00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What is the primary role of the nuclear membrane? ...

    Correct

    • What is the primary role of the nuclear membrane?

      Your Answer: To regulate transport of molecules in and out of the nucleus

      Explanation:

      The Role of the Nucleus and Nuclear Envelope in Cell Function

      The nucleus is a crucial component of eukaryotic cells, serving as the control centre for the cell. It is characterised by a membrane-enclosed structure that contains the cell’s chromosomes and is heavily involved in regulating gene transcription and protein synthesis. The nuclear envelope, which consists of an outer and inner membrane, plays a critical role in regulating the movement of molecules in and out of the nucleus. This is achieved through nuclear pores on the surface of the envelope, which allow the passage of water-soluble molecules. While the incorrect answer options describe minor roles of the nuclear envelope, its primary function is to act as a regulatory barrier for anything that enters or exits the nucleus. Overall, the nucleus and nuclear envelope are essential components of cell function, playing a critical role in regulating gene expression and maintaining cellular homeostasis.

    • This question is part of the following fields:

      • Basic Sciences
      12
      Seconds
  • Question 2 - What is the primary function of riboflavin in the B vitamin group? ...

    Incorrect

    • What is the primary function of riboflavin in the B vitamin group?

      Your Answer: Energy production via the Krebs cycle

      Correct Answer: Mopping up free radicals

      Explanation:

      The Role of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.

      Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.

    • This question is part of the following fields:

      • Basic Sciences
      5.9
      Seconds
  • Question 3 - What is the composition of enzymes found in lysosomes? ...

    Correct

    • What is the composition of enzymes found in lysosomes?

      Your Answer: Acid hydrolases

      Explanation:

      Lysosomes: The Digestive System of the Cell

      Lysosomes are organelles that come from the Golgi apparatus and are enclosed by a membrane. They are responsible for breaking down various biological macromolecules such as proteins, nucleic acids, carbohydrates, and lipids. Lysosomes contain acid hydrolases, which are enzymes that cleave chemical bonds by adding water and function at an acidic pH of around 5. They are involved in digesting foreign agents that are internalized by the cell and breaking down other cellular organelles like mitochondria, allowing for their components to be recycled.

      The acidic pH within lysosomes is maintained by a proton pump in the lysosomal membrane, which imports protons from the cytosol coupled to ATP hydrolysis. This acidic environment is necessary for the activity of the acid hydrolases. D-amino acid oxidases and peroxidases are not found in lysosomes but in peroxisomes. Alcohol dehydrogenases and ATPases are not involved in digestion but in other cellular functions. Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH, while ATPases catalyze the breakdown of ATP into ADP and a phosphate ion, releasing energy for the cell’s functions.

    • This question is part of the following fields:

      • Basic Sciences
      7.4
      Seconds
  • Question 4 - A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and...

    Correct

    • A 50-year-old male comes to the clinic complaining of abdominal swelling, nausea, and mild jaundice. He has a history of regular alcohol consumption, drinking two 330ml bottles of lager per day (3% ABV) and a 75cl bottle of 12% ABV wine per week.

      What is the approximate number of units of alcohol this man consumes per week? Round to the nearest unit.

      Your Answer: 23 units

      Explanation:

      Calculating Units of Alcohol

      To calculate the number of units of alcohol in a drink, you need to multiply the percentage of alcohol (ABV) by the volume in millilitres and then divide by 1000. However, there are potential pitfalls to watch out for when answering questions about units of alcohol. For example, if the consumption is presented as a daily amount, you need to multiply by 7 to get the weekly amount. Additionally, if the volume is presented in centilitres, you need to convert it to millilitres before performing the calculation.

      For instance, let’s say you want to calculate the units of alcohol in a bottle of lager. If the ABV is 3% and the volume is 330ml, the calculation would be 3% x 330ml divided by 1000, which equals 0.99 units rounded up to 1 unit. If the person drinks two bottles a day, that’s 2 units per day or 14 units per week. Similarly, if the person drinks one bottle of wine per week, and the ABV is 12% and the volume is 750ml, the calculation would be 12% x 750ml divided by 1000, which equals 9 units per bottle.

      It’s important to be aware of potential pitfalls when calculating units of alcohol, such as checking the units of volume and adjusting for duration. By this simple calculation, you can be prepared for any question that may come up in an exam setting. The UK recommendations for alcohol consumption are no more than 14 units per week for both sexes. While calculating units of alcohol may seem daunting, with practice and preparation, you can confidently tackle any question that comes your way.

    • This question is part of the following fields:

      • Basic Sciences
      54.1
      Seconds
  • Question 5 - Of which cellular structure is the fibrillar centre a component? ...

    Incorrect

    • Of which cellular structure is the fibrillar centre a component?

      Your Answer: The chromosomes

      Correct Answer: The nucleolus

      Explanation:

      The Fibrillar Centre in the Nucleolus

      The fibrillar centre is a crucial component of the nucleolus, which is found in most metazoan nucleoli, particularly in higher eukaryotes. Along with the dense fibrillar components and the granular component, it forms the three major components of the nucleolus. During the end of mitosis, the fibrillar centre serves as a storage point for nucleolar ribosomal chromatin and associated ribonucleoprotein transcripts. As the nucleolus becomes active, the ribosomal chromatin and ribonucleoprotein transcripts begin to form the dense fibrillar components, which are more peripherally located and surround the fibrillar centres. The transcription zone for multiple copies of the pre-rRNA genes is the border between these two structures. It is important to note that the fibrillar centre is not a component of any of the cell structures mentioned in the incorrect answer options.

    • This question is part of the following fields:

      • Basic Sciences
      15.1
      Seconds
  • Question 6 - What are the primary constituents of the cytoskeleton in eukaryotic cells? ...

    Correct

    • What are the primary constituents of the cytoskeleton in eukaryotic cells?

      Your Answer: Microfilaments, intermediate filaments and microtubules

      Explanation:

      The Eukaryotic Cytoskeleton: A Structural Support System

      The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.

      Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.

    • This question is part of the following fields:

      • Basic Sciences
      19.7
      Seconds
  • Question 7 - In which part of the cell are the electron transport chain carriers situated?...

    Correct

    • In which part of the cell are the electron transport chain carriers situated?

      Your Answer: Mitochondrial cristae

      Explanation:

      The Electron Transport Chain in Mitochondria

      The electron transport chain (ETC) is a crucial process in cellular aerobic respiration that occurs in the mitochondrial cristae. These are folded membranes inside the organelle. During respiration, NADH and FADH produced from other parts of the process, such as glycolysis, transfer electrons from electron donors to electron acceptors through redox reactions. This electron transfer is coupled with proton transfer across the mitochondrial membrane, creating an electrochemical proton gradient. This gradient induces the production of ATP, which is used as an energy currency by the cell.

      ATP is produced through a mechanism called chemiosmotic phosphorylation. The structure of the mitochondrion is essential for this process to occur. The cristae provide a large surface area for the ETC to take place, and the mitochondrial membrane is impermeable to protons, allowing for the creation of the proton gradient. The inner membrane also contains ATP synthase, the enzyme responsible for producing ATP through chemiosmotic phosphorylation.

      In summary, the electron transport chain in mitochondria is a complex process that involves the transfer of electrons and protons across the mitochondrial membrane to create a proton gradient. This gradient is then used to produce ATP through chemiosmotic phosphorylation. The structure of the mitochondrion is crucial for this process to occur efficiently.

    • This question is part of the following fields:

      • Basic Sciences
      11.7
      Seconds
  • Question 8 - What type of molecule does haemoglobin belong to? ...

    Correct

    • What type of molecule does haemoglobin belong to?

      Your Answer: Quaternary protein structure

      Explanation:

      The Structure and Functions of Proteins

      Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.

      Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.

      In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.

    • This question is part of the following fields:

      • Basic Sciences
      4.5
      Seconds
  • Question 9 - What is the statement of Henry's law? ...

    Incorrect

    • What is the statement of Henry's law?

      Your Answer: The pressure of a gas is inversely proportional to its volume at a standardised temperature

      Correct Answer: The concentration of a gas when dissolved in liquid is proportional to its partial pressure

      Explanation:

      Gas Laws

      Gas laws are a set of scientific principles that describe the behavior of gases under different conditions. One of these laws is Avogadro’s law, which states that equal volumes of gases at a standardized temperature and pressure contain the same number of molecules. Another law is Boyle’s law, which explains that gases expand when the temperature is increased. Charles’ law, on the other hand, states that the pressure of a gas is inversely proportional to its volume at a standardized temperature. Lastly, Graham’s law explains that the rate of diffusion of a gas is in inverse proportion to its weight. The specific gas laws that you need to know may vary depending on your syllabus, but you should be able to recognize and apply them if given the formulae. It is unlikely that you will be expected to know the correct formula.

    • This question is part of the following fields:

      • Basic Sciences
      27.2
      Seconds
  • Question 10 - A couple in their late 30s come to the clinic seeking information about...

    Correct

    • A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?

      Your Answer: 50%

      Explanation:

      Huntington’s Disease

      Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.

      The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.

    • This question is part of the following fields:

      • Basic Sciences
      8.9
      Seconds
  • Question 11 - A 40-year-old male complains of a painful and swollen right calf. The possibility...

    Correct

    • A 40-year-old male complains of a painful and swollen right calf. The possibility of deep vein thrombosis (DVT) is being considered. What tests should be conducted to confirm the diagnosis?

      Your Answer: Dopplers of the leg veins

      Explanation:

      Diagnostic Methods for Deep Vein Thrombosis

      When it comes to diagnosing deep vein thrombosis (DVT), there are several methods available. The most common ones are Doppler studies and venography. Doppler studies use B mode ultrasonography to examine the venous system, while venography involves injecting a contrast dye into the veins and taking X-rays. CT scans are not typically used for DVT diagnosis because they require contrast and expose the patient to radiation. D-Dimer concentrations can help rule out DVT if they are negative, but they cannot diagnose it. MRI scans are useful for examining soft tissues and bones, but they are not the best option for visualizing the vasculature. Finally, oxygen saturation of the limbs is not a reliable diagnostic method because tissue perfusion can be the same even if there is arterial disease. Overall, Doppler studies and venography are the most effective methods for diagnosing DVT.

    • This question is part of the following fields:

      • Basic Sciences
      15.9
      Seconds
  • Question 12 - What are the clinical effects that can occur due to acute or chronic...

    Correct

    • What are the clinical effects that can occur due to acute or chronic over-administration of multivitamins leading to Vitamin A toxicity?

      Your Answer: Nausea, vomiting and headaches

      Explanation:

      The Importance and Risks of Vitamin A

      Vitamin A is an essential nutrient that plays a crucial role in various bodily functions such as growth and development, vision, enzyme signalling pathways, and the maintenance of epithelial membranes. However, excessive intake of vitamin A can lead to toxicity, which can cause several adverse effects. These include raised intracranial pressure resulting in headaches, nausea, vomiting, and visual loss, increased bone resorption leading to osteoporosis and hypercalcaemia, liver damage, hair loss, and skin changes. Moreover, there is a possible increased risk of malignancy, particularly among smokers. Pregnant women are also advised to avoid foods rich in vitamin A, such as liver and fish oils, due to the teratogenicity of vitamin A-derived drugs. Therefore, it is crucial to maintain a balanced intake of vitamin A to avoid the risks associated with its toxicity.

    • This question is part of the following fields:

      • Basic Sciences
      14.2
      Seconds
  • Question 13 - During which stage of the cell cycle does the replication of DNA occur?...

    Correct

    • During which stage of the cell cycle does the replication of DNA occur?

      Your Answer: S phase

      Explanation:

      The Five Phases of the Cell Cycle

      The cell cycle is a complex process that is divided into five main phases, each with its unique cellular events. The first phase is the G0 phase, which is a resting phase where the cell has stopped dividing and is out of the cell cycle. The second phase is the G1 phase, also known as interphase Gap 1, where cells increase in size, and a checkpoint control mechanism prepares the cell for DNA synthesis.

      The third phase is the S phase, where DNA replication occurs. The fourth phase is the G2 phase, also known as Gap 2, which is a gap between DNA synthesis and the onset of mitosis. During this phase, the cell continues to grow until it is ready to enter mitosis. Finally, the fifth phase is the M phase, also known as mitosis, where cell growth stops, and the cell focuses its energy to divide into two daughter cells.

      A checkpoint in the middle of mitosis, known as the metaphase checkpoint, ensures that the cell is prepared to complete division. the five phases of the cell cycle is crucial in how cells divide and grow.

    • This question is part of the following fields:

      • Basic Sciences
      5.8
      Seconds
  • Question 14 - What role does the nucleolus play in eukaryotic cells? ...

    Incorrect

    • What role does the nucleolus play in eukaryotic cells?

      Your Answer: To produce RNA polymerases for ribosomal RNA transcription

      Correct Answer: To transcribe ribosomal RNA and assemble ribosomes

      Explanation:

      The Nucleolus: Structure and Function

      The nucleolus is a non-membrane-bound structure that takes up about a quarter of the nuclear volume. It is composed mainly of proteins and nucleic acids and is responsible for transcribing ribosomal RNA (rRNA) and assembling ribosomes in the cell. Nucleoli are formed in nucleolar organizing regions (NORs), which are also the regions of the genes for three of the four eukaryotic rRNAs.

      During ribosome assembly, ribosomal proteins enter the nucleolus from the cytoplasm and begin to assemble on an rRNA precursor. As the pre-rRNA is cleaved to produce 5.8S, 18S, and 28S rRNAs, additional ribosomal proteins and the 5S rRNA (which is synthesized elsewhere in the nucleus) assemble to form preribosomal subunits. These subunits then exit the nucleolus into the cytoplasm and combine to produce the final 40S and 60S ribosomal subunits.

      Overall, the nucleolus plays a crucial role in protein synthesis by producing the components necessary for ribosome assembly. Its unique structure and function make it an essential component of the cell’s machinery.

    • This question is part of the following fields:

      • Basic Sciences
      15
      Seconds
  • Question 15 - What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia...

    Incorrect

    • What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia in pellagra?

      Your Answer: Deficiency of vitamin B12

      Correct Answer: Deficiency of the vitamin niacin

      Explanation:

      Niacin Deficiency and Other Genetic Diseases

      Niacin, a vitamin present in two forms – nicotinamide and nicotinic acid, is found in a variety of plant and animal foodstuffs. However, in some cases, the form of the vitamin is not easily absorbed by the human body, leading to deficiency. This deficiency is common in areas where maize is the primary dietary carbohydrate. Additionally, niacin can be produced by the body from the amino acid tryptophan. Diseases that affect the availability of tryptophan, such as Hartnup disease and carcinoid syndrome, can also result in niacin deficiency.

      Pellagra is a condition that arises from niacin deficiency. It initially presents with non-specific symptoms such as nausea, fatigue, and reduced appetite, followed by pigmented dermatitis in sun-exposed areas, gastrointestinal disturbance, mood disturbance, and dementia in severe cases.

      Apart from niacin deficiency, genetic diseases affecting collagen synthesis, such as Ehlers Danlos, present with symptoms of fragile stretchy skin and joint hypermobility. Genetic diseases affecting haemoglobin, such as sickle cell anaemia, present with symptoms of pain, hepatosplenomegaly, shortness of breath, and anaemia. Deficiencies in B12 and folate can also lead to macrocytic anaemia, paresthesia, and lethargy.

      In conclusion, the causes and symptoms of niacin deficiency and other genetic diseases is crucial for early diagnosis and effective treatment. A balanced diet and regular medical check-ups can help prevent and manage these conditions.

    • This question is part of the following fields:

      • Basic Sciences
      15.9
      Seconds
  • Question 16 - A 29-year-old woman visits your clinic with concerns about a possible pregnancy.

    Can...

    Correct

    • A 29-year-old woman visits your clinic with concerns about a possible pregnancy.

      Can you explain the mechanism behind a urinary pregnancy test?

      Your Answer: ELISA

      Explanation:

      Techniques in Biochemistry

      Over-the-counter urine pregnancy tests use ELISA to detect beta-HCG in a woman’s urine. The test stick contains antibodies that react with beta-HCG, producing a color change that confirms pregnancy. The urinary pregnancy test is a solid-phase ELISA, where the antibody is immobilized on a specialized filter paper. The fluid travels laterally across the paper to bind with the antibody, and if beta-HCG is present, the line turns blue. Electrophoresis characterizes the electrical charge and size of substances, while PCR identifies specific sequences of DNA or RNA. Radioimmunoassay uses radioactivity to identify specific proteins. Enzymatic degradation breaks down large proteins into smaller subunits for which target antibodies may already exist. This method is used to characterize large proteins for which the structure has not yet been described.

    • This question is part of the following fields:

      • Basic Sciences
      8.1
      Seconds
  • Question 17 - What is a primary function of vitamin A? ...

    Correct

    • What is a primary function of vitamin A?

      Your Answer: Vision

      Explanation:

      Vitamin A: Forms, Sources, and Functions

      Vitamin A is a crucial nutrient that exists in various forms in nature. The primary dietary form of vitamin A is retinol, also known as pre-formed vitamin A, which is stored in animal liver tissue as retinyl esters. The body can also produce its own vitamin A from carotenoids, with beta-carotene being the most common precursor molecule.

      The richest sources of vitamin A include liver and fish liver oils, dark green leafy vegetables, carrots, and mangoes. Vitamin A can also be added to certain foods like cereals and margarines.

      Vitamin A plays several essential roles in the body, including supporting vision by being a component of rhodopsin, a pigment required by the rod cells of the retina. It also contributes to the growth and development of various types of tissue, regulates gene transcription, and aids in the synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways.

      In summary, the different forms and sources of vitamin A and its vital functions in the body is crucial for maintaining optimal health.

    • This question is part of the following fields:

      • Basic Sciences
      5.3
      Seconds
  • Question 18 - What RNA base pairs with adenine when synthesizing a complementary RNA strand from...

    Correct

    • What RNA base pairs with adenine when synthesizing a complementary RNA strand from DNA, using RNA polymerase to split the helix at specific points?

      Your Answer: Uracil

      Explanation:

      Differences between DNA and RNA

      DNA and RNA differ in several ways. The primary sugar in DNA is deoxyribose, while in RNA it is ribose. Additionally, DNA is double stranded, while RNA is single stranded. This single stranded structure with un-paired bases allows for transcription to occur when the DNA bases are freed. Each base has a specific pairing, with guanine always binding to cytosine and adenine always binding to thymine in the DNA strand. During transcription, the same complementary RNA bases assemble with the DNA bases, except for thymine, which is not an RNA base. Instead, uracil serves as the RNA pyrimidine base equivalent of thymine. Finally, lysine is an amino acid coded for by the RNA base triplet AAA, where A represents adenine.

    • This question is part of the following fields:

      • Basic Sciences
      6.9
      Seconds
  • Question 19 - What role does vitamin K play in the body? ...

    Correct

    • What role does vitamin K play in the body?

      Your Answer: Activation of clotting factors II, VII, IX, X

      Explanation:

      The Roles of Vitamin K in the Body

      Vitamin K plays several important roles in the body. One of its main functions is to modify clotting factors II, VII, IX, and X through a process called carboxylation. This modification allows calcium to bind to the factors, which is necessary for them to participate in the clotting pathway. This principle is used in full blood counts to prevent clotting by adding EDTA, which chelates the calcium. Vitamin K also modifies osteocalcin and matrix proteins in bone, as well as nephrocalcin in the kidney, in a similar way.

      In addition to its role in blood clotting and bone health, vitamin K is also important for nervous tissue development and growth. However, vitamin K antagonists such as warfarin are sometimes used as anticoagulants to prevent blood clots. It is important to follow guidelines and instructions carefully when using these medications. Overall, vitamin K plays a crucial role in maintaining the health and function of various systems in the body.

    • This question is part of the following fields:

      • Basic Sciences
      4.9
      Seconds
  • Question 20 - At what stage of eukaryotic mitosis do the centromeres of chromosomes separate? ...

    Correct

    • At what stage of eukaryotic mitosis do the centromeres of chromosomes separate?

      Your Answer: Anaphase

      Explanation:

      Chromosome Division during Anaphase

      Chromosomes are joined together in an X shape at the centromere. During anaphase, the centromeres break down and the chromosomes divide into two identical pairs called sister chromatids. These sister chromatids then move to opposite sides of the cell along a network of spindle fibres. When the cell divides during telophase, each daughter cell receives one sister chromatid from the parent cell. This ensures the accurate copying and propagation of genes. The process of chromosome division during anaphase is crucial for the proper distribution of genetic material in cells.

    • This question is part of the following fields:

      • Basic Sciences
      6.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (15/20) 75%
Passmed