-
Question 1
Correct
-
A 65-year-old male, who is a known type 2 diabetic, visits his GP for a diabetes check-up. He is currently taking metformin and his GP has prescribed a sulphonylurea to improve his blood sugar management. What is the mode of action of this medication?
Your Answer: Closes potassium-ATP channels on the beta cells
Explanation:Sulfonylureas bind to potassium-ATP channels on the cell membrane of pancreatic beta cells, mimicking the role of ATP from the outside. This results in the blocking of these channels, causing membrane depolarisation and the opening of voltage-gated calcium channels. As a result, insulin release is stimulated.
While acute use of sulfonylureas increases insulin secretion and decreases insulin clearance in the liver, it can also cause hypoglycaemia, which is the main side effect. This can lead to the serious complication of neuroglycopenia, resulting in a lack of glucose supply to the brain, causing confusion and possible coma. Treatment for this should involve oral glucose, intramuscular glucagon, or intravenous glucose.
Chronic exposure to sulfonylureas does not result in an acute increase in insulin release, but a decrease in plasma glucose concentration does remain. Additionally, chronic exposure to sulfonylureas leads to down-regulation of their receptors.
Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Correct
-
Mr. Smith is a 54-year-old man who visits your GP clinic for his annual review of his type 2 diabetes. He informs you that he has been managing it through diet for a few years, but lately, he has gained some weight. His latest HbA1C reading is 9.8% (normal range 3.7-5.0%). You suggest continuous dietary advice and prescribe metformin to regulate his blood glucose levels. Which of the following statements about metformin is accurate?
Your Answer: It decreases hepatic gluconeogenesis
Explanation:While some diabetic treatments such as insulin and sulfonylureas can lead to weight gain, metformin is not associated with this side effect. Metformin functions by enhancing insulin sensitivity and reducing hepatic gluconeogenesis, without directly impacting insulin secretion from pancreatic beta cells, thus it does not cause significant hypoglycemia. Ghrelin, a hormone that controls appetite, is not influenced by any diabetic medications.
Understanding Diabetes Mellitus: A Basic Overview
Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.
There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.
There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Correct
-
Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?
Your Answer: Secretin
Explanation:The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.
Pancreatic Secretions and their Regulation
Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.
Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Correct
-
A 28-year-old female, who is 5 months postpartum, presents with a 4-week history of weight loss, heat intolerance, tremor, palpitation and diarrhoea. Pregnancy and birth were uncomplicated. On further questioning, she admits having taken off-license weight loss medication bought from the internet 2 months ago. Past medical history and family history are insignificant. She does not smoke or drink alcohol.
On physical examination, she has exophthalmos, brisk reflexes and fine tremor. Her vital signs were heart rate 100/minute, blood pressure 138/78 mmHg, temperature 36.6ºC. The thyroid gland was diffusely enlarged.
Thyroid Stimulating Hormone (TSH) 0.01 mU/l
Free thyroxine (T4) 25 pmol/l
Total thyroxine (T4) 155 nmol/l
What is the most likely diagnosis?Your Answer: Graves' Disease
Explanation:During the postnatal period, Graves’ disease may either present for the first time or worsen. Exophthalmos is a distinctive symptom of Graves’ disease that is not observed in other hyperthyroid conditions. Hypothyroidism is caused by Hashimoto’s thyroiditis. postpartum thyroiditis is characterized by initial hyperthyroidism after childbirth, followed by normal or occasionally reduced thyroid levels.
During pregnancy, there is an increase in the levels of thyroxine-binding globulin (TBG), which causes an increase in the levels of total thyroxine. However, this does not affect the free thyroxine level. If left untreated, thyrotoxicosis can increase the risk of fetal loss, maternal heart failure, and premature labor. Graves’ disease is the most common cause of thyrotoxicosis during pregnancy, but transient gestational hyperthyroidism can also occur due to the activation of the TSH receptor by HCG. Propylthiouracil has traditionally been the antithyroid drug of choice, but it is associated with an increased risk of severe hepatic injury. Therefore, NICE Clinical Knowledge Summaries recommend using propylthiouracil in the first trimester and switching to carbimazole in the second trimester. Maternal free thyroxine levels should be kept in the upper third of the normal reference range to avoid fetal hypothyroidism. Thyrotropin receptor stimulating antibodies should be checked at 30-36 weeks gestation to determine the risk of neonatal thyroid problems. Block-and-replace regimes should not be used in pregnancy, and radioiodine therapy is contraindicated.
On the other hand, thyroxine is safe during pregnancy, and serum thyroid-stimulating hormone should be measured in each trimester and 6-8 weeks postpartum. Women require an increased dose of thyroxine during pregnancy, up to 50% as early as 4-6 weeks of pregnancy. Breastfeeding is safe while on thyroxine. It is important to manage thyroid problems during pregnancy to ensure the health of both the mother and the baby.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A 35-year-old man, with a history of type 1 diabetes, was discovered disoriented on the road. He was taken to the ER and diagnosed with hypoglycemia. As IV access was not feasible, IM glucagon was administered. What accurately explains the medication's mechanism of action?
Your Answer: Decreases secretion of cortisol
Correct Answer: Increases secretion of somatostatin
Explanation:Somatostatin, a hormone that inhibits the secretion of insulin and glucagon, is produced in the pancreas. Glucagon can increase the secretion of somatostatin through a feedback mechanism, while insulin can decrease it. Somatostatin also plays a role in controlling the emptying of the stomach and bowel.
Glucagon is a treatment option for hypoglycemia, along with IV dextrose if the patient is confused and IV access is available.
Cortisol is produced in the adrenal gland’s zona fasciculate and is triggered by ACTH, which is released from the anterior pituitary gland. Glucagon can stimulate ACTH-induced cortisol release.
Desmopressin is an analogue of vasopressin and is used to replace vasopressin/ADH in the treatment of central diabetes insipidus, where there is a lack of ADH due to decreased or non-existent secretion or production by the hypothalamus or posterior pituitary.
Prolactin, produced in the anterior pituitary, is responsible for milk production in the breasts.
Somatostatin: The Inhibitor Hormone
Somatostatin, also known as growth hormone inhibiting hormone (GHIH), is a hormone produced by delta cells found in the pancreas, pylorus, and duodenum. Its main function is to inhibit the secretion of growth hormone, insulin, and glucagon. It also decreases acid and pepsin secretion, as well as pancreatic enzyme secretion. Additionally, somatostatin inhibits the trophic effects of gastrin and stimulates gastric mucous production.
Somatostatin analogs are commonly used in the management of acromegaly, a condition characterized by excessive growth hormone secretion. These analogs work by inhibiting growth hormone secretion, thereby reducing the symptoms associated with acromegaly.
The secretion of somatostatin is regulated by various factors. Its secretion increases in response to fat, bile salts, and glucose in the intestinal lumen, as well as glucagon. On the other hand, insulin decreases the secretion of somatostatin.
In summary, somatostatin plays a crucial role in regulating the secretion of various hormones and enzymes in the body. Its inhibitory effects on growth hormone, insulin, and glucagon make it an important hormone in the management of certain medical conditions.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Correct
-
A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?
Your Answer: Zona fasciculata
Explanation:The adrenal gland comprises two primary parts: the cortex and medulla.
The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.
The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Correct
-
As a medical student in a GP practice, you encounter a mother who brings in her 5-year-old son. The child has been eating well but is falling through the centiles and gaining height slowly. After conducting a thorough history, examination, and blood tests, you diagnose the child with growth-hormone insufficiency. The mother has several questions about the condition, including when the human body stops producing growth hormone. Can you provide information on the developmental stage that signals the cessation of growth hormone release in the human body?
Your Answer: Growth hormone is secreted for life
Explanation:Throughout adulthood, the maintenance of tissues still relies on sufficient levels of growth hormone. This hormone not only promotes growth, but also supports cellular regeneration and reproduction. While it is crucial for normal growth during childhood, it also helps to preserve muscle mass, facilitate organ growth, and boost the immune system, making its lifelong release necessary. Therefore, growth hormone is a key factor in growth during all stages of life, including before, during, and after puberty.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Correct
-
Sarah, a 25-year-old type 1 diabetic, is interested in joining a local running group. As her physician, it is important to inform her of the potential impact this increase in physical activity may have on her blood sugar levels. What advice do you give her?
Your Answer: He is at risk of an early and a late drop, hours later, in his blood glucose due muscle uptake and replacement of glycogen
Explanation:Glucose levels are impacted by exercise in various ways. Firstly, there is an initial decrease due to the increased uptake of glucose in the muscles through GLUT-2, which does not require insulin. Secondly, during high-intensity sports, the release of adrenaline and cortisol can cause a temporary increase in blood glucose levels, especially during competitive events. Finally, there is a delayed decrease as the muscles and liver glycogen are utilized during exercise and then replenished over the following hours.
Glycogenesis – the process of storing glucose as glycogen
Glycogenesis is the process of converting glucose into glycogen for storage in the liver and muscles. This process is important for maintaining blood glucose levels and providing energy during times of fasting or exercise. The key enzyme involved in glycogenesis is glycogen synthase, which catalyzes the formation of α-1,4-glycosidic bonds between glucose molecules to form glycogen. Branching enzyme then creates α-1,6-glycosidic bonds to form branches in the glycogen molecule. Glycogenin, a protein that acts as a primer for glycogen synthesis, is also involved in the process. Glycogenesis is regulated by hormones such as insulin and glucagon, which stimulate and inhibit glycogen synthesis, respectively. Understanding the process of glycogenesis is important for understanding how the body stores and utilizes glucose for energy.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Incorrect
-
Which one of the following statements is true of glucagon?
Your Answer: Inhibits gluconeogenesis
Correct Answer: Produced in response to an increase of amino acids
Explanation:Glucagon is a polypeptide protein that is synthesized by the alpha cells of the pancreatic islets of Langerhans. It is released in response to low blood sugar levels and the presence of amino acids. Glucagon is responsible for elevating the levels of glucose and ketones in the bloodstream.
Glucagon: The Hormonal Antagonist to Insulin
Glucagon is a hormone that is released from the alpha cells of the Islets of Langerhans in the pancreas. It has the opposite metabolic effects to insulin, resulting in increased plasma glucose levels. Glucagon functions by promoting glycogenolysis, gluconeogenesis, and lipolysis. It is regulated by various factors such as hypoglycemia, stresses like infections, burns, surgery, increased catecholamines, and sympathetic nervous system stimulation, as well as increased plasma amino acids. On the other hand, glucagon secretion decreases with hyperglycemia, insulin, somatostatin, and increased free fatty acids and keto acids.
Glucagon is used to rapidly reverse the effects of hypoglycemia in diabetics. It is an essential hormone that plays a crucial role in maintaining glucose homeostasis in the body. Its antagonistic relationship with insulin helps to regulate blood glucose levels and prevent hyperglycemia. Understanding the regulation and function of glucagon is crucial in the management of diabetes and other metabolic disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.
During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.
What is the most likely diagnosis for this patient?Your Answer: Gastrinoma
Correct Answer: Glucagonoma
Explanation:The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.
Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.
Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.
VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.
Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.
Glucagonoma: A Rare Pancreatic Tumor
Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)