassaemia gene at all.
It is worth mentioning that the terminology used to describe thalassaemias has changed in recent years. People with beta thalassaemia can now be grouped into transfusion dependent or independent categories. the risk of inheriting thalassaemia major is crucial for individuals with thalassaemia trait who are planning to have children. Genetic counseling can help them make informed decisions about their family planning.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 23
Incorrect
-
A 17-year-old girl is scheduled for surgery to remove a thyroglossal cyst, which will involve removing a part of the hyoid bone. Can you identify the cervical level where the hyoid bone is located?
Your Answer:
Correct Answer: C3
Explanation:Levels of Hyoid Bone, Thyroid Cartilage, and Cricoid Cartilage in the Neck
The neck contains several important structures, including the hyoid bone, thyroid cartilage, and cricoid cartilage. These structures are located at specific levels in the cervical spine. The hyoid bone is situated at the level of the third cervical vertebrae (C3). The thyroid cartilage, which forms the Adam’s apple in males, is located at the level of the fourth and fifth cervical vertebrae (C4 and C5). Finally, the cricoid cartilage, which is the only complete ring of cartilage in the trachea, is situated at the level of the sixth cervical vertebrae (C6). the location of these structures is important for medical professionals who may need to perform procedures or surgeries in the neck region.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 24
Incorrect
-
What is the safest method to prevent needlestick injury when obtaining an arterial blood gas sample?
Your Answer:
Correct Answer: Removing the needle, disposing of it, and putting a cap on the sample
Explanation:Safe Disposal of Blood Gas Sample Needles
When obtaining a blood gas sample, it is important for health professionals to dispose of the needle safely before transporting it to the laboratory. This can be done by placing the needle in a sharps bin. It is crucial to handle the needle with care to prevent any accidental injuries or infections. Once the sample has been obtained, the needle should be immediately disposed of in the sharps bin to avoid any potential hazards. By following proper disposal procedures, health professionals can ensure the safety of themselves and others while handling blood gas samples. Remember to always prioritize safety when handling medical equipment.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 25
Incorrect
-
A 82-year-old woman named Mrs. Smith visits her GP complaining of constant fatigue. She has a medical history of hypothyroidism and takes oral levothyroxine. Her routine blood tests reveal the following results: Hb 87 g/L (115-160), MCV 108 fL (76-96), Platelets 136 ×109/L (150-400), TSH 3.6 (0.3-5), and T4 88 (70-150). What is the appropriate treatment plan for Mrs. Smith?
Your Answer:
Correct Answer: Vitamin supplementation
Explanation:Pernicious Anaemia: An Autoimmune Disease
Pernicious anaemia is an autoimmune disease that occurs when the body produces antibodies against gastric parietal cells. These cells are responsible for producing intrinsic factor, which is necessary for the absorption of vitamin B12 in the terminal ileum. Vitamin B12 is essential for the synthesis of thymine, which is required for effective DNA synthesis. As a result, patients with pernicious anaemia may experience symptoms related to other cell lines, such as diarrhoea caused by gut mucosa turnover.
The failure of DNA synthesis leads to a large mean cell volume in erythrocytes as they mature through the erythroid cell line. Treatment for pernicious anaemia involves the replacement of vitamin B12, usually through hydroxycobalamin injections. Blood transfusions are unnecessary unless the patient is severely compromised, as they do not address the underlying problem.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 26
Incorrect
-
What is the hormone that controls the levels of calcium in the blood?
Your Answer:
Correct Answer: Parathyroid hormone
Explanation:The Importance of Parathyroid Hormone in Regulating Blood Calcium Levels
Calcium plays a crucial role in various bodily functions, including bone support, blood clotting, muscle contraction, nervous transmission, and hormone production. However, excessively high or low levels of calcium in the blood and interstitial fluid can lead to serious health issues such as arrhythmias and cardiac arrest. This is where parathyroid hormone comes in.
Parathyroid hormone is responsible for regulating blood calcium levels. It works directly on the bone, stimulating bone production or resorption depending on the concentration and duration of exposure. It also acts on the kidney, increasing the loss of phosphate in the urine, decreasing the loss of calcium in the urine, and promoting the activity of the enzyme 1-alpha hydroxylase, which activates vitamin D. Additionally, parathyroid hormone indirectly affects the gut through the action of activated vitamin D.
Overall, the regulation of blood calcium levels is crucial for maintaining optimal bodily functions. Parathyroid hormone plays a vital role in this process by directly and indirectly affecting various organs and systems in the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 27
Incorrect
-
Which section of the digestive system is primarily involved in the enterohepatic circulation?
Your Answer:
Correct Answer: Terminal ileum
Explanation:The Enterohepatic Circulation and Bile Recycling
The enterohepatic circulation is a process that allows for the recycling of certain waste materials that are excreted in the bile. This process occurs at the terminal ileum, where bile salts and some bilirubin derivatives are reabsorbed and returned to the liver through the portal circulation. The regulation of this process involves transporter proteins in both the liver canaliculi and the ileum.
Bacterial flora in the colon also play a role in the enterohepatic circulation of bilirubin derivatives. Some bacteria contain an enzyme called beta-glucuronidase, which converts conjugated bilirubin to unconjugated bilirubin. This unconjugated form is more lipid-soluble and can be more easily reabsorbed.
Overall, the enterohepatic circulation is an important mechanism for bile recycling and waste management in the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 28
Incorrect
-
Which Korotkoff sound indicates that the diastolic pressure has been reached during blood pressure measurement?
Your Answer:
Correct Answer: Fifth
Explanation:Korotkoff Sounds
Korotkoff sounds are the sounds heard when taking blood pressure readings. There are five phases of Korotkoff sounds, each indicating different stages of blood pressure. The first phase is a tapping sound, which indicates the systolic pressure. The second phase is a swooshing sound or murmurs. The third phase is a crisp tapping sound, while the fourth phase is a muffled, blowing sound. The fifth and final phase is silence.
Older textbooks used to state that the fourth Korotkoff sound indicate diastolic pressure, but now the fifth sound is used preferentially. To take a blood pressure reading, the cuff is inflated and then slowly reduced. The first tapping sound heard is the systolic pressure. The cuff is then further deflated until silence is heard, which indicates the diastolic pressure. Korotkoff sounds is important for accurate blood pressure readings and proper diagnosis and treatment of hypertension.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 29
Incorrect
-
Which of the following tissues does not have considerable levels of AST and is therefore not used as a marker of liver hepatocellular damage?
Your Answer:
Correct Answer: Testes
Explanation:AST and ALT as Markers of Liver Function
AST and ALT are enzymes that are commonly used as markers of liver function. AST is found in metabolically active tissues such as muscle, heart, liver, kidney, and brain, while ALT is mainly found in the liver with very low levels elsewhere. However, because of its wide distribution, AST is not specific as a marker of liver disease. It can also be elevated in myocardial infarction, myositis, and other conditions. Therefore, many laboratories now use ALT preferentially as a more specific test for liver dysfunction.
It is important to note that neither AST nor ALT test the true ‘function’ of the liver. They merely represent markers of hepatocyte disruption or damage. For a better measure of the synthetic function of the liver, the prothrombin time (PT) or INR is used as it produces coagulation factors. It is crucial to interpret the results of AST and ALT tests with caution and in conjunction with other liver function tests to accurately diagnose liver disease.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 30
Incorrect
-
Activation of which receptor is believed to enhance the activity of brown fat, resulting in the production of heat/energy?
Your Answer:
Correct Answer: Beta-3 receptor
Explanation:The Role of Beta-3 Adrenoceptors and Brown Fat in Energy Metabolism
Fat cells were once believed to be inactive, but recent research has shown that they are actually an endocrine organ that produces hormones involved in regulating energy metabolism. One such hormone is produced by brown fat cells, which contain beta-3 adrenoceptors. These receptors are thought to stimulate lipolysis and thermogenesis, leading to increased energy expenditure. However, despite attempts to activate these receptors with agonists, no significant effect on weight or energy expenditure has been observed. Nonetheless, the discovery of the role of brown fat and beta-3 adrenoceptors in energy metabolism has opened up new avenues for research into potential treatments for obesity and related metabolic disorders.
-
This question is part of the following fields:
- Clinical Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)