00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What is the end result of meiosis in a cell? ...

    Correct

    • What is the end result of meiosis in a cell?

      Your Answer: 4 haploid cells

      Explanation:

      Meiosis

      Meiosis is a crucial process that occurs in the genetic cells of eukaryotic organisms. Its primary purpose is to recombine genes, which results in genetic variation while also ensuring genetic preservation. Although meiosis shares some similarities with mitosis, it is restricted to genetic cells, also known as gametes, of eukaryotic organisms.

      During meiosis, a gamete duplicates each of its chromosomes and divides into two diploid cells. These cells then divide into four haploid cells by the end of the second stage of meiosis (telophase II and cytokinesis). These haploid cells are either sperm cells (male) or eggs (female) in mammals. When these haploid cells fuse together, they produce a diploid zygote that contains two copies of parental genes.

      In summary, meiosis is a crucial process that ensures genetic variation and preservation in eukaryotic organisms. It involves the duplication and division of genetic cells into haploid cells, which can then fuse together to produce a diploid zygote.

    • This question is part of the following fields:

      • Basic Sciences
      7.8
      Seconds
  • Question 2 - What is the primary function of riboflavin in the B vitamin group? ...

    Incorrect

    • What is the primary function of riboflavin in the B vitamin group?

      Your Answer: Energy production via the Krebs cycle

      Correct Answer: Mopping up free radicals

      Explanation:

      The Role of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.

      Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.

    • This question is part of the following fields:

      • Basic Sciences
      9.6
      Seconds
  • Question 3 - What are the potential clinical consequences of a lack of vitamin E? ...

    Incorrect

    • What are the potential clinical consequences of a lack of vitamin E?

      Your Answer: Premature dementia

      Correct Answer: Ataxia

      Explanation:

      Vitamin E Deficiency

      Vitamin E deficiency is a rare condition that is more likely to occur in individuals with problems affecting the absorption of dietary fats. This includes those with a history of bowel surgery, pancreatic insufficiency, and cystic fibrosis. Premature infants are also at a higher risk of developing this deficiency as vitamin E does not easily cross the placenta. However, supplementation with vitamin E can reverse the damage in some cases.

      The effects of vitamin E deficiency can be severe and can cause spinocerebellar degeneration, which includes limb ataxia, loss of joint position sense, loss of sensation of vibration, and loss of deep tendon reflexes. Additionally, it can cause degeneration of retinal pigments, leading to blindness. In premature infants, it can cause haemolytic anaemia, thrombocytosis, and oedema.

      Overall, vitamin E deficiency is crucial in preventing and treating its effects. It is important to identify individuals who are at a higher risk of developing this deficiency and provide them with appropriate supplementation to prevent any long-term damage.

    • This question is part of the following fields:

      • Basic Sciences
      25.3
      Seconds
  • Question 4 - What is the primary role of the nucleus in a eukaryotic cell? ...

    Correct

    • What is the primary role of the nucleus in a eukaryotic cell?

      Your Answer: To regulate gene transcription and translation

      Explanation:

      The Nucleus: Control Centre of the Cell

      The nucleus is the control centre of the cell, responsible for regulating gene transcription from DNA into mRNA and from mRNA into peptide/protein synthesis. Eukaryotic cells have a membrane-enclosed organised nucleus, while prokaryotic cells lack this structure. The nuclear structure consists of an outer and inner nuclear membrane that form the nuclear envelope, which has nuclear pores allowing the movement of water-soluble molecules. Inside the nucleus is the nucleoplasm containing the nuclear lamina, a dense fibrillar network that acts as a skeleton and regulates DNA replication and cell division. The nucleus also contains nucleoli, structures involved in the formation of ribosomes responsible for mRNA translation.

      Although the incorrect answer options above describe processes in which the nucleus is involved, none of them constitutes its main function within the cell.

    • This question is part of the following fields:

      • Basic Sciences
      37.7
      Seconds
  • Question 5 - What is the final product of glycolysis besides ATP? ...

    Incorrect

    • What is the final product of glycolysis besides ATP?

      Your Answer: NADH+

      Correct Answer: Pyruvate

      Explanation:

      Glycolysis: The Energy-Producing Reaction

      Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.

      Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.

      Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.

    • This question is part of the following fields:

      • Basic Sciences
      10.6
      Seconds
  • Question 6 - What occurs during metaphase II of meiosis? ...

    Correct

    • What occurs during metaphase II of meiosis?

      Your Answer: The cell's chromosomes attach to the meiotic spindle to divide into chromatids

      Explanation:

      The Process of Meiosis

      Meiosis is a complex process that involves two major cycles. The first cycle, meiosis I, condenses the reproductive cell’s DNA into chromosomes that are then replicated, creating two pairs of each original chromosome. These pairs are then separated, and the cell divides with one chromosome in each daughter cell. The second cycle, meiosis II, splits the chromosomes into individual chromatids, which are then separated as in meiosis I. This separation is facilitated by a spindle, a set of parallel fibers that attach to the center of each chromosome and split into two, making the chromatids travel on the polar opposite sides of the cell. The cell then divides again, giving rise to four haploid daughter cells.

      During meiosis II, the chromosomes align on the spindle in metaphase II. Tetrads separate during anaphase I and line up during metaphase I. Sister chromatids separate on the meiotic spindle during anaphase II. Finally, chromosomes uncoil and lengthen at the end of meiosis, in telophase II. This process is essential for the production of gametes and the continuation of sexual reproduction in many organisms.

    • This question is part of the following fields:

      • Basic Sciences
      24.1
      Seconds
  • Question 7 - A couple in their early 30s come to your clinic seeking advice. The...

    Incorrect

    • A couple in their early 30s come to your clinic seeking advice. The husband has a history of haemophilia B and they are worried about the possibility of passing it on to their children. Can you determine which of their offspring will be affected by the disease?

      Your Answer: Half of the daughters will be carriers; all sons will be affected

      Correct Answer: All daughters will be carriers; no sons will be affected

      Explanation:

      The inheritance of Haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. Haemophilia A and B are genetic disorders that are inherited in an X-linked recessive manner. Haemophilia A is caused by a deficiency in clotting factor VIII, while haemophilia B is caused by a deficiency in clotting factor IX.

      On the other hand, haemophilia C, which is caused by a deficiency in clotting factor XI, is primarily inherited in an autosomal recessive manner. In X-linked recessive conditions like haemophilia B, males are more likely to be affected than females. This is because males only need one abnormal copy of the gene, which is carried on the X chromosome, to be affected.

      Females, on the other hand, can be carriers of the condition if they carry one normal and one abnormal copy of the gene. While carriers can have clotting abnormalities, these are usually milder than those seen in affected individuals. Men cannot pass the condition to their sons, but they will pass on the abnormal X chromosome to all their daughters, who will be carriers.

      Female carriers can pass on the condition to around half their sons, and half their daughters will be carriers. Females can only be affected if they are the offspring of an affected male and a carrier female. In summary, the inheritance of haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. It also helps in providing appropriate genetic counseling and management for affected individuals and their families.

    • This question is part of the following fields:

      • Basic Sciences
      68
      Seconds
  • Question 8 - In scientific experimentation, what is the term used to describe the movement of...

    Correct

    • In scientific experimentation, what is the term used to describe the movement of charged particles or solutes in a liquid medium due to an electric field?

      Your Answer: Electrophoresis

      Explanation:

      Electrophoresis: Separating Molecules Based on Charge and Mass

      Electrophoresis is a technique that separates solutes, molecules, or nucleic acids based on their mass and charge. It involves the migration of charged particles in a liquid medium under the influence of an electric field. The apparatus consists of two electrodes placed at either end of a support medium, or gel, which is suspended in a buffer solution. The sample is inserted into a well and a current is applied. Over time, positively charged solutes move towards the negative electrode, while negatively charged substances move towards the positive electrode. Once the migration is complete, the gel is removed and stained to color the substance being tested for, such as protein.

      This technique is widely used in medical testing, but it requires a higher degree of operational and interpretive skill than many other tests, which is why it often takes longer to get a result. Electrophoresis has various uses and adaptations, such as standard electrophoresis for protein detection in the diagnosis of myeloma, identification of unusual lipid fractions in patients with inherited diseases, and detection of viral DNA through Southern Blotting. There is also Northern blotting, primarily a research technique at present, which uses electrophoresis to separate RNA. Additionally, Western blotting is used to test for the presence of antibodies to DNA through protein separation.

    • This question is part of the following fields:

      • Basic Sciences
      17.4
      Seconds
  • Question 9 - What is the apoptotic event that occurs just before the formation of an...

    Incorrect

    • What is the apoptotic event that occurs just before the formation of an apoptosome?

      Your Answer: Binding of tumour necrosis factor (TNF) to its receptor TNF-R1

      Correct Answer: Release of cytochrome c from mitochondria

      Explanation:

      Apoptosis and the Role of the Apoptosome

      Apoptosis, also known as programmed cell death, is a natural process that occurs in all multicellular organisms. It involves a series of changes in cell morphology, including membrane blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation. The formation of the apoptosome is a crucial part of the apoptosis cascade. It is a large protein structure that is triggered by the release of cytochrome c from the mitochondria in response to various stimuli, such as DNA damage, infections, or developmental signals.

      The apoptosome is formed when cytochrome c binds to Apaf-1, a cytosolic protein, in a 1:1 ratio. This triggers the recruitment and activation of the initiator pro-caspase-9, which then activates effector caspases, a family of apoptotic proteases, to initiate the apoptotic cascade. It is important to note that the activation of caspase-9 occurs only after the formation of the apoptosome.

      In summary, apoptosis is a natural process that occurs in multicellular organisms, and the apoptosome plays a crucial role in triggering the apoptotic cascade. the mechanisms behind apoptosis and the formation of the apoptosome can provide insights into various diseases and developmental processes.

    • This question is part of the following fields:

      • Basic Sciences
      38
      Seconds
  • Question 10 - While taking a patient's medical history, you discover that their family has a...

    Incorrect

    • While taking a patient's medical history, you discover that their family has a strong history of a certain disease. Autosomal dominant diseases are often caused by defects in structural genes and typically present in early adulthood, affecting both males and females equally. Which of the following diseases does not follow an autosomal dominant pattern of inheritance?

      Your Answer: Marfan's syndrome

      Correct Answer: Haemochromatosis

      Explanation:

      Abnormal Binding Proteins and Iron Deposition: A Genetic Disorder

      Abnormal binding proteins can lead to the deposition of iron in the body, resulting in various health complications. This genetic disorder is inherited in an autosomal recessive manner. The deposition of iron can cause cardiomyopathy, cirrhosis, pancreatic failure due to fibrosis, and skin pigmentation.

      In general, disorders that affect metabolism or DNA replication on a cellular or genetic level tend to be autosomal recessive. On the other hand, genetic disorders that affect the structure of the body on a larger level are usually autosomal dominant. While there may be exceptions to these rules, they can serve as a helpful guide for exam preparation. Proper of this genetic disorder can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Basic Sciences
      36.1
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (4/10) 40%
Passmed