-
Question 1
Correct
-
A 20-year-old man comes to the emergency department complaining of abdominal pain, vomiting, polyuria, polydipsia, and confusion that have been present for the past 12 hours. During the examination, he shows mild generalized abdominal tenderness without guarding. His breathing is observed to be deep and rapid.
The patient has a medical history of type 1 diabetes, but he confesses to being non-compliant with his insulin regimen.
What is the probable pathophysiology behind his symptoms?Your Answer: Uncontrolled lipolysis which results in an excess of free fatty acids
Explanation:The cause of DKA is uncontrolled lipolysis, leading to an excess of free fatty acids that are converted to ketone bodies. This results in high levels of ketones in the urine. Hypoglycemia activates the sympathetic nervous system. Lactic acidosis is similar to DKA but lacks the presence of ketones in urine. Appendicitis can cause abdominal pain, vomiting, and urinary symptoms, but the presence of ketones in urine suggests DKA. Urinary tract infections are rare in men under 50 and typically occur with abnormal anatomy or catheterization.
Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.
Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Correct
-
A 28-year-old male presents to his GP with a diagnosis of hyperthyroidism. He states that he has lost 1 stone in weight over the past 3 months, despite having an increased appetite. What could be the probable reason for this?
Your Answer: Increased basal metabolic rate
Explanation:Thyroid hormones play a crucial role in regulating metabolism by increasing the basal metabolic rate and influencing protein synthesis. They are essential for growth and development, including neural development in fetuses and growth in young children. Additionally, they enhance the body’s sensitivity to catecholamines.
Thyroid hormones stimulate the sodium-potassium pump in the membrane, leading to increased uptake and breakdown of glucose and amino acids. This results in calorigenesis and ATP formation in the mitochondria for the pump. They also have lipolytic effects on fat, promoting cholesterol breakdown and LDL receptor activity.
Other metabolic effects of thyroid hormones include increased gut motility and glucose absorption, hepatic glycogenolysis, and potentiation of insulin’s effects on glucose uptake in the liver and muscles. They also break down insulin to prevent glucose storage and enhance the glycogenolysis effects of adrenaline.
Thyroid hormones increase oxygen consumption, leading to increased erythropoiesis for better oxygen transport, enhanced cardiac contractility, and maintenance of the hypoxic and hypercapnic drive in the respiratory center. They also increase protein turnover, metabolic turnover of drugs and hormones, and bone turnover.
Understanding Thyrotoxicosis: Causes and Investigations
Thyrotoxicosis is a condition characterized by an overactive thyroid gland, resulting in an excess of thyroid hormones in the body. Graves’ disease is the most common cause, accounting for 50-60% of cases. Other causes include toxic nodular goitre, subacute thyroiditis, postpartum thyroiditis, Hashimoto’s thyroiditis, amiodarone therapy, and contrast administration. Elderly patients with pre-existing thyroid disease are also at risk.
To diagnose thyrotoxicosis, doctors typically look for a decrease in thyroid-stimulating hormone (TSH) levels and an increase in T4 and T3 levels. Thyroid autoantibodies may also be present. Isotope scanning may be used to investigate further. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, highlighting the complexity of thyroid dysfunction. Patients with existing thyrotoxicosis should avoid iodinated contrast medium, as it can result in hyperthyroidism developing over several weeks.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Incorrect
-
A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.
What is the mechanism of action of the newly prescribed medication?Your Answer: Increases cell sensitivity to insulin
Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)
Explanation:DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.
The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.
Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.
Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Incorrect
-
A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal pain, and hyperpigmentation of the skin. The doctor orders a urea & electrolyte test and a short Synacthen test which comes back abnormal and diagnoses the patient with Addison's disease.
What electrolyte abnormality is most likely to be observed in this patient?Your Answer: Hypokalaemia & hyponatraemia
Correct Answer: Hyperkalaemia & hyponatraemia
Explanation:In Addison’s disease, there is a deficiency in the production of both aldosterone and cortisol.
Aldosterone plays a crucial role in the reabsorption of sodium and the excretion of potassium.
Therefore, the absence of aldosterone leads to an imbalance in the levels of sodium and potassium in the body, resulting in hyperkalemia (high potassium levels) and hyponatremia (low sodium levels).
Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.
Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.
It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A 39-year-old male presents to an endocrine clinic with acromegaly caused by a growth hormone-secreting tumor. The patient is prescribed Octreotide, a somatostatin analogue, to suppress growth hormone release.
What additional hormonal effects can be attributed to somatostatin?Your Answer: Increases secretion of gastrin
Correct Answer: Decreases secretion of glucagon
Explanation:Somatostatin has an inhibitory effect on the secretion of glucagon, but it does not affect the secretion of estrogen. It also decreases the secretion of insulin, and overproduction of somatostatin can lead to diabetes mellitus. Additionally, somatostatin reduces the secretion of gastrin, which in turn decreases the production of gastric acid by parietal cells. It also decreases the secretion of thyroid stimulating hormone (TSH), resulting in a decrease in the production of thyroxine in the thyroid.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?
Your Answer: Weight loss
Correct Answer: Increased risk of mania
Explanation:Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Correct
-
A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.
What is the primary way the body reacts to a drop in blood pressure?Your Answer: Insertion of AQP-2 channels in collecting ducts
Explanation:When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).
RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.
Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Incorrect
-
You have been requested to evaluate a patient in your general practice, who has come in after discovering a new lump in her neck. The patient is in her mid-40s, has no significant medical history, and does not take any regular medications.
Upon examination, you observe a small mass in the front of the neck that moves upwards when the patient swallows. There is no associated lymphadenopathy. You refer the patient for an ultrasound and biopsy, which reveals the presence of 'Orphan Annie eyes with psammoma bodies.'
Based on this finding, what is the most probable diagnosis?Your Answer: Multinodular goitre
Correct Answer: Papillary thyroid cancer
Explanation:The patient has a painless lump in the thyroid gland that moves on swallowing, indicating thyroid pathology. The biopsy result of Orphan Annie eyes with psammoma bodies is a characteristic finding in papillary thyroid cancer, which is a slow-growing malignancy with less likelihood of lymphadenopathy. Graves’ disease is an incorrect diagnosis as it would not present with this appearance on biopsy and would likely exhibit signs of thyrotoxicosis. A multinodular goitre also does not have this appearance and may cause a thyrotoxic state. Anaplastic carcinoma is a more aggressive thyroid malignancy that readily invades nearby tissues and has a different histological appearance with spindle cells and giant cells.
Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.
Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Correct
-
A 53-year-old male presents to an endocrinology clinic with recurring symptoms of painful fingers and hands that seem to be enlarging. He was previously diagnosed with acromegaly eight months ago and underwent transsphenoidal surgery six months ago to remove the pituitary adenoma responsible. During examination, his facial features appear rough, and his hands are large and spade-like. You opt to manage this patient's symptoms with medication and initiate a trial of octreotide.
What physiological function is linked to this medication?Your Answer: Inhibition of glucagon secretion from the pancreas
Explanation:Somatostatin analogues, such as octreotide, are used to treat acromegaly in patients who have not responded well to surgery. Somatostatin is a hormone that has various functions, including inhibiting the secretion of growth hormone from the anterior pituitary gland and insulin and glucagon from the pancreas. Therefore, the correct answer is that somatostatin inhibits the secretion of glucagon.
The secretion of ACTH by the pancreas is regulated by a negative feedback loop involving cortisol and corticotropin-releasing hormone (CRH). When blood cortisol levels decrease, CRH is secreted from the hypothalamus, which then stimulates the secretion of ACTH from the anterior pituitary gland.
Somatostatin analogues typically do not affect the secretion of aldosterone from the pancreas, which is primarily stimulated by angiotensin-II.
Somatostatin analogues inhibit the secretion of growth hormone from the anterior pituitary gland. The hormone responsible for stimulating the secretion of growth hormone is growth hormone-releasing hormone (GHRH).
The secretion of insulin by pancreatic β-cells is inhibited by somatostatin analogues. The primary stimulus for insulin secretion is low blood glucose levels, but other substances such as arginine and leucine, acetylcholine, sulfonylurea, cholecystokinin, and incretins can also stimulate insulin release.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
A 26-year-old woman with a history of type 1 diabetes mellitus and borderline personality disorder is brought to the emergency department by ambulance due to a decreased level of consciousness. She is currently on regular insulin. Upon examination, her Glasgow coma scale is 3/15. The venous blood gas results show a pH of 7.36 (7.35-7.45), K+ of 3.8 mmol/L (3.5-4.5), Na+ of 136 mmol/L (135-145), glucose of 1.2 mmol/L (4.0-7.0), HCO3- of 23 mmol/L (22-26), and Hb of 145 g/dL (12.1-15.1). What is the first hormone to be secreted in response to the likely diagnosis?
Your Answer: Insulin
Correct Answer: Glucagon
Explanation:The correct answer is Glucagon, as it is the first hormone to be secreted in response to hypoglycaemia. The patient’s reduced level of consciousness is likely due to profound hypoglycaemia caused by exogenous insulin administration. Borderline personality disorder patients have a higher incidence of self harm and suicidality than the general population. Insulin is not the correct answer as its secretion decreases in response to hypoglycaemia, and this patient has T1DM resulting in an absolute deficiency. Cortisol is also not the correct answer as it takes longer to be secreted, although it is another counter-regulatory hormone that seeks to raise blood glucose levels in response to hypoglycaemia.
Understanding Hypoglycaemia: Causes, Features, and Management
Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.
Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.
Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Correct
-
A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?
Your Answer: Zona fasciculata
Explanation:The adrenal gland comprises two primary parts: the cortex and medulla.
The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.
The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
A 10-year-old girl visits her pediatrician with her mother. She is worried that she hasn't started puberty yet while some of her classmates have.
The pediatrician explains to the young girl and her mother that the onset of puberty can vary and that it is considered delayed if there are no signs of puberty by the age of 13 years. The pediatrician reassures the girl that there is no need to worry and that she should be patient.
What is the first sign the girl should expect?Your Answer: Height growth spurt
Correct Answer: Testicular enlargement
Explanation:The initial indication of male puberty is the growth of the testicles. This typically happens between the ages of 9.5 and 13.5 years and is the first sign of male puberty. Testicular enlargement is the only pubertal change present in Tanner stage 1.
During Tanner stage 2, which usually occurs between the ages of 10.5 and 14.5 years, penis growth begins.
Pubic hair development also starts during Tanner stage 2, between the ages of 9.9 and 14.0 years.
The height growth spurt occurs at age 14 and reaches a maximum of 10cm/year in Tanner.
The voice changes during Tanner stage 3, which typically happens around 13.5 years old.
Puberty: Normal Changes in Males and Females
Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.
During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Correct
-
A 30-year-old male visits his GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 4 months. He has a medical history of OCD, which was diagnosed 2 years ago. After a series of tests, the patient is diagnosed with primary polydipsia.
What would be the probable outcome of this patient's water deprivation test?Your Answer: High urine osmolality after both fluid deprivation and desmopressin
Explanation:The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Correct
-
As a third year medical student working in a GP surgery, you come across a worried 54-year-old male patient who is experiencing chest discomfort. He has recently begun taking a new tablet for his high blood pressure and suspects it may be the cause of his symptoms. During your examination, you notice bilateral non-tender glandular swellings around the areolae. There are no signs of lymphadenopathy in the axillary region, and testicular examination is normal. Which medication is most likely responsible for this clinical presentation?
Your Answer: Spironolactone
Explanation:Spironolactone-Induced Gynaecomastia
Spironolactone is a type of diuretic that helps to increase urine production by blocking aldosterone receptors in the kidneys. However, it also has anti-androgenic properties that can lead to the development of gynaecomastia, a condition where men develop breast tissue. This is because spironolactone inhibits the production of testosterone and increases the level of free oestrogen in the blood, causing the proliferation of glandular tissue in the mammary glands.
While gynaecomastia is not commonly associated with other medications, they all have their own side effects. Aspirin, for example, can cause gastrointestinal ulceration by inhibiting COX enzymes and prostaglandin synthesis. Thiazide diuretics work by blocking the sodium chloride co-transporter in the distal convoluted tubule, which can lead to a decrease in blood volume. Loop diuretics, on the other hand, can cause severe hyponatraemia but do not affect testosterone production. Statins, which are used to lower cholesterol levels, can cause rhabdomyolysis, a serious condition where muscle tissue breaks down and releases harmful substances into the bloodstream.
In summary, while spironolactone can be an effective diuretic, it is important to be aware of its potential side effects, including gynaecomastia. Patients should always consult with their healthcare provider before starting any new medication and report any unusual symptoms or side effects.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Incorrect
-
A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured urine that have persisted for 3 months. He had a concussion from a car accident a month before the onset of his urinary symptoms. The patient is diagnosed with cranial diabetes insipidus after undergoing several tests.
What would the water deprivation test likely reveal in this case?Your Answer: High urine osmolality after both fluid deprivation and desmopressin
Correct Answer: Low urine osmolality after fluid deprivation, but high after desmopressin
Explanation:The correct answer is low urine osmolality after fluid deprivation, but high after desmopressin, for a patient with cranial diabetes insipidus (DI). This condition is characterized by polyuria, chronic thirst, and pale-coloured urine, and is caused by insufficient antidiuretic hormone (ADH) secretion. As a result, the kidneys are unable to concentrate urine, leading to a low urine osmolality even during water deprivation. However, the kidneys will respond to desmopressin (synthetic ADH) to produce concentrated urine.
High urine osmolality after both fluid deprivation and desmopressin is incorrect, as it would be seen in a healthy individual or a patient with primary polydipsia, a psychogenic disorder characterized by excessive drinking despite being properly hydrated.
Low urine osmolality after both fluid deprivation and desmopressin is incorrect, as this is typical of nephrogenic DI, a condition in which the kidneys are insensitive to ADH.
High urine osmolality after fluid deprivation, but normal after desmopressin is incorrect, as this would not be commonly seen with any pathological state.
Low urine osmolality after desmopressin, but high after fluid deprivation is incorrect, as this would not be commonly seen with any pathological state.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
A 47-year-old female has been diagnosed with Grave's disease, experiencing weight loss, heat intolerance, and a tremor that is affecting her job as a waitress. Despite being prescribed carbimazole, she is unhappy with the results after 3 days. What other medication options are available for symptom management?
Your Answer: Calcium channel blockers
Correct Answer: Beta blockers
Explanation:To alleviate symptoms, beta blockers like propranolol can be used to block the sympathetic effects on the heart. Guanethidine can also be administered to reduce catecholamine release. Statins and calcium channel blockers are not effective in treating the patient’s symptoms. Although benzodiazepines have anxiolytic and sedative properties, they may not be the most suitable option in this case.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A young male with a history of diabetes mellitus type 1 is admitted to the emergency department. He was previously found to be confused by his roommates in his room. As well as this, he complains of nausea and abdominal pain.
An ECG is performed and shows tall tented T waves.
A simple blood test reveals marked hyperglycemia. A urinalysis shows the presence of ketones ++.
His bloods show the following:
Hb 136 g/L Male: (135-180)
Platelets 210 * 109/L (150 - 400)
WBC 9.5 * 109/L (4.0 - 11.0)
Na+ 137 mmol/L (135 - 145)
K+ 7.1 mmol/L (3.5 - 5.0)
Bicarbonate 31 mmol/L (22 - 29)
Urea 8.0 mmol/L (2.0 - 7.0)
Creatinine 155 µmol/L (55 - 120)
He is given insulin, calcium gluconate and IV saline.
What is the main mechanism as to why the patient's potassium level will decrease?Your Answer:
Correct Answer: Insulin increases sodium potassium pump
Explanation:Insulin stimulates the Na+/K+ ATPase pump, leading to a decrease in serum potassium levels. This is primarily achieved through increased activity of the sodium-potassium pump, which is triggered by phosphorylation of the transmembrane subunits in response to insulin. While calcium gluconate is used to protect the heart during hyperkalaemia-induced arrhythmias, it does not affect potassium levels. Although IV fluids can improve renal function and potassium clearance, they are not the primary method for reducing potassium levels. Calcium-activated potassium channels are present throughout the body and are activated by an increase in intracellular calcium levels during action potentials.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?
Your Answer:
Correct Answer: Liver disease
Explanation:Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Incorrect
-
What is the association between brown tumours of bone and a specific condition or disease?
Your Answer:
Correct Answer: Hyperparathyroidism
Explanation:Brown tumors are bone tumors that develop due to excessive osteoclast activity, typically in cases of hyperparathyroidism. These tumors are composed of fibrous tissue, woven bone, and supporting blood vessels, but lack any matrix. They do not appear on x-rays due to their radiolucent nature. Osteoclasts consume the trabecular bone that osteoblasts produce, leading to a cycle of reparative bone deposition and resorption that can cause bone pain and involve the periosteum, resulting in an expansion beyond the typical shape of the bone. The tumors are called brown due to the deposition of haemosiderin at the site.
Primary Hyperparathyroidism: Causes, Symptoms, and Treatment
Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.
Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.
The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.
In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Incorrect
-
A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for evaluation. He is currently on maximum doses of metformin and glibenclamide, but his HbA1c levels have increased from 58 mmol/mol to 67 mmol/mol over the past six months. The consultant recommends adding sitagliptin as a third antidiabetic medication. What is the mechanism of action of this new medication?
Your Answer:
Correct Answer: Inhibit the peripheral breakdown of incretins, enhancing their ability to stimulate insulin release
Explanation:Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of premenstrual dysphoric disorder diagnosed 3 years ago. After a series of tests, the patient is diagnosed with primary polydipsia. What results are expected from her water deprivation test?
Your Answer:
Correct Answer: High urine osmolality after both fluid deprivation and desmopressin
Explanation:The patient has primary polydipsia, a psychogenic disorder causing excessive drinking despite being hydrated. Urine osmolality is high after both fluid deprivation and desmopressin, as the patient still produces and responds to ADH. Low urine osmolality after both fluid deprivation and desmopressin is typical of nephrogenic DI, while low urine osmolality after fluid deprivation but high after desmopressin is typical of cranial DI. Low urine osmolality after desmopressin and low urine osmolality after fluid deprivation but normal after desmopressin are not commonly seen with any pathological state.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Incorrect
-
A 63-year-old male presents with a sudden onset of double vision that has been ongoing for eight hours. He has a medical history of hypertension, which is managed with amlodipine and atenolol, and type 2 diabetes that is controlled through diet. Upon examination, the patient displays watering of the right eye, a slight droop of the eyelid, and displacement of the eye to the right. The left eye appears to have a full range of movements, and the pupil size is the same as on the left. What is the probable cause of his symptoms?
Your Answer:
Correct Answer: Diabetes
Explanation:Causes of Painless Partial Third Nerve Palsy
A painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. This condition is thought to be due to a microangiopathy that leads to the occlusion of the vasa nervorum. On the other hand, an aneurysm of the posterior communicating artery is associated with a painful third nerve palsy, and pupillary dilatation is typical. Cerebral infarction, on the other hand, does not usually cause pain. Hypertension, which is a common condition, would normally cause signs of CVA or TIA. Lastly, cerebral vasculitis can cause symptoms of CVA/TIA, but they usually cause more global neurological symptoms.
In summary, a painless partial third nerve palsy with pupil sparing is most likely caused by diabetes mononeuropathy. Other conditions such as aneurysm of the posterior communicating artery, cerebral infarction, hypertension, and cerebral vasculitis can also cause similar symptoms, but they have different characteristics and causes. It is important to identify the underlying cause of the condition to provide appropriate treatment and management.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
A 49-year-old woman has been diagnosed with a phaeochromocytoma. What is the primary amino acid from which catecholamines are derived?
Your Answer:
Correct Answer: Tyrosine
Explanation:Tyrosine serves as the precursor for catecholamine hormones, which undergo modification by a DOPA decarboxylase enzyme to form dopamine. Subsequently, through two additional enzymatic alterations, dopamine is converted to noradrenaline and ultimately adrenaline.
Adrenal Physiology: Medulla and Cortex
The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.
The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.
Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
A 23-year-old male patient visits his GP complaining of breast tissue enlargement that has been progressively worsening for the past 3 months. He also reports the presence of a new lump on his left testicle. Upon thorough examination and taking a detailed medical history, the GP suspects that the patient may be suffering from testicular cancer.
What is the probable diagnosis?Your Answer:
Correct Answer: HCG secreting seminoma
Explanation:Gynaecomastia can be caused by testicular conditions such as seminoma that secrete hCG.
Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Incorrect
-
A 22-year-old male presents to the emergency department with a two-hour history of nausea, confusion, and drowsiness. The patient has a medical history of type 1 diabetes mellitus.
Upon conducting an A-E examination, the only significant finding is a plasma glucose level of 3.4 mmol/L. The patient is capable of swallowing.
What is the most suitable course of action for managing this patient?Your Answer:
Correct Answer: Two tubes of oral glucose gel
Explanation:The recommended first-line treatment for a conscious patient with hypoglycaemia is a fast-acting carbohydrate taken orally, such as glucose liquids, tablets, or gels. In this case, the appropriate course of action would be to administer two tubes of glucose gel. Glucagon via intramuscular injection is not necessary unless the patient is experiencing severe hypoglycaemia or is unable to swallow. Insulin via intramuscular injection is not appropriate for treating hypoglycaemia, and intravenous glucose is only used in cases of severe hypoglycaemia.
Understanding Hypoglycaemia: Causes, Features, and Management
Hypoglycaemia is a condition characterized by low blood sugar levels, which can lead to a range of symptoms and complications. There are several possible causes of hypoglycaemia, including insulinoma, liver failure, Addison’s disease, and alcohol consumption. The physiological response to hypoglycaemia involves hormonal and sympathoadrenal responses, which can result in autonomic and neuroglycopenic symptoms. While blood glucose levels and symptom severity are not always correlated, common symptoms of hypoglycaemia include sweating, shaking, hunger, anxiety, nausea, weakness, vision changes, confusion, and dizziness. In severe cases, hypoglycaemia can lead to convulsions or coma.
Managing hypoglycaemia depends on the severity of the symptoms and the setting in which it occurs. In the community, individuals with diabetes who inject insulin may be advised to consume oral glucose or a quick-acting carbohydrate such as GlucoGel or Dextrogel. A ‘HypoKit’ containing glucagon may also be prescribed for home use. In a hospital setting, treatment may involve administering a quick-acting carbohydrate or subcutaneous/intramuscular injection of glucagon for unconscious or unable to swallow patients. Alternatively, intravenous glucose solution may be given through a large vein.
Overall, understanding the causes, features, and management of hypoglycaemia is crucial for individuals with diabetes or other conditions that increase the risk of low blood sugar levels. Prompt and appropriate treatment can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Incorrect
-
As a medical student in a GP practice, you encounter a mother who brings in her 5-year-old son. The child has been eating well but is falling through the centiles and gaining height slowly. After conducting a thorough history, examination, and blood tests, you diagnose the child with growth-hormone insufficiency. The mother has several questions about the condition, including when the human body stops producing growth hormone. Can you provide information on the developmental stage that signals the cessation of growth hormone release in the human body?
Your Answer:
Correct Answer: Growth hormone is secreted for life
Explanation:Throughout adulthood, the maintenance of tissues still relies on sufficient levels of growth hormone. This hormone not only promotes growth, but also supports cellular regeneration and reproduction. While it is crucial for normal growth during childhood, it also helps to preserve muscle mass, facilitate organ growth, and boost the immune system, making its lifelong release necessary. Therefore, growth hormone is a key factor in growth during all stages of life, including before, during, and after puberty.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Incorrect
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer:
Correct Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
As a medical student in community care, while shadowing a health visitor, I observed her measuring the height and weight of children to monitor their growth. What factors drive growth during the developmental stage of 4 to 10 years old?
Your Answer:
Correct Answer: Growth and thyroid hormones
Explanation:Understanding Growth and Factors Affecting It
Growth is a significant difference between children and adults, and it occurs in three stages: infancy, childhood, and puberty. Several factors affect fetal growth, including environmental, placental, hormonal, and genetic factors. Maternal nutrition and uterine capacity are the most crucial environmental factors that affect fetal growth.
In infancy, nutrition and insulin are the primary drivers of growth. High fetal insulin levels result from poorly controlled diabetes in the mother, leading to hypoglycemia and macrosomia in the baby. Growth hormone is not a significant factor in infancy, as babies have low amounts of receptors. Hypopituitarism and thyroid have no effect on growth in infancy.
In childhood, growth is driven by growth hormone and thyroxine, while in puberty, growth is driven by growth hormone and sex steroids. Genetic factors are the most important determinant of final adult height.
It is essential to monitor growth in children regularly. Infants aged 0-1 years should have at least five weight recordings, while children aged 1-2 years should have at least three weight recordings. Children older than two years should have annual weight recordings. Children below the 2nd centile for height should be reviewed by their GP, while those below the 0.4th centile for height should be reviewed by a paediatrician.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Incorrect
-
Which one of the following is not associated with excessive glucocorticoids?
Your Answer:
Correct Answer: Hyponatraemia
Explanation:Excessive levels of glucocorticoids can lead to various negative consequences such as skin thinning, osteonecrosis, and osteoporosis. Steroids can cause the body to retain sodium and water, while also resulting in potassium loss and potentially leading to hypokalaemic alkalosis.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
A 38-year-old male visits his primary care physician complaining of polyuria, nocturia, and chronic dry mouth that have persisted for 4 months. He has a medical history of systemic lupus erythematosus (SLE) with associated renal involvement. His recent eGFR result was:
eGFR 23ml/min/1.73m²
The physician orders a water deprivation test along with other investigations.
What is the probable diagnosis for this patient, and what can be expected from his water deprivation test?Your Answer:
Correct Answer: Low urine osmolality after both fluid deprivation and desmopressin
Explanation:The correct answer is low urine osmolality after both fluid deprivation and desmopressin in the water deprivation test for a patient with nephrogenic diabetes insipidus (DI). This condition is characterized by renal insensitivity to antidiuretic hormone (ADH), resulting in an inability to concentrate urine. As a result, urine osmolality will be low even during water deprivation and will not respond to desmopressin (synthetic ADH). This is in contrast to primary polydipsia, where high urine osmolality would be seen after both fluid deprivation and desmopressin, and cranial DI, where low urine osmolality would be seen during water deprivation but high urine osmolality would be seen after desmopressin.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)