00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 25-year-old female patient visits your clinic complaining of hearing loss. According to...

    Correct

    • A 25-year-old female patient visits your clinic complaining of hearing loss. According to her, her hearing has been declining for about two years, with her left ear being worse than the right. She struggles to hear her partner when he is on her left side. Additionally, she has been experiencing tinnitus in her left ear for a year. She mentions that her mother also has hearing difficulties and uses hearing aids on both ears. During the examination, the Rinne test shows a negative result on the left and a positive result on the right. On the other hand, the Weber test indicates that the sound is louder on the left. What is the probable impairment?

      Your Answer: Conductive hearing loss on the left.

      Explanation:

      Based on the results of the Weber and Rinne tests, the patient in the question is likely experiencing conductive hearing loss on the left side. The Weber test revealed that the patient hears sound better on the left side, which could indicate a conductive hearing loss or sensorineural hearing loss on the right side. However, the Rinne test was negative on the left side, indicating a conductive hearing loss. This is further supported by the patient’s reported symptoms of hearing loss in the left ear. This presentation, along with a family history of hearing loss, suggests a possible diagnosis of otosclerosis, a condition that affects the stapes bone and can lead to severe or total hearing loss.

      Understanding the Different Causes of Deafness

      Deafness can be caused by various factors, with ear wax, otitis media, and otitis externa being the most common. However, there are other conditions that can lead to hearing loss, each with its own characteristic features. Presbycusis, for instance, is age-related sensorineural hearing loss that often makes it difficult for patients to follow conversations. Otosclerosis, on the other hand, is an autosomal dominant condition that replaces normal bone with vascular spongy bone, causing conductive deafness, tinnitus, and a flamingo tinge in the tympanic membrane. Glue ear, also known as otitis media with effusion, is the most common cause of conductive hearing loss in children, while Meniere’s disease is characterized by recurrent episodes of vertigo, tinnitus, and sensorineural hearing loss. Drug ototoxicity, noise damage, and acoustic neuroma are other factors that can lead to deafness.

      Understanding the different causes of deafness is crucial in diagnosing and treating the condition. By knowing the characteristic features of each condition, healthcare professionals can determine the appropriate interventions to help patients manage their hearing loss. It is also important for individuals to protect their hearing by avoiding exposure to loud noises and seeking medical attention when they experience any symptoms of hearing loss. With proper care and management, people with deafness can still lead fulfilling lives.

    • This question is part of the following fields:

      • Respiratory System
      15.1
      Seconds
  • Question 2 - A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression....

    Correct

    • A 44-year-old woman is scheduled for a thyroidectomy due to symptomatic tracheal compression. She has a history of hyperthyroidism that was controlled with carbimazole. However, she was deemed a suitable candidate for thyroidectomy after presenting to the emergency department with dyspnoea and stridor.

      As a surgical resident assisting the ENT surgeon, you need to ligate the superior thyroid artery before removing the thyroid glands to prevent excessive bleeding. However, the superior laryngeal artery, a branch of the superior thyroid artery, is closely related to a structure that, if injured, can lead to loss of sensation in the laryngeal mucosa.

      What is the correct identification of this structure?

      Your Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve and the superior laryngeal artery are closely associated with each other. The superior laryngeal artery travels alongside the internal laryngeal branch of the superior laryngeal nerve, beneath the thyrohyoid muscle. It originates from the superior thyroid artery near its separation from the external carotid artery.

      If the internal laryngeal nerve is damaged, it can result in a loss of sensation to the laryngeal mucosa. The nerve is situated beneath the mucous membrane of the piriform recess, making it vulnerable to injury from sharp objects like fish and chicken bones that may become stuck in the recess.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      11.3
      Seconds
  • Question 3 - A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible...

    Correct

    • A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.

      What specific lung volume would accurately describe the clinician's observation?

      Your Answer: Tidal volume (TV)

      Explanation:

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      8.8
      Seconds
  • Question 4 - A 19-year-old male is admitted with acute asthma. He has been treated with...

    Correct

    • A 19-year-old male is admitted with acute asthma. He has been treated with steroid, bronchodilators and 15 l/min of oxygen.

      His pulse rate is 125/min, oxygen saturation 89%, respiratory rate 24/min, blood pressure 140/88 mmHg and he has a peak flow rate of 150 l/min. On auscultation of his chest, he has bilateral wheezes.

      Arterial blood gas (ABG) result taken on 15 l/min oxygen shows:

      pH 7.42 (7.36-7.44)
      PaO2 8.4 kPa (11.3-12.6)
      PaCO2 5.3 kPa (4.7-6.0)
      Standard HCO3 19 mmol/L (20-28)
      Base excess −4 (+/-2)
      Oxygen saturation 89%

      What is the most appropriate action for this man?

      Your Answer: Call ITU to consider intubation

      Explanation:

      Urgent Need for Ventilation in Life-Threatening Asthma

      This patient is experiencing life-threatening asthma with a dangerously low oxygen saturation level of less than 92%. Despite having a normal PaCO2 level, the degree of hypoxia is inappropriate and requires immediate consideration for ventilation. The arterial blood gas (ABG) result is consistent with the clinical presentation, making a venous blood sample unnecessary. Additionally, the ABG and bedside oxygen saturation readings are identical, indicating an arterialised sample.

      It is crucial to note that in cases of acute asthma, reducing the amount of oxygen below the maximum available is not recommended. Hypoxia can be fatal and must be addressed promptly. Therefore, urgent intervention is necessary to ensure the patient’s safety and well-being.

    • This question is part of the following fields:

      • Respiratory System
      7.5
      Seconds
  • Question 5 - A 25-year-old man is shot in the chest during a robbery. The right...

    Correct

    • A 25-year-old man is shot in the chest during a robbery. The right lung is lacerated and is bleeding. An emergency thoracotomy is performed. The surgeons place a clamp over the hilum of the right lung. Which one of the following structures lies most anteriorly at this level?

      Your Answer: Phrenic nerve

      Explanation:

      At this location, the phrenic nerve is situated in front. The vagus nerve runs in front and then curves backwards just above the base of the left bronchus, releasing the recurrent laryngeal nerve as it curves.

      Anatomy of the Lungs

      The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.

    • This question is part of the following fields:

      • Respiratory System
      4.9
      Seconds
  • Question 6 - A 25-year-old man with a history of asthma since childhood visited his doctor...

    Correct

    • A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?

      Your Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood

      Explanation:

      Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.

      Understanding the Oxygen Dissociation Curve

      The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.

      The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.

      Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.

    • This question is part of the following fields:

      • Respiratory System
      5.3
      Seconds
  • Question 7 - A 35-year-old female smoker presents with acute severe asthma.

    The patient's SaO2 levels...

    Correct

    • A 35-year-old female smoker presents with acute severe asthma.

      The patient's SaO2 levels are at 91% even with 15 L of oxygen, and her pO2 is at 8.2 kPa (10.5-13). There is widespread expiratory wheezing throughout her chest.

      The medical team administers IV hydrocortisone, 100% oxygen, and 5 mg of nebulised salbutamol and 500 micrograms of nebulised ipratropium, but there is little response. Nebulisers are repeated 'back-to-back,' but the patient remains tachypnoeic with wheezing, although there is good air entry.

      What should be the next step in the patient's management?

      Your Answer: IV Magnesium

      Explanation:

      Acute Treatment of Asthma

      When dealing with acute asthma, the initial approach should be SOS, which stands for Salbutamol, Oxygen, and Steroids (IV). It is also important to organize a CXR to rule out pneumothorax. If the patient is experiencing bronchoconstriction, further efforts to treat it should be considered. If the patient is tiring or has a silent chest, ITU review may be necessary. Magnesium is recommended at a dose of 2 g over 30 minutes to promote bronchodilation, as low magnesium levels in bronchial smooth muscle can favor bronchoconstriction. IV theophylline may also be considered, but magnesium is typically preferred. While IV antibiotics may be necessary, promoting bronchodilation should be the initial focus. IV potassium may also be required as beta agonists can push down potassium levels. Oral prednisolone can wait, as IV hydrocortisone is already part of the SOS approach. Non-invasive ventilation is not recommended for the acute management of asthma.

    • This question is part of the following fields:

      • Respiratory System
      7.5
      Seconds
  • Question 8 - A patient in her 50s undergoes spirometry, during which she is instructed to...

    Correct

    • A patient in her 50s undergoes spirometry, during which she is instructed to perform a maximum forced exhalation following a maximum inhalation. The volume of exhaled air is measured. What is the term used to describe the difference between this volume and her total lung capacity?

      Your Answer: Residual volume

      Explanation:

      The total lung capacity can be calculated by adding the vital capacity and residual volume. The expiratory reserve volume refers to the amount of air that can be exhaled after a normal breath compared to a maximal exhalation. The functional residual capacity is the amount of air remaining in the lungs after a normal exhalation. The inspiratory reserve volume is the difference between the amount of air in the lungs after a normal breath and a maximal inhalation. The residual volume is the amount of air left in the lungs after a maximal exhalation, which is the difference between the total lung capacity and vital capacity. The vital capacity is the maximum amount of air that can be inhaled and exhaled, measured by the volume of air exhaled after a maximal inhalation.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      4.9
      Seconds
  • Question 9 - A patient on the medical ward was waiting for a cardiac procedure. On...

    Correct

    • A patient on the medical ward was waiting for a cardiac procedure. On discussing the procedure with the consultant before the procedure, the patient started to feel anxious and had difficulty breathing. The resident obtained an arterial blood gas:

      pH 7.55
      pCO2 2.7kPa
      pO2 11.2kPa
      HCO3 24mmol/l

      What is the most appropriate interpretation of these results?

      Your Answer: Respiratory alkalosis

      Explanation:

      The respiratory alkalosis observed in the arterial blood gas results is most likely a result of hyperventilation, as indicated by the patient’s medical history.

      Arterial Blood Gas Interpretation: A 5-Step Approach

      Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).

      The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.

      To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.

    • This question is part of the following fields:

      • Respiratory System
      9
      Seconds
  • Question 10 - A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She...

    Correct

    • A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She has been experiencing increased breathlessness, particularly at night. Her medical history includes long-standing COPD, heart failure, and previous breast cancer that was treated with a mastectomy and radiotherapy. She used to smoke 20 cigarettes a day for 22 years but has since quit.

      During the examination, her respiratory rate is 23/min, oxygen saturation is 93%, blood pressure is 124/98mmHg, and temperature is 37.2ÂșC. A gas transfer test is performed, and her transfer factor is found to be low.

      What is the most likely diagnosis?

      Your Answer: Pulmonary oedema

      Explanation:

      TLCO, also known as transfer factor, is a measurement of how quickly gas can move from a person’s lungs into their bloodstream. To test TLCO, a patient inhales a mixture of carbon monoxide and a tracer gas, holds their breath for 10 seconds, and then exhales forcefully. The exhaled gas is analyzed to determine how much tracer gas was absorbed during the 10-second period.

      A high TLCO value is associated with conditions such as asthma, pulmonary hemorrhage, left-to-right cardiac shunts, polycythemia, hyperkinetic states, male gender, and exercise. Conversely, most other conditions result in a low TLCO value, including pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary edema, emphysema, and anemia.

      Understanding Transfer Factor in Lung Function Testing

      The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.

      KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.

    • This question is part of the following fields:

      • Respiratory System
      1.8
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (10/10) 100%
Passmed