00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A young man comes to the clinic with symptoms suggestive of mania. After...

    Incorrect

    • A young man comes to the clinic with symptoms suggestive of mania. After further inquiry and assessment, he is found to have tachycardia, sweaty palms, and a recent bout of diarrhea. What is the probable diagnosis?

      Your Answer: Hashimoto's thyroiditis

      Correct Answer: Grave's disease

      Explanation:

      The correct diagnosis for this patient is Grave’s disease, which is characterized by hyperthyroidism. While mania may be a symptom, it is important to note that tachycardia, sweaty hands, and exophthalmos are specific to Grave’s disease.

      Bipolar disorder may also present with manic episodes, but it does not typically include the other symptoms associated with hyperthyroidism.

      Hashimoto’s thyroiditis is another autoimmune thyroid disorder, but it causes hypothyroidism instead of hyperthyroidism. Symptoms of hypothyroidism may include bradycardia and dry skin.

      Graves’ Disease: Common Features and Unique Signs

      Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.

      Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.

    • This question is part of the following fields:

      • Endocrine System
      36.2
      Seconds
  • Question 2 - A 25-year-old woman has a total thyroidectomy to treat papillary carcinoma of the...

    Incorrect

    • A 25-year-old woman has a total thyroidectomy to treat papillary carcinoma of the thyroid. During examination of histological sections of the thyroid gland, the pathologist discovers the presence of psammoma bodies. What is the primary composition of these bodies?

      Your Answer: Aggregations of macrophages

      Correct Answer: Clusters of calcification

      Explanation:

      Clusters of microcalcification, known as psammoma bodies, are frequently observed in papillary carcinomas.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      14.3
      Seconds
  • Question 3 - A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His...

    Correct

    • A 25-year-old male patient presents to the endocrine clinic with delayed-onset puberty. His history revealed a cleft palate as a child which had been repaired successfully. On direct questioning, he revealed he had anosmia but was told this was due to a minor head injury aged 5. On examination, he was 1.80 metres tall, had sparse pubic hair and small volume testes (Tanner staging grade 1).

      Blood results revealed:

      FSH 2 IU/L (1-7)
      LH 2 IU/L (1-8)
      Testosterone 240 ng/dL (280-1100)

      What is the most likely cause of this patient's condition?

      Your Answer: Kallmann syndrome

      Explanation:

      The minor head injury is unlikely to be the cause of the patient’s anosmia. However, the combination of anosmia and cleft palate, along with the blood test results indicating hypogonadotropic hypogonadism, suggests that the patient may have Kallmann’s syndrome, which is an X-linked inherited disorder. Constitutional developmental delay is less likely due to the patient’s age and abnormal blood test results.

      Empty sella syndrome is a condition where the sella turcica, the area of the brain where the pituitary gland is located, is empty and filled with cerebrospinal fluid. Although this condition can be asymptomatic, it can also present with symptoms of hypopituitarism. However, since the patient also has anosmia and cleft palate, empty sella syndrome is less likely.

      Klinefelter’s syndrome is characterized by tall stature, gynecomastia, and small penis/testes. Blood tests would reveal elevated gonadotropins and low testosterone levels. However, since the patient’s FSH and LH levels are low, Klinefelter’s syndrome can be ruled out.

      Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.

      Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.

    • This question is part of the following fields:

      • Endocrine System
      4.3
      Seconds
  • Question 4 - A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical...

    Incorrect

    • A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical examination, an irregular pulsatile hepatomegaly and a pansystolic murmur that is most pronounced during inspiration are detected. What diagnostic test could provide insight into the probable underlying condition?

      Your Answer:

      Correct Answer: Urinary 5-HIAA (5-hydroxyindole acetic acid)

      Explanation:

      Carcinoid Syndrome and its Diagnosis

      Carcinoid syndrome is characterized by the presence of vasoactive amines such as serotonin in the bloodstream, leading to various clinical features. The primary carcinoid tumor is usually found in the small intestine or appendix, but it may not cause significant symptoms as the liver detoxifies the blood of these amines. However, systemic effects occur when malignant cells spread to other organs, such as the lungs, which are not part of the portal circulation. One of the complications of carcinoid syndrome is damage to the right heart valves, which can cause tricuspid regurgitation, as evidenced by a pulsatile liver and pansystolic murmur.

      To diagnose carcinoid syndrome, the 5-HIAA test is usually performed, which measures the breakdown product of serotonin in a 24-hour urine collection. If the test is positive, imaging and histology are necessary to confirm malignancy.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 5 - Which one of the following is not a result of cortisol in the...

    Incorrect

    • Which one of the following is not a result of cortisol in the stress response?

      Your Answer:

      Correct Answer: Hypoglycaemia

      Explanation:

      Hyperglycaemia is caused by an effect that opposes insulin.

      Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotropic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 6 - A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood...

    Incorrect

    • A patient on the geriatrics ward has symptoms consistent with hypoparathyroidism. A blood test is requested to check PTH levels, serum calcium, phosphate and vitamin D.

      Which of the following levels also need to be specifically checked?

      Your Answer:

      Correct Answer: Magnesium

      Explanation:

      The correct answer is magnesium, as it is necessary for the secretion and function of parathyroid hormone. Adequate magnesium levels are required for the hormone to have its desired effects. CRP, urea, and platelets are not relevant to this situation and do not need to be tested.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 7 - A 47-year-old man comes to your clinic with a complaint of erectile dysfunction...

    Incorrect

    • A 47-year-old man comes to your clinic with a complaint of erectile dysfunction for the past 6 weeks. He also mentions that his nipples have been lactating. You inform him that these symptoms could be a result of his body producing too much prolactin hormone and suggest testing his serum prolactin levels. Which part of the body secretes prolactin?

      Your Answer:

      Correct Answer: Anterior pituitary

      Explanation:

      The anterior pituitary gland releases prolactin, which can cause hyperprolactinaemia. This condition can lead to impotence, loss of libido, and galactorrhoea in men, and amenorrhoea and galactorrhoea in women. The hypothalamus, parathyroid glands, adrenal gland, and posterior pituitary gland also release hormones that play important roles in maintaining homoeostasis. Hyperprolactinaemia can be caused by various factors, including certain medications.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A 20-year-old woman arrives at the emergency department complaining of abdominal pain, nausea,...

    Incorrect

    • A 20-year-old woman arrives at the emergency department complaining of abdominal pain, nausea, and vomiting. She reports having a cough and fever for the past few days. Upon examination, she has dry mucous membranes and her breath has a fruity odor. Her vital signs are as follows: blood pressure 95/55 mmHg, heart rate 120/min, respiratory rate 29/min, temperature 37.8ºC (100ºF), and oxygen saturation 98% on room air. Laboratory results show:

      - Sodium (Na+): 124 mmol/L (135 - 145)
      - Potassium (K+): 5.5 mmol/L (3.5 - 5.0)
      - Bicarbonate: 13 mmol/L (22 - 29)
      - Serum glucose: 30 mmol/L (4 - 7.8)
      - pH: 7.15 (7.35 - 7.45)
      - Serum ketones: 3.5 mmol/L (0 - 0.6)

      What is the most likely cause of the increased ketones in this patient?

      Your Answer:

      Correct Answer: Lipolysis

      Explanation:

      DKA is a condition that arises due to uncontrolled lipolysis, leading to an excess of free fatty acids that are converted to ketone bodies. This life-threatening complication of diabetes is characterized by elevated levels of blood glucose, ketones, and acidosis, with symptoms such as nausea, vomiting, abdominal pain, dehydration, and fruity breath odor. DKA is commonly observed in type 1 diabetes mellitus and can be triggered by non-compliance with treatment or an infection. Insulin deficiency and increased levels of counterregulatory hormones cause lipolysis in adipose tissue, leading to the release of free fatty acids that undergo hepatic oxidation to form ketone bodies. In DKA, increased gluconeogenesis and glycogenolysis occur due to insulin deficiency and counterregulatory hormones, leading to the synthesis of glucose from non-carbohydrate precursors and breakdown of glycogen, respectively. Glycolysis is not involved in DKA as it does not lead to the breakdown of fatty acids.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 9 - Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic...

    Incorrect

    • Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?

      Your Answer:

      Correct Answer: Secretin

      Explanation:

      The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 10 - A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her...

    Incorrect

    • A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her thyroid function test outcomes. The results are as follows:

      - Elevated TSH
      - Decreased FT4
      - Decreased FT3
      - Positive Anti-TPO

      What is the association of her condition with any of the following options?

      Your Answer:

      Correct Answer: MALT lymphoma

      Explanation:

      The development of Hashimoto’s thyroiditis is linked to

      Understanding Hashimoto’s Thyroiditis

      Hashimoto’s thyroiditis is a chronic autoimmune disorder that affects the thyroid gland. It is more common in women and is typically associated with hypothyroidism, although there may be a temporary period of thyrotoxicosis during the acute phase. The condition is characterized by a firm, non-tender goitre and the presence of anti-thyroid peroxidase (TPO) and anti-thyroglobulin (Tg) antibodies.

      Hashimoto’s thyroiditis is often associated with other autoimmune conditions such as coeliac disease, type 1 diabetes mellitus, and vitiligo. Additionally, there is an increased risk of developing MALT lymphoma with this condition. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, as shown in the Venn diagram. Understanding the features and associations of Hashimoto’s thyroiditis can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 11 - A 14-year-old girl is referred to the endocrine clinic by her GP due...

    Incorrect

    • A 14-year-old girl is referred to the endocrine clinic by her GP due to bed wetting episodes. She experiences constant thirst and frequent urination. A dipstick test reveals diluted urine with low osmolality, and her blood tests show hypernatremia with high serum osmolality. Her family has a history of diabetes insipidus. What is the most suitable follow-up examination?

      Your Answer:

      Correct Answer: Water deprivation test

      Explanation:

      A water deprivation test is the most appropriate method for diagnosing diabetes insipidus. This test involves withholding water from the patient for a period of time to stimulate the release of antidiuretic hormone (ADH) and monitor changes in serum and urine osmolality. Other methods such as urinary sodium or bladder ultrasound scan are not as effective in diagnosing this condition.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 12 - The following results were obtained on a 57-year-old male who complains of fatigue:
    Free...

    Incorrect

    • The following results were obtained on a 57-year-old male who complains of fatigue:
      Free T4 9.8 pmol/L (9.0-25.0)
      TSH 50.02 mU/L (0.27-4.20)
      What physical signs would you anticipate during the examination?

      Your Answer:

      Correct Answer: Slow relaxation of tendon jerks

      Explanation:

      Symptoms and Signs of Hypothyroidism

      Hypothyroidism is a condition that is characterized by an underactive thyroid gland, which leads to a decrease in the production of thyroid hormones. This condition is associated with several symptoms and signs, including a relative bradycardia, slow relaxation of tendon jerks, pale complexion, thinning of the hair, and weight gain. In severe cases of hypothyroidism, hypothermia may also be present.

      A relative bradycardia refers to a slower than normal heart rate, which is a common symptom of hypothyroidism. Additionally, slow relaxation of tendon jerks is another sign of this condition. This refers to a delay in the relaxation of muscles after a reflex is elicited. Other physical signs of hypothyroidism include a pale complexion and thinning of the hair, which can be attributed to a decrease in metabolic activity.

      Weight gain is also a common symptom of hypothyroidism, as the decrease in thyroid hormone production can lead to a slower metabolism and decreased energy expenditure. In severe cases of hypothyroidism, hypothermia may also be present, which refers to a body temperature that is lower than normal.

      It is important to note that while a thyroid bruit is typical of Graves’ thyrotoxicosis, it is not a common sign of hypothyroidism. Overall, the symptoms and signs of hypothyroidism can vary in severity and may require medical intervention to manage.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 13 - A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot...

    Incorrect

    • A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot tolerate metformin therapy. What is the mechanism of action of alogliptin, which has been prescribed as an alternative?

      Your Answer:

      Correct Answer: Reduce the peripheral breakdown of incretins

      Explanation:

      Gliptins (DPP-4 inhibitors) work by inhibiting the enzyme DPP-4, which reduces the breakdown of incretin hormones such as GLP-1. This leads to a glucose-dependent increase in insulin secretion and a reduction in glucagon secretion, ultimately regulating glucose homeostasis. However, gliptins do not increase the production of GLP-1, directly stimulate the release of insulin from pancreatic beta cells, inhibit the SGLT2 receptor, or reduce insulin resistance.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - A 68-year-old man with a long history of poorly controlled type-2 diabetes is...

    Incorrect

    • A 68-year-old man with a long history of poorly controlled type-2 diabetes is prescribed a new medication that increases urinary glucose excretion. The doctor informs him that it belongs to the SGLT-2 inhibitor drug class.

      Which of the following medications is classified as an SGLT-2 inhibitor?

      Your Answer:

      Correct Answer: Dapagliflozin

      Explanation:

      SGLT2 inhibitors are known as gliflozins.

      Sulfonylurea refers to tolbutamide.

      GLP-1 receptor agonist is exenatide.

      DPP-4 inhibitor is linagliptin.

      Understanding SGLT-2 Inhibitors

      SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.

      However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.

      Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities...

    Incorrect

    • A 45-year-old Caucasian male visits his doctor complaining of numbness in his extremities and tingling sensations around his mouth and lips. He has undergone a thyroidectomy in the past. During a complete cranial nerve examination, the physician observes facial muscle twitching upon tapping the patient's face.

      What is the reason for the facial muscle twitching observed during the examination?

      Your Answer:

      Correct Answer: Increased irritability of peripheral nerves due to hypocalcaemia

      Explanation:

      Chvostek’s sign is a facial twitch that occurs when the distribution of the facial nerve in front of the tragus is tapped. This sign is caused by increased irritability of peripheral nerves, which is often seen in cases of hypocalcemia. In fact, Chvostek’s sign is considered the most reliable test for hypocalcemia.

      Calcium homeostasis is the process of regulating the concentration of calcium ions in the extracellular fluid. This is important because calcium ions help stabilize voltage-gated ion channels. When calcium levels are too low, these ion channels become more easily activated, leading to hyperactivity in nerve and muscle cells. This can result in hypocalcemic tetany, which is characterized by involuntary muscle spasms. On the other hand, when calcium levels are too high, voltage-gated ion channels become less responsive, leading to depressed nervous system function.

      Understanding Hypoparathyroidism

      Hypoparathyroidism is a medical condition that occurs when there is a decrease in the secretion of parathyroid hormone (PTH). This can be caused by primary hypoparathyroidism, which is often a result of thyroid surgery, leading to low calcium and high phosphate levels. Treatment for this type of hypoparathyroidism involves the use of alfacalcidol. The main symptoms of hypoparathyroidism are due to hypocalcaemia and include muscle twitching, cramping, and spasms, as well as perioral paraesthesia. Other symptoms include Trousseau’s sign, which is carpal spasm when the brachial artery is occluded, and Chvostek’s sign, which is facial muscle twitching when the parotid is tapped. Chronic hypoparathyroidism can lead to depression and cataracts, and ECG may show a prolonged QT interval.

      Pseudohypoparathyroidism is another type of hypoparathyroidism that occurs when the target cells are insensitive to PTH due to an abnormality in a G protein. This condition is associated with low IQ, short stature, and shortened 4th and 5th metacarpals. The diagnosis is made by measuring urinary cAMP and phosphate levels following an infusion of PTH. In hypoparathyroidism, this will cause an increase in both cAMP and phosphate levels. In pseudohypoparathyroidism type I, neither cAMP nor phosphate levels are increased, while in pseudohypoparathyroidism type II, only cAMP rises. Pseudopseudohypoparathyroidism is a similar condition to pseudohypoparathyroidism, but with normal biochemistry.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - A 10-year-old girl visits her pediatrician with her mother. She is worried that...

    Incorrect

    • A 10-year-old girl visits her pediatrician with her mother. She is worried that she hasn't started puberty yet while some of her classmates have.

      The pediatrician explains to the young girl and her mother that the onset of puberty can vary and that it is considered delayed if there are no signs of puberty by the age of 13 years. The pediatrician reassures the girl that there is no need to worry and that she should be patient.

      What is the first sign the girl should expect?

      Your Answer:

      Correct Answer: Testicular enlargement

      Explanation:

      The initial indication of male puberty is the growth of the testicles. This typically happens between the ages of 9.5 and 13.5 years and is the first sign of male puberty. Testicular enlargement is the only pubertal change present in Tanner stage 1.

      During Tanner stage 2, which usually occurs between the ages of 10.5 and 14.5 years, penis growth begins.

      Pubic hair development also starts during Tanner stage 2, between the ages of 9.9 and 14.0 years.

      The height growth spurt occurs at age 14 and reaches a maximum of 10cm/year in Tanner.

      The voice changes during Tanner stage 3, which typically happens around 13.5 years old.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - You are in charge of the care of a 23-year-old man who has...

    Incorrect

    • You are in charge of the care of a 23-year-old man who has come for a military medical evaluation. Based on his symptoms, you suspect that he has type 1 diabetes and has been secretly administering insulin. What clinical methods can you use to evaluate his endogenous insulin production?

      Your Answer:

      Correct Answer: C-peptide

      Explanation:

      C-peptide is a reliable indicator of insulin production as it is secreted in proportion to insulin. It is often used clinically to measure endogenous insulin production.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his...

    Incorrect

    • A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his primary care physician requests a serum cortisol test. In its unbound form, cortisol is responsible for the manifestations of Cushing's syndrome. What is the primary substance that binds to cortisol in the bloodstream, rendering it inactive?

      Your Answer:

      Correct Answer: Cortisol binding globulin

      Explanation:

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - What is the half life of insulin in the circulation of a typical...

    Incorrect

    • What is the half life of insulin in the circulation of a typical healthy adult?

      Your Answer:

      Correct Answer: Less than 30 minutes

      Explanation:

      Enzymes in the bloodstream break down insulin, resulting in a half-life of under 30 minutes. In type 2 diabetes, there may be irregularities in the insulin clearance process.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A teenage girl and her mother come to the doctor's office with concerns...

    Incorrect

    • A teenage girl and her mother come to the doctor's office with concerns about ambiguous genitalia. Upon conducting a thorough medical history and various tests, the doctor diagnoses the girl with congenital adrenal hyperplasia. What is the reason for adrenal hyperplasia being a characteristic of this condition?

      Your Answer:

      Correct Answer: Inefficient cortisol synthesis

      Explanation:

      Low cortisol production and compensatory adrenal hyperplasia are caused by 21-hydroxylase deficiency, leading to increased androgen production and ambiguous genitalia. The enzymes 11-beta hydroxylase and 17-hydroxylase are also involved. Testosterone and estrogen synthesis is not affected as they are produced in the testes and ovaries, respectively. Congenital adrenal hyperplasia is not caused by aldosterone synthesis, despite it occurring in the adrenal cortex.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 21 - A 56-year-old man visits the breast clinic with a solitary lump in the...

    Incorrect

    • A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?

      Your Answer:

      Correct Answer: Liver disease

      Explanation:

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - A 39-year old male visits the GP complaining of nipple discharge. Upon examination,...

    Incorrect

    • A 39-year old male visits the GP complaining of nipple discharge. Upon examination, it is found that his serum prolactin levels are significantly high. Besides prolactin releasing hormone, which other hypothalamic hormone can stimulate the secretion of prolactin?

      Your Answer:

      Correct Answer: Thyrotropin releasing hormone (TRH)

      Explanation:

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago....

    Incorrect

    • A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago. Upon examination, she has a smooth, small goiter and a pulse rate of 68 bpm. Her lab results show a Free T4 level of 9.3 pmol/L (normal range: 9.8-23.1) and a TSH level of 49.3 mU/L (normal range: 0.35-5.50). What additional test would you perform to confirm the diagnosis?

      Your Answer:

      Correct Answer: Thyroid peroxidase (TPO) antibodies

      Explanation:

      Diagnosis and Management of Primary Hypothyroidism

      The patient’s test results indicate a case of primary hypothyroidism, characterized by low levels of thyroxine (T4) and elevated thyroid-stimulating hormone (TSH). The most likely cause of this condition is Hashimoto’s thyroiditis, which is often accompanied by the presence of thyroid peroxidase antibodies. While the patient has a goitre, it appears to be smooth and non-threatening, so a thyroid ultrasound is not necessary. Additionally, a radio-iodine uptake scan is unlikely to show significant uptake and is therefore not recommended. Positive TSH receptor antibodies are typically associated with Graves’ disease, which is not the likely diagnosis in this case. For further information on Hashimoto’s thyroiditis, patients can refer to Patient.info.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with...

    Incorrect

    • A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with Graves disease. What is the most appropriate explanation for the pathophysiology of this condition?

      Your Answer:

      Correct Answer: Formation of IgG antibodies to the TSH receptors on the thyroid gland

      Explanation:

      Graves disease typically results in the formation of IgG antibodies that target the TSH receptors located on the thyroid gland, leading to a significant decrease in TSH levels.

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A 19-year-old man was recently admitted to hospital with invasive meningococcal disease. He...

    Incorrect

    • A 19-year-old man was recently admitted to hospital with invasive meningococcal disease. He has no other medical history but is now complaining of extreme fatigue, light-headedness and rapid weight loss. He has also noticed his skin appears much more tanned than usual. His BP is 98/60 mmHg. Capillary glucose is found to be 2.2 mmol/L.

      Hb 135 g/L Male: (130 - 180)
      Platelets 280 * 109/L (150 - 400)
      WBC 5.5 * 109/L (4.0 - 11.0)
      Na+ 128 mmol/L (135 - 145)
      K+ 5.8 mmol/L (3.5 - 5.0)
      Bicarbonate 19 mmol/L (22 - 29)
      Urea 8.0 mmol/L (2.0 - 7.0)
      Creatinine 125 µmol/L (55 - 120)

      What is the most likely cause of his symptoms?

      Your Answer:

      Correct Answer: Waterhouse-Friedrichsen syndrome

      Explanation:

      Understanding Waterhouse-Friderichsen Syndrome

      Waterhouse-Friderichsen syndrome is a condition that occurs when the adrenal glands fail due to a previous adrenal haemorrhage caused by a severe bacterial infection. The most common cause of this condition is Neisseria meningitidis, but it can also be caused by other bacteria such as Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus pneumoniae.

      The symptoms of Waterhouse-Friderichsen syndrome are similar to those of hypoadrenalism, including lethargy, weakness, anorexia, nausea and vomiting, and weight loss. Other symptoms may include hyperpigmentation, especially in the palmar creases, vitiligo, and loss of pubic hair in women. In severe cases, a crisis may occur, which can lead to collapse, shock, and pyrexia.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 56-year-old patient visits his primary care physician for a follow-up on his...

    Incorrect

    • A 56-year-old patient visits his primary care physician for a follow-up on his diabetes treatment. He is currently taking metformin and expresses concern about adding more medications that may lead to hypoglycemia. The patient has a medical history of bladder cancer, which was treated through surgery. On examination, the only notable finding is an elevated body mass index of 32 kg/m².

      Based on recent blood test results, with an HbA1c level of 61 mmol/L (<48), the GP wants to prescribe a medication that does not cause weight gain or hypoglycemia. What is the probable mechanism of action of this drug?

      Your Answer:

      Correct Answer: Reduction of the peripheral breakdown of incretins such as glucagon-like peptide (GLP-1)

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - What is the association between brown tumours of bone and a specific condition...

    Incorrect

    • What is the association between brown tumours of bone and a specific condition or disease?

      Your Answer:

      Correct Answer: Hyperparathyroidism

      Explanation:

      Brown tumors are bone tumors that develop due to excessive osteoclast activity, typically in cases of hyperparathyroidism. These tumors are composed of fibrous tissue, woven bone, and supporting blood vessels, but lack any matrix. They do not appear on x-rays due to their radiolucent nature. Osteoclasts consume the trabecular bone that osteoblasts produce, leading to a cycle of reparative bone deposition and resorption that can cause bone pain and involve the periosteum, resulting in an expansion beyond the typical shape of the bone. The tumors are called brown due to the deposition of haemosiderin at the site.

      Primary Hyperparathyroidism: Causes, Symptoms, and Treatment

      Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.

      Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.

      The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.

      In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to...

    Incorrect

    • A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?

      Your Answer:

      Correct Answer: Increased risk of mania

      Explanation:

      Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A 36-year-old male visits the GP after being diagnosed with Conn's syndrome, which...

    Incorrect

    • A 36-year-old male visits the GP after being diagnosed with Conn's syndrome, which causes excessive production of aldosterone. How will this affect the balance of sodium and potassium in his blood?

      Your Answer:

      Correct Answer: Increased sodium, decreased potassium

      Explanation:

      Hypertension, hypernatraemia, and hypokalemia are common symptoms of primary hyperaldosteronism.

      The adrenal gland produces aldosterone, which is responsible for regulating potassium levels. Its primary function is to increase sodium absorption and decrease potassium secretion in the distal tubules and collecting duct of the nephron. As a result, sodium levels increase while potassium levels decrease.

      Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.

      To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.

      The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Incorrect

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer:

      Correct Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (1/3) 33%
Passmed