-
Question 1
Incorrect
-
A 79-year-old man presents to a heart failure clinic with worsening peripheral oedema and seeks advice on potential treatment options. The patient has a medical history of heart failure with reduced ejection fraction and chronic kidney disease. His current medication regimen includes ramipril, bisoprolol, atorvastatin, and furosemide.
The patient's laboratory results show a sodium level of 139 mmol/L (135 - 145), potassium level of 3.6 mmol/L (3.5 - 5.0), bicarbonate level of 24 mmol/L (22 - 29), urea level of 7.4 mmol/L (2.0 - 7.0), creatinine level of 132 µmol/L (55 - 120), and an estimated glomerular filtration rate (eGFR) of 53 ml/min/1.73m2 (>60).
What adjustments should be made to the patient's furosemide treatment?Your Answer: Stop immediately
Correct Answer: Increase the dose
Explanation:To ensure sufficient concentration of loop diuretics within the tubules, patients with poor renal function may require increased doses. This is because loop diuretics, such as furosemide, work by inhibiting the Na-K-Cl cotransporter in the thick ascending limb of the loop of Henle, which reduces the absorption of NaCl. As these diuretics work on the apical membrane, they must first be filtered into the tubules by the glomerulus before they can have an effect. Therefore, increasing the dose can help achieve the desired concentration within the tubules. The other options, such as changing to amlodipine, keeping the dose the same, or stopping immediately, are not appropriate in this scenario.
Loop Diuretics: Mechanism of Action and Clinical Applications
Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.
Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 63-year-old man comes to the emergency department complaining of severe crushing chest pain that radiates to his jaw and is accompanied by profuse sweating and nausea. Upon conducting an ECG, you observe ST-segment elevation in leads V2-V4, leading you to diagnose an anteroseptal ST-elevation myocardial infarction (MI). Can you identify the coronary vessel that runs along the interventricular septum on the anterior surface of the heart to reach the apex?
Your Answer: Right coronary artery
Correct Answer: Left anterior descending artery
Explanation:The coronary arteries supply blood to the heart muscle, and blockages in these arteries can lead to heart attacks. The right coronary artery supplies the right side of the heart and is often associated with arrhythmias when blocked. The left circumflex artery supplies the left side of the heart and can cause lateral, posterior, or anterolateral heart attacks when blocked. The right marginal artery arises from the right coronary artery and travels along the bottom of the heart, while the left marginal artery arises from the left circumflex artery and travels along the curved edge of the heart.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
How many valves are present between the right atrium and the superior vena cava (SVC)?
Your Answer: None
Explanation:Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.
The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
You are caring for a woman who has heart failure with reduced ejection fraction due to a previous myocardial infarction.
Starling's Law of the Heart states that:Your Answer: As preload progressively increases, stroke volume increases gradually then decreases suddenly
Explanation:Starling’s Law of the Heart states that as preload increases, stroke volume also increases gradually, up to a certain point. However, beyond this point, stroke volume decreases due to overloading of the cardiac muscle fibers. Therefore, the higher the cardiac preload, the greater the stroke volume, but only up to a certain limit.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 57-year-old man needs long term parenteral nutrition and a PICC line is chosen for long term venous access. The insertion site is the elbow region of the basilic vein. During catheter advancement, which venous structure is the catheter tip most likely to pass into from the basilic vein?
Your Answer: Subclavian vein
Correct Answer: Axillary vein
Explanation:The most common site for a PICC line to end up in is the axillary vein, which is where the basilic vein drains into. While PICC lines can be placed in various locations, the posterior circumflex humeral vein is typically encountered before the axillary vein. However, due to its angle of entry into the basilic vein, it is unlikely for a PICC line to enter this structure.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 57-year-old woman visits her doctor with complaints of flushing and warmth. She has been in good health lately, except for a stomach bug she had two weeks ago. Her medical history includes hyperlipidemia, hypertension, myocardial infarction, and type II diabetes mellitus. Although she used to smoke, she has quit and does not drink alcohol. She lives with her husband in a bungalow.
During the consultation, she reveals that her cardiologist recently prescribed niacin to her. Her recent lab results show an increase in total cholesterol.
Which of the following is responsible for the adverse effects observed in this patient?
Substance P
15%
Bradykinin
20%
Prostaglandins
48%
Serotonin
9%
Kallikreins
8%
The adverse effects of niacin, such as flushing, warmth, and itching, are caused by prostaglandins.Your Answer: Kallikreins
Correct Answer: Prostaglandins
Explanation:The adverse effects of niacin, such as flushing, warmth, and itchiness, are caused by the release of prostaglandins. Niacin activates dermal Langerhans cells, which leads to an increase in prostaglandin release and subsequent vasodilation. To prevent these side effects, aspirin is often given 30 minutes before niacin administration. Aspirin works by altering the activity of COX-2, which reduces prostaglandin release.
Substance P acts as a neurotransmitter in the central nervous system, and its neurokinin (NK) receptor 1 is found in specific areas of the brain that affect behavior and the neurochemical response to both psychological and somatic stress.
Bradykinin is an inflammatory mediator that causes vasodilation, but it is not responsible for the adverse effects seen with niacin use.
Serotonin is a neurotransmitter that plays a role in regulating various processes in the brain. Low levels of serotonin are often associated with anxiety, panic attacks, obesity, and insomnia. However, serotonin does not mediate the side effects observed with niacin use.
Nicotinic acid, also known as niacin, is a medication used to treat hyperlipidaemia. It is effective in reducing cholesterol and triglyceride levels while increasing HDL levels. However, its use is limited due to the occurrence of side-effects. One of the most common side-effects is flushing, which is caused by prostaglandins. Additionally, nicotinic acid may impair glucose tolerance and lead to myositis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A 51-year-old woman has just had a right hemiarthroplasty and is now experiencing sudden onset of shortness of breath and sharp pleuritic pain on the right side of her chest. A chest x-ray is done as part of the initial evaluation, revealing a wedge-shaped opacification. What is the probable diagnosis?
Your Answer: Pleural effusion
Correct Answer: Pulmonary embolism
Explanation:Symptoms and Signs of Pulmonary Embolism
Pulmonary embolism is a medical condition that can be difficult to diagnose due to its varied symptoms and signs. While chest pain, dyspnoea, and haemoptysis are commonly associated with pulmonary embolism, only a small percentage of patients present with this textbook triad. The symptoms and signs of pulmonary embolism can vary depending on the location and size of the embolism.
The PIOPED study conducted in 2007 found that tachypnea, or a respiratory rate greater than 16/min, was the most common clinical sign in patients diagnosed with pulmonary embolism, occurring in 96% of cases. Other common signs included crackles in the chest (58%), tachycardia (44%), and fever (43%). Interestingly, the Well’s criteria for diagnosing a PE uses tachycardia rather than tachypnea. It is important for healthcare professionals to be aware of the varied symptoms and signs of pulmonary embolism to ensure prompt diagnosis and treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A 67-year-old man arrives at the emergency department with abrupt onset left-sided foot and leg weakness and sensory loss. According to his wife, he stumbled and fell while they were out for dinner. Imaging results indicate an infarct in the anterior cerebral artery (ACA).
Which lobes of the brain are expected to be impacted the most?Your Answer: Occipital lobe and cerebellum
Correct Answer: Frontal and parietal lobes
Explanation:The anterior cerebral artery is responsible for supplying blood to a portion of the frontal and parietal lobes. While this type of stroke is uncommon and may be challenging to diagnose through clinical means, imaging techniques can reveal affected vessels or brain regions. Damage to the frontal and parietal lobes can result in significant mood, personality, and movement disorders.
It’s important to note that the occipital lobe and cerebellum receive their blood supply from the posterior cerebral artery and cerebellar arteries (which originate from the basilar and vertebral arteries), respectively. Therefore, they would not be impacted by an ACA stroke. Similarly, the middle cerebral artery is responsible for supplying blood to the temporal lobe, so damage to the ACA would not affect this area.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 70-year-old man visits his primary care physician complaining of paroxysmal nocturnal dyspnoea and increasing orthopnoea. The physician suspects heart failure and orders a chest X-ray. What signs on the chest X-ray would indicate heart failure?
Your Answer: A cardiothoracic ratio of 45%
Correct Answer: Upper zone vessel enlargement
Explanation:Diagnosis of Chronic Heart Failure
Chronic heart failure is a serious condition that requires prompt diagnosis and management. In 2018, the National Institute for Health and Care Excellence (NICE) updated its guidelines on the diagnosis and management of chronic heart failure. According to the new guidelines, all patients should undergo an N-terminal pro-B-type natriuretic peptide (NT‑proBNP) blood test as the first-line investigation, regardless of whether they have previously had a myocardial infarction or not.
Interpreting the NT-proBNP test is crucial in determining the severity of the condition. If the levels are high, specialist assessment, including transthoracic echocardiography, should be arranged within two weeks. If the levels are raised, specialist assessment, including echocardiogram, should be arranged within six weeks.
BNP is a hormone produced mainly by the left ventricular myocardium in response to strain. Very high levels of BNP are associated with a poor prognosis. The table above shows the different levels of BNP and NTproBNP and their corresponding interpretations.
It is important to note that certain factors can alter the BNP level. For instance, left ventricular hypertrophy, ischaemia, tachycardia, and right ventricular overload can increase BNP levels, while diuretics, ACE inhibitors, beta-blockers, angiotensin 2 receptor blockers, and aldosterone antagonists can decrease BNP levels. Therefore, it is crucial to consider these factors when interpreting the NT-proBNP test.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 54-year-old man visits his GP for a routine check-up and physical examination. He has a medical history of hypertension and asthma but currently has no immediate concerns. He reports feeling healthy.
During the examination, the man appears to be in good health, with normal vital signs except for a high blood pressure reading of 160/90 mmHg. While listening to his heart, the GP detects an S4 heart sound and orders an ECG.
Which segment of the ECG corresponds to the S4 heart sound?Your Answer: T wave
Correct Answer: P wave
Explanation:The S4 heart sound coincides with the P wave on an ECG. This is because the S4 sound is caused by the contraction of the atria against a stiff ventricle, which occurs just before the S1 sound. It is commonly heard in conditions such as aortic stenosis, hypertrophic cardiomyopathy, or hypertension. As the P wave represents atrial depolarization, it is the ECG wave that coincides with the S4 heart sound.
It is important to note that the QRS complex, which represents ventricular depolarization, is not associated with the S4 heart sound. Similarly, the ST segment, which is the interval between ventricular depolarization and repolarization, and T waves, which indicate ventricular repolarization, are not linked to the S4 heart sound.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 50-year-old woman comes to you complaining of increased urinary frequency and lower abdominal pain. She has a medical history of hypertension that is managed with a high dose of ramipril.
Upon conducting a urine dipstick test, the results indicate a urinary tract infection. You prescribe a 5-day course of trimethoprim.
What blood test will require monitoring in this patient?Your Answer: Liver function tests
Correct Answer: Urea and electrolytes
Explanation:Patients taking ACE-inhibitors should be cautious when using trimethoprim as it can lead to life-threatening hyperkalaemia, which may result in sudden death. Therefore, it is essential to monitor the potassium levels regularly by conducting urea and electrolyte tests.
When using trimethoprim with methotrexate, it is crucial to monitor the complete blood count regularly due to the increased risk of myelosuppression. However, if the patient is only taking trimethoprim, there is no need to monitor troponins and creatine kinase.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 50-year-old male is brought to the trauma unit following a car accident, with an estimated blood loss of 1200ml. His vital signs are as follows: heart rate of 125 beats per minute, blood pressure of 125/100 mmHg, and he feels cold to the touch.
Which component of his cardiovascular system has played the biggest role in maintaining his blood pressure stability?Your Answer: Veins
Correct Answer: Arterioles
Explanation:The highest resistance in the cardiovascular system is found in the arterioles, which means they contribute the most to the total peripheral resistance. In cases of compensated hypovolaemic shock, such as in this relatively young patient, the body compensates by increasing heart rate and causing peripheral vasoconstriction to maintain blood pressure.
Arteriole vasoconstriction in hypovolaemic shock patients leads to an increase in total peripheral resistance, which in turn increases mean arterial blood pressure. This has a greater effect on diastolic blood pressure, resulting in a narrowing of pulse pressure and clinical symptoms such as cold peripheries and delayed capillary refill time.
Capillaries are microscopic channels that provide blood supply to the tissues and are the primary site for gas and nutrient exchange. Venules, on the other hand, are small veins with diameters ranging from 8-100 micrometers and join multiple capillaries exiting from a capillary bed.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
You are participating in a cardiology ward round with a senior consultant and encounter an 80-year-old patient. Your consultant requests that you auscultate the patient's heart and provide feedback.
During your examination, you detect a very faint early-diastolic murmur. To identify additional indications, you palpate the patient's wrist and observe a collapsing pulse.
What intervention could potentially amplify the intensity of the murmur?Your Answer: Asking the patient to breathe in
Correct Answer: Asking patient to perform a handgrip manoeuvre
Explanation:The intensity of an aortic regurgitation murmur can be increased by performing the handgrip manoeuvre, which raises afterload by contracting the arm muscles and compressing the arteries. Conversely, amyl nitrate is a vasodilator that reduces afterload by dilating peripheral arteries, while ACE inhibitors are used to treat aortic regurgitation by lowering afterload. Asking the patient to breathe in will not accentuate the murmur, but standing up or performing the Valsalva manoeuvre can decrease venous return to the heart and reduce the intensity of the murmur.
Aortic regurgitation is a condition where the aortic valve of the heart leaks, causing blood to flow in the opposite direction during ventricular diastole. This can be caused by disease of the aortic valve or by distortion or dilation of the aortic root and ascending aorta. The most common causes of AR due to valve disease include rheumatic fever, calcific valve disease, and infective endocarditis. On the other hand, AR due to aortic root disease can be caused by conditions such as aortic dissection, hypertension, and connective tissue diseases like Marfan’s and Ehler-Danlos syndrome.
The features of AR include an early diastolic murmur, a collapsing pulse, wide pulse pressure, Quincke’s sign, and De Musset’s sign. In severe cases, a mid-diastolic Austin-Flint murmur may also be present. Suspected AR should be investigated with echocardiography.
Management of AR involves medical management of any associated heart failure and surgery in symptomatic patients with severe AR or asymptomatic patients with severe AR who have LV systolic dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Correct
-
A 63-year-old woman comes to a vascular clinic complaining of varicosities in the area supplied by the short saphenous vein.
Into which vessel does this vein directly empty?Your Answer: Popliteal vein
Explanation:The correct answer is that the short saphenous vein passes posterior to the lateral malleolus and ascends between the two heads of the gastrocnemius muscle to empty directly into the popliteal vein. The long saphenous vein drains directly into the femoral vein and does not receive blood from the short saphenous vein. The dorsal venous arch drains the foot into the short and great saphenous veins but does not receive blood from either. The posterior tibial vein is part of the deep venous system but does not directly receive the short saphenous vein.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 79-year-old man arrives at the emergency department with severe, crushing chest pain. His ECG reveals ST-segment elevation in leads V1-4. What electrical state of the heart is likely to be impacted based on his ECG findings?
Your Answer: There is no link between the electrical state of the heart and the ST segment of the ECG
Correct Answer: The period when the entire ventricle is depolarised
Explanation:The ST segment on an ECG represents the time when the ventricles are fully depolarized, occurring between the QRS complex and the T wave. The P wave represents atrial depolarization, while the PR interval represents the time between atrial and ventricular depolarization. The QRS complex represents ventricular depolarization, and the T wave represents repolarization. Overall, the ECG reflects the various electrical states of the heart.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 67-year-old man presents with crushing central chest pain and flushing. His ECG shows T wave inversion in II, III, and AVF, and his troponin T level is 0.9 ng/ml (normal <0.01). What is the substance that troponin T binds to?
Your Answer: Myosin
Correct Answer: Tropomyosin
Explanation:The binding of troponin T to tropomyosin results in the formation of a troponin-tropomyosin complex. The clinical and electrographic characteristics suggest the presence of an inferior myocardial infarction, which is confirmed by the elevated levels of troponin. Troponin T is highly specific to myocardial damage. On the other hand, troponin C binds to calcium ions and is released by damage to both skeletal and cardiac muscle, making it an insensitive marker for myocardial necrosis. Troponin I binds to actin and helps to maintain the troponin-tropomyosin complex in place. It is also specific to myocardial damage. Myosin is the thick component of muscle fibers, and actin slides along myosin to generate muscle contraction. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
Electrophysiology studies are being conducted in a young boy with suspected Wolff-Parkinson-White syndrome, who has experienced recurrent episodes of sudden palpitations. The procedure involves catheterization within the heart to evaluate the electrical activity and determine the conduction velocity of various parts of the conduction pathway.
Which segment of this pathway exhibits the highest conduction velocity?Your Answer: Atrioventricular node
Correct Answer: Purkinje fibres
Explanation:The Purkinje fibres have the fastest conduction velocities in the heart, at approximately 4m/sec, due to different connexins in their gap junctions. They allow depolarisation throughout the ventricular muscle. Atrial muscle conducts at around 0.5m/sec, the atrioventricular node conducts at a slow rate, and the Bundle of His conducts at 2m/sec, but not as rapidly as the Purkinje fibres.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
An ENT surgeon is performing a radical neck dissection. She wishes to fully expose the external carotid artery. To do so she inserts a self retaining retractor close to its origin. Which one of the following structures lies posterolaterally to the external carotid at this point?
Your Answer: Facial artery
Correct Answer: Internal carotid artery
Explanation:At its origin from the common carotid, the internal carotid artery is located at the posterolateral position in relation to the external carotid artery. Its anterior surface gives rise to the superior thyroid, lingual, and facial arteries.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Correct
-
A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine blood tests. The ECG reveals an extended corrected QT interval. Which abnormality detected in his blood test could explain the ECG results?
Your Answer: Hypokalaemia
Explanation:Long QT syndrome can be caused by hypokalaemia, among other electrolyte imbalances.
Electrolyte imbalances such as hypocalcaemia and hypomagnesaemia can also result in long QT syndrome.
However, hyperkalaemia, hypercalcaemia, and hypermagnesaemia are not linked to long QT syndrome.
Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.
There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.
LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.
Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
Which one of the following vessels does not directly drain into the inferior vena cava?
Your Answer: Right common iliac
Correct Answer: Superior mesenteric vein
Explanation:The portal vein receives drainage from the superior mesenteric vein, while the right and left hepatic veins directly drain into it. This can result in significant bleeding in cases of severe liver lacerations.
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 56-year-old man visits his GP complaining of congestive heart failure, angina, and exertional syncope. During the examination, the doctor observes a forceful apex beat and a systolic ejection murmur at the upper right sternal border.
What condition is most likely causing these symptoms?Your Answer: Prolapsing mitral valve
Correct Answer: Aortic stenosis
Explanation:Symptoms and Diagnosis of Heart Valve Disorders
Heart valve disorders can cause a range of symptoms depending on the type and severity of the condition. Aortic stenosis, for example, can lead to obstruction of left ventricular emptying, resulting in slow rising carotid pulse and a palpated murmur that may radiate to the neck. Aortic valve replacement is necessary for symptomatic patients to prevent death within three years or those with severe valve narrowing on ECHO. On the other hand, aortic regurgitation may not show any symptoms for many years until dyspnoea and fatigue set in. A blowing early diastolic murmur is typically found at the left sternal edge, and a mid-diastolic murmur may also be present over the apex of the heart.
Mitral regurgitation, whether acute or chronic, can cause pulmonary oedema, exertional dyspnoea, and lethargy. A pansystolic murmur is audible at the apex. Mitral stenosis, meanwhile, initially presents with exertional dyspnoea, but haemoptysis and a productive cough may also occur. A rumbling mid-diastolic murmur is indicative of mitral stenosis. Finally, a prolapsing mitral valve is common in young women and is usually asymptomatic, although atypical chest pain may be present. Overall, proper diagnosis and treatment of heart valve disorders are crucial to prevent complications and improve quality of life.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 67-year-old woman visits her GP for a check-up after suffering from a significant anterior ST-elevation myocardial infarction (STEMI) 3 months ago. She has been feeling constantly fatigued and unwell and is worried that her heart may be causing these symptoms. Additionally, she has been experiencing sharp chest pain that worsens when she lies down and feels slightly breathless.
During the examination, the GP observes that her blood pressure drops by approximately 10mmHg when she inhales.
What is the probable reason for her symptoms and examination results?Your Answer: Post-MI depression
Correct Answer: Dressler syndrome (DS)
Explanation:The most likely pathology in this case is Dressler syndrome (DS), which is a complication that can occur after a myocardial infarction (MI) from 2 weeks to several months post-MI. The patient’s symptoms of fatigue, malaise, pleuritic chest pain, and mild dyspnoea are consistent with DS. Additionally, the physical examination finding of decreased blood pressure (>10mmHg) on inspiration, known as ‘pulsus paradoxes’, is associated with DS.
Heart failure with reduced ejection fraction (HFrEF) is an incorrect option as it does not typically cause pleuritic chest pain or pulsus paradoxes. Medication-related causes are also unlikely as the combination of symptoms described in this stem would not be caused by post-MI medications alone. Post-MI depression is another incorrect option as it would not account for all the symptoms present.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 65-year-old man presents to the Emergency Department with a 60-minute history of central chest pain that extends to his jaw. An ECG reveals an inferior ST-segment elevation myocardial infarction (STEMI). The QRS is positive in leads I and aVL but negative in leads II and aVF. What type of axis deviation is indicated by this finding?
Your Answer: Extreme right
Correct Answer: Left
Explanation:To estimate the heart’s axis, one method is the quadrant method, which involves analyzing leads I and aVF. If lead I is positive and lead aVF is negative, this suggests a possible left axis deviation. To confirm left axis deviation, a second method using lead II can be used. If lead II is also negative, then left axis deviation is confirmed. Other types of axis deviation can be determined by analyzing the polarity of leads I and aVF.
ECG Axis Deviation: Causes of Left and Right Deviation
Electrocardiogram (ECG) axis deviation refers to the direction of the electrical activity of the heart. A normal axis is between -30 and +90 degrees. Deviation from this range can indicate underlying cardiac or pulmonary conditions.
Left axis deviation (LAD) can be caused by left anterior hemiblock, left bundle branch block, inferior myocardial infarction, Wolff-Parkinson-White syndrome with a right-sided accessory pathway, hyperkalaemia, congenital heart defects such as ostium primum atrial septal defect (ASD) and tricuspid atresia, and minor LAD in obese individuals.
On the other hand, right axis deviation (RAD) can be caused by right ventricular hypertrophy, left posterior hemiblock, lateral myocardial infarction, chronic lung disease leading to cor pulmonale, pulmonary embolism, ostium secundum ASD, Wolff-Parkinson-White syndrome with a left-sided accessory pathway, and minor RAD in tall individuals. It is also normal in infants less than one year old.
It is important to note that Wolff-Parkinson-White syndrome is a common cause of both LAD and RAD, depending on the location of the accessory pathway. Understanding the causes of ECG axis deviation can aid in the diagnosis and management of underlying conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 25-year-old man is scheduled for a mitral valve repair to address mitral regurgitation. What characteristic is associated with the mitral valve?
Your Answer: It has two anterior cusps
Correct Answer: Its closure is marked by the first heart sound
Explanation:To hear the mitral valve clearly, it is recommended to listen over the cardiac apex, as its closure produces the initial heart sound. The valve comprises two cusps that are connected to the ventricle wall by papillary muscles through chordae tendinae.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 55-year-old man arrives at the emergency department complaining of central chest pain that started 15 minutes ago. An ECG is conducted and reveals ST elevation in leads I, aVL, and V6. Which coronary artery is the most probable cause of obstruction?
Your Answer: Right coronary artery
Correct Answer: Left circumflex artery
Explanation:The presence of ischaemic changes in leads I, aVL, and V5-6 suggests a possible issue with the left circumflex artery, which supplies blood to the lateral area of the heart. Complete blockage of this artery can lead to ST elevation, while partial blockage may result in non-ST elevation myocardial infarction. Other areas of the heart and their corresponding coronary arteries are listed in the table below.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
Sophie is a 22-year-old woman who was diagnosed with hypertrophic cardiomyopathy 4 years ago. Since then she has developed pulmonary hypertension which has added to her symptom load. To alleviate this, Sophie's doctor considers prescribing ambrisentan, an endothelin receptor antagonist. By inhibiting the mediator, endothelin, the doctor hopes to improve Sophie's symptoms until she receives a heart transplant.
What are the main physiological impacts of this mediator?Your Answer: Increased renal reabsorption of sodium and excretion of potassium
Correct Answer: Vasoconstriction and bronchoconstriction
Explanation:Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by endothelial cells and plays a crucial role in vascular homeostasis. However, excessive production of endothelin has been linked to various pathologies, including primary pulmonary hypertension. Inhibiting endothelin receptors can help lower pulmonary blood pressure.
It’s important to note that endothelin does not affect systemic vascular resistance or sodium excretion, which are regulated by atrial and ventricular natriuretic peptides. Aldosterone, on the other hand, is responsible for increasing sodium reabsorption in the kidneys, and it’s believed that endothelin and aldosterone may work together to regulate sodium homeostasis.
While endothelin causes vasoconstriction, it does not cause bronchodilation. Adrenaline, on the other hand, causes both vasoconstriction and bronchodilation, allowing for improved oxygen absorption from the lungs while delivering blood to areas of the body that require it for action.
Finally, endothelin does not increase endovascular permeability, which is a function of histamine released by mast cells in response to noxious stimuli. Histamine enhances the recruitment of leukocytes to an area of inflammation by causing vascular changes.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Correct
-
A senior gentleman visits the GP for his routine INR check. He was prescribed warfarin five years ago upon being diagnosed with atrial fibrillation.
Which enzyme does warfarin inhibit?Your Answer: Epoxide reductase
Explanation:Warfarin prevents the activation of Vitamin K by inhibiting epoxide reductase. This enzyme is responsible for converting Vitamin K epoxide to Vitamin K quinone, a necessary step in the Vitamin K metabolic pathway. Without this conversion, the production of clotting factors (10, 9, 7 and 2) is decreased.
Gamma-glutamyl carboxylase is the enzyme responsible for carboxylating glutamic acid to produce clotting factors. Warfarin does not directly inhibit this enzyme.
CYP2C9 is an enzyme involved in the metabolism of many drugs, including warfarin.
Protein C is a plasma protein that functions as an anticoagulant. It is dependent on Vitamin K for activation and works by inhibiting factor 5 and 8. Protein C is produced as an inactive precursor enzyme, which is then activated to exert its anticoagulant effects.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Correct
-
A 75-year-old man presents to the emergency department with chest pain and shortness of breath while gardening. He reports that the pain has subsided and is able to provide a detailed medical history. He mentions feeling breathless while gardening and walking in the park, and occasionally feeling like he might faint. He has a history of hypertension, is a retired construction worker, and a non-smoker. On examination, the doctor detects a crescendo-decrescendo systolic ejection murmur. The ECG shows no ST changes and the troponin test is negative. What is the underlying pathology responsible for this man's condition?
Your Answer: Old-age related calcification of the aortic valves
Explanation:The patient’s symptoms suggest an ischemic episode of the myocardium, which could indicate an acute coronary syndrome (ACS). However, the troponin test and ECG results were negative, and there are no known risk factors for coronary artery disease. Instead, the presence of a crescendo-decrescendo systolic ejection murmur and the triad of breathlessness, chest pain, and syncope suggest a likely diagnosis of aortic stenosis, which is commonly caused by calcification of the aortic valves in older adults or abnormal valves in younger individuals.
Arteriolosclerosis in severe systemic hypertension leads to hyperplastic proliferation of smooth muscle cells in the arterial walls, resulting in an onion-skin appearance. This is distinct from hyaline arteriolosclerosis, which is associated with diabetes mellitus and hypertension. Atherosclerosis, characterized by fibrous plaque formation in the coronary arteries, can lead to cardiac ischemia and myocyte death if the plaque ruptures and forms a thrombus.
After a myocardial infarction, the rupture of the papillary muscle can cause mitral regurgitation, which is most likely to occur between days 2 and 7 as macrophages begin to digest necrotic myocardial tissue. The posteromedial papillary muscle is particularly at risk due to its single blood supply from the posterior descending artery.
Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.
Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Correct
-
What is the equivalent of cardiac preload?
Your Answer: End diastolic volume
Explanation:Preload, also known as end diastolic volume, follows the Frank Starling principle where a slight increase results in an increase in cardiac output. However, if preload is significantly increased, such as exceeding 250ml, it can lead to a decrease in cardiac output.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Correct
-
During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.
What other features would be expected with a vagus nerve injury?Your Answer: Hoarse voice
Explanation:The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.
However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)