-
Question 1
Incorrect
-
A 35-year-old woman is referred to the endocrine clinic due to missed periods and lactation. She has also gained weight and experiences vaginal dryness. The endocrinologist decides to measure her prolactin levels. What hormone is responsible for suppressing the release of prolactin from the pituitary gland?
Your Answer: Gonadotropin releasing hormone
Correct Answer: Dopamine
Explanation:Dopamine consistently prevents the release of prolactin.
Understanding Prolactin and Its Functions
Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.
The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.
Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Correct
-
A 55-year-old man presents to your clinic with numbness and paraesthesia in his right thumb and index finger. His hands seem enlarged and you observe significant gaps between his teeth. Which hormone is expected to be elevated?
Your Answer: Growth hormone
Explanation:Excessive growth hormone can cause prognathism, spade-like hands, and tall stature. Patients may experience discomfort due to ill-fitting hats or shoes, as well as joint pain, headaches, and visual issues. It is important to note that gigantism occurs when there is an excess of growth hormone secretion before growth plate fusion, while acromegaly occurs when there is an excess of secretion after growth plate fusion.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Correct
-
Sarah is a 19-year-old female with type 1 diabetes. After dinner, she goes out for the night and drinks 15 units of alcohol. She has taken her insulin according to her carbohydrate counting. However, in the early morning, her friend finds it difficult to wake her up and she is hospitalized due to hypoglycemia. How did her alcohol consumption play a role in this?
Your Answer: Alcohol inhibits glycogenolysis
Explanation:Alcoholic drinks contain carbohydrates that can cause an increase in blood glucose levels. However, the consumption of alcohol can also inhibit glycogenolysis, leading to a delayed hypoglycemia, particularly during the night. This can result in neuroglycopenia, which may impair one’s level of consciousness.
Understanding Diabetes Mellitus: A Basic Overview
Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.
There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.
There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Correct
-
An 8-year-old girl has been brought to the GP by her mother who is worried that her daughter may be starting puberty too early. The mother reports an enlargement in nipple size, some breast development, and the appearance of light hairs on the edge of the labia majora.
At what Tanner stage is the girl currently?Your Answer: II
Explanation:Puberty: Normal Changes in Males and Females
Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.
During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.
He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.
His most recent HbA1c result is:
HbA1c 58 mmol/L (<42)
After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.
What is the mechanism of action for this new medication?Your Answer: Activation of peroxisome proliferator activated receptor gamma (PPAR gamma)
Correct Answer: Binding to KATP channels on pancreatic beta cell membrane
Explanation:Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Incorrect
-
A 56-year-old man visits the breast clinic with a solitary lump in the upper-right quadrant of his right breast. He has a history of non-alcoholic liver disease, hypertension, and gout, and is currently taking Bisoprolol, Naproxen, and Allopurinol. The lump is smooth and firm. Based on his medical history and current medications, what is the probable cause of his breast lump?
Your Answer: Hypertension
Correct Answer: Liver disease
Explanation:Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Incorrect
-
A 29-year-old male attends a pre-operative assessment clinic for thyroidectomy due to failed treatment with carbimazole and radio-iodine for Grave's disease. What is the potential complication that he is at a high risk of developing during this procedure?
Your Answer: Hyperparathyroidism
Correct Answer: Recurrent laryngeal nerve palsy
Explanation:The risk of complications during thyroidectomy is relatively low, but there are still potential risks to be aware of. One of the most common complications is damage to the recurrent laryngeal nerve, which can result in vocal cord paralysis and hoarseness. However, the vagal nerve and phrenic nerve are rarely damaged during the procedure as they are not in close proximity to the operating site. Trauma to the esophagus is also uncommon. If the parathyroid glands are inadvertently removed during the procedure, it can result in hypoparathyroidism rather than hyperparathyroidism.
Thyroid disorders are commonly encountered in clinical practice, with hypothyroidism and thyrotoxicosis being the most prevalent. Women are ten times more likely to develop these conditions than men. The thyroid gland is a bi-lobed structure located in the anterior neck and is part of a hypothalamus-pituitary-end organ system that regulates the production of thyroxine and triiodothyronine hormones. These hormones help regulate energy sources, protein synthesis, and the body’s sensitivity to other hormones. Hypothyroidism can be primary or secondary, while thyrotoxicosis is mostly primary. Autoimmunity is the leading cause of thyroid problems in the developed world.
Thyroid disorders can present in various ways, with symptoms often being the opposite depending on whether the thyroid gland is under or overactive. For example, hypothyroidism may result in weight gain, while thyrotoxicosis leads to weight loss. Thyroid function tests are the primary investigation for diagnosing thyroid disorders. These tests primarily look at serum TSH and T4 levels, with T3 being measured in specific cases. TSH levels are more sensitive than T4 levels for monitoring patients with existing thyroid problems.
Treatment for thyroid disorders depends on the cause. Patients with hypothyroidism are given levothyroxine to replace the underlying deficiency. Patients with thyrotoxicosis may be treated with propranolol to control symptoms such as tremors, carbimazole to reduce thyroid hormone production, or radioiodine treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Incorrect
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer: Parafollicular C cells
Correct Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Correct
-
A 34-year-old male presents with tingling in his thumb, index, and middle finger, along with complaints of excessive fatigue and snoring. Upon examination, he displays a prominent brow ridge and significant facial changes over time. Following blood tests and an MRI scan, the patient is prescribed octreotide. What is the mechanism of action of this medication?
Your Answer: Somatostatin analogue
Explanation:Acromegaly is a condition that results from excessive growth hormone production. The release of growth hormone is directly inhibited by somatostatin, which is why somatostatin analogues are used to treat acromegaly.
To answer the question, one must first recognize the symptoms of acromegaly, such as carpal tunnel syndrome, sleep apnea, and changes in facial features over time. The second part of the question involves identifying octreotide as a somatostatin analogue commonly used to treat acromegaly.
While dopamine agonists were previously used to treat acromegaly, they are no longer preferred due to the availability of more effective treatments. Dopamine antagonists have never been used to treat acromegaly. Pegvisomant is an example of a growth hormone antagonist, but antagonists for insulin growth factor-1 release have not yet been developed.
Acromegaly is a condition that can be managed through various treatment options. The first-line treatment for the majority of patients is trans-sphenoidal surgery. However, if the pituitary tumour is inoperable or surgery is unsuccessful, medication may be indicated. One such medication is a somatostatin analogue, which directly inhibits the release of growth hormone. Octreotide is an example of this medication and is effective in 50-70% of patients. Another medication is pegvisomant, which is a GH receptor antagonist that prevents dimerization of the GH receptor. It is administered once daily subcutaneously and is very effective, decreasing IGF-1 levels in 90% of patients to normal. However, it does not reduce tumour volume, so surgery is still needed if there is a mass effect. Dopamine agonists, such as bromocriptine, were the first effective medical treatment for acromegaly but are now superseded by somatostatin analogues and are only effective in a minority of patients. External irradiation may be used for older patients or following failed surgical/medical treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
A 50-year-old man has a laparotomy and repair of incisional hernia. Which hormone is most unlikely to be released in higher amounts after the surgery?
Your Answer: Growth hormone
Correct Answer: Insulin
Explanation:Reduced secretion of insulin and thyroxine is common after surgery, which can make it challenging to manage diabetes in people with insulin resistance due to the additional release of glucocorticoids.
Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Incorrect
-
Which hormonal agent will enhance the secretion of water and electrolytes in pancreatic juice?
Your Answer: Aldosterone
Correct Answer: Secretin
Explanation:The secretion of water and electrolytes is stimulated by secretin, while cholecystokinin stimulates the secretion of enzymes. Secretin generally leads to an increase in the volume of electrolytes and water in secretions, whereas cholecystokinin increases the enzyme content. Secretion volume is reduced by somatostatin, while aldosterone tends to preserve electrolytes.
Pancreatic Secretions and their Regulation
Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.
Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
What is the crucial step in the production of all steroid hormones?
Your Answer: Conversion of cholesterol to prednisolone
Correct Answer: Conversion of cholesterol to pregnenolone
Explanation:The Role of Pregnenolone in Steroid Hormone Synthesis
In the production of steroid hormones in the human body, the conversion of cholesterol to pregnenolone is a crucial step. Pregnenolone serves as the precursor for all steroid hormones, and its formation is the limiting factor in the synthesis of these hormones. This conversion process occurs within the mitochondria of steroid-producing tissues. Essentially, the body needs to convert cholesterol to pregnenolone before it can produce any other steroid hormones. This highlights the importance of pregnenolone in the body’s endocrine system and its role in regulating various physiological processes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Correct
-
A 23-year-old male comes to his doctor with a 5-month history of headaches, palpitations, and excessive sweating. He also mentions unintentional weight loss. Upon examination, the patient is found to be tachycardic and sweating profusely. The doctor suspects that the man may have a tumor affecting the tissue responsible for producing adrenaline.
What is the probable location of the tumor?Your Answer: Adrenal medulla
Explanation:The secretion of adrenaline is primarily carried out by the adrenal medulla. A patient with a phaeochromocytoma, a type of cancer that affects the adrenal medulla, may experience symptoms such as tachycardia, headaches, and sweating due to excess adrenaline production.
The adrenal cortex, which surrounds the adrenal medulla, is not involved in adrenaline synthesis. It is responsible for producing mineralocorticoids, glucocorticoids, and androgens.
The medulla oblongata, located in the brainstem, regulates essential bodily functions but is not responsible for adrenaline secretion.
The parathyroid gland, which produces parathyroid hormone to regulate calcium metabolism, is not related to adrenaline secretion.
The Function of Adrenal Medulla
The adrenal medulla is responsible for producing almost all of the adrenaline in the body, along with small amounts of noradrenaline. Essentially, it is a specialized and enlarged sympathetic ganglion. This gland plays a crucial role in the body’s response to stress and danger, as adrenaline is a hormone that prepares the body for the fight or flight response. When the body perceives a threat, the adrenal medulla releases adrenaline into the bloodstream, which increases heart rate, blood pressure, and respiration, while also dilating the pupils and increasing blood flow to the muscles. This response helps the body to react quickly and effectively to danger. Overall, the adrenal medulla is an important component of the body’s stress response system.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Incorrect
-
A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.
What is the primary way the body reacts to a drop in blood pressure?Your Answer: Insertion of AQP-2 channels in thick ascending loop of Henle
Correct Answer: Insertion of AQP-2 channels in collecting ducts
Explanation:When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).
RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.
Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Incorrect
-
A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?
Your Answer: Hyperosmolar non-ketotic state
Correct Answer: Sepsis
Explanation:The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.
While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.
Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Correct
-
A 25-year-old regular gym attendee has been using growth hormone injections to enhance his muscle mass. What potential risks is he now more susceptible to?
Your Answer: Diabetes mellitus type II
Explanation:Excessive growth hormone can elevate the likelihood of developing type II diabetes mellitus. This is due to the hormone’s ability to release glucose from fat reserves, which raises its concentration in the bloodstream. As a result, the pancreas must produce more insulin to counteract the heightened glucose levels.
Additional indications of surplus growth hormone may involve thickened skin, enlarged extremities, a protruding jaw, carpal tunnel syndrome, fatigue, muscle frailty, and high blood pressure.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Incorrect
-
A 50-year-old man with type 2 diabetes mellitus visits his GP for his annual health check-up. His HbA1c level is 86mmol/L and the GP is contemplating the addition of empagliflozin to his diabetes management plan.
What is the mechanism of action of empagliflozin?Your Answer: Blocks potassium channels on β islet cells in the pancreas
Correct Answer: Inhibition of the sodium-glucose transporter in the kidney
Explanation:SGLT-2 inhibitors work by blocking the action of sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule, which leads to a decrease in glucose re-absorption into the circulation. Empagliflozin is an example of an SGLT-2 inhibitor.
Sulphonylureas increase insulin secretion from β islet cells in the pancreas by blocking potassium channels, which causes islet cell depolarisation and release of insulin.
DPP-4 inhibitors, such as sitagliptin, prevent the breakdown of GLP-1 (glucagon-like peptide) by inhibiting the enzyme DPP-4. This leads to suppression of glucagon release and an increase in insulin release.
Acarbose inhibits α glucosidase and other enzymes in the small intestine, which prevents the breakdown of complex carbohydrates into glucose. This results in less glucose being available for absorption into the bloodstream.
Thiazolidinediones reduce insulin resistance in peripheral tissues and decrease gluconeogenesis in the liver by stimulating PPAR-γ (peroxisome proliferator-activated receptor-gamma), which modulates the transcription of genes involved in glucose metabolism.
Understanding SGLT-2 Inhibitors
SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.
However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.
Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
A 65-year-old man presents to the Emergency Department with confusion, drowsiness, and nausea accompanied by vomiting. His daughter reports that he has been feeling fatigued and unwell with a persistent cough, and he has been smoking 20 cigarettes per day for 45 years. The patient is unable to provide a complete medical history due to his confusion, but he mentions that he sometimes coughs up blood and his urine has been darker than usual. On examination, he appears to be short of breath but euvolaemic. Blood tests reveal low serum sodium, high urinary sodium, low plasma osmolality, and high urinary osmolality. Renal and thyroid function tests are normal. A chest x-ray shows a lung carcinoma, leading you to suspect that this presentation may be caused by a syndrome of inappropriate antidiuretic hormone secretion.
What is the underlying mechanism responsible for the hyponatraemia?Your Answer: Inhibition of the sodium-chloride cotransporters
Correct Answer: Insertion of aquaporin-2 channels
Explanation:The insertion of aquaporin-2 channels is promoted by antidiuretic hormone, which facilitates water reabsorption. However, in the case of syndrome of inappropriate antidiuretic hormone secretion (SiADH), which is caused by small cell lung cancer, the normal negative feedback loop fails, resulting in the continuous production of ADH even when serum osmolality returns to normal. This leads to euvolemic hyponatremia, where the body retains water but continues to lose sodium, resulting in concentrated urine. The underlying mechanism of this condition is the persistent increase in the number of aquaporin-2 channels, which promotes water reabsorption, rather than any effect on sodium transport mechanisms.
Understanding Antidiuretic Hormone (ADH)
Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.
ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.
Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.
Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Correct
-
A 28-year-old woman comes to her outpatient appointment after being diagnosed with Grave's disease. This condition is known for having three distinct signs, in addition to thyroid eye disease. What are the other signs?
Your Answer: Thyroid acropachy & pretibial myxoedema
Explanation:Grave’s disease is commonly linked to several other conditions, including thyroid eye disease, thyroid acropachy, and pretibial myxoedema.
This autoimmune disease, known as Grave’s thyroiditis, is caused by antibodies that target the thyroid stimulating hormone (TSH) receptor, leading to prolonged stimulation.
One of the most noticeable symptoms of Grave’s disease is exophthalmos, which occurs when TSH receptor antibodies bind to receptors at the back of the eye, causing inflammation and an increase in glycosaminoglycans. This results in swelling of the eye muscles and connective tissue.
Pretibial myxoedema is a skin condition that often develops in individuals with Grave’s disease. It is characterized by localized lesions on the skin in front of the tibia, which are caused by an increase in glycosaminoglycans in the pretibial dermis.
Thyroid acropachy is another condition associated with Grave’s disease, which involves swelling of soft tissues, clubbing of the fingers, and periosteal reactions in the extremities.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Incorrect
-
A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot tolerate metformin therapy. What is the mechanism of action of alogliptin, which has been prescribed as an alternative?
Your Answer: Inhibits the SGLT2 receptor
Correct Answer: Reduce the peripheral breakdown of incretins
Explanation:Gliptins (DPP-4 inhibitors) work by inhibiting the enzyme DPP-4, which reduces the breakdown of incretin hormones such as GLP-1. This leads to a glucose-dependent increase in insulin secretion and a reduction in glucagon secretion, ultimately regulating glucose homeostasis. However, gliptins do not increase the production of GLP-1, directly stimulate the release of insulin from pancreatic beta cells, inhibit the SGLT2 receptor, or reduce insulin resistance.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 15-year-old girl is brought to her pediatrician by her father who is worried that his daughter has not yet had a menstrual period. The girl reports that she has been unable to smell for as long as she can remember but is otherwise in good health. During the examination, the girl is found to have underdeveloped breasts and no pubic hair. Her vital signs and body mass index are within normal limits.
What is the probable reason for the girl's condition?Your Answer: Premature ovarian failure
Correct Answer: Kallman syndrome
Explanation:The most likely diagnosis for this girl is Kallmann syndrome, which is characterized by a combination of hypogonadotropic hypogonadism and anosmia. This genetic disorder occurs due to a failure in neuron migration, resulting in deficient hypothalamic gonadotropin releasing hormone (GnRH) and a lack of secondary sexual characteristics. Anosmia is a distinguishing feature of Kallmann syndrome compared to other causes of hypogonadotropic hypogonadism. Congenital adrenal hypoplasia, which results in insufficient cortisol production due to adrenal cortex enzyme deficiency, can also cause hypogonadotropic hypogonadism but is less likely in this case due to the presence of anosmia. Imperforate hymen, which presents with lower abdominal/pelvic pain without vaginal bleeding, is not consistent with this patient’s symptoms. Malnutrition is not indicated as a possible diagnosis.
Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.
Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Incorrect
-
A 43-year-old woman with a history of severe ulcerative colitis (UC) presents to the emergency department with her fourth acute flare in the past 6 months. She has a past medical history of recreational drug use and depression. The patient is given IV hydrocortisone and appears to be responding well. She is discharged after a day of observation with a 7-day course of prednisolone, but the consultant is considering long-term steroid therapy due to the severity of her condition. Which of the following is associated with long-term steroid use?
Your Answer: Osteomalacia
Correct Answer: Increased risk of mania
Explanation:Long-term use of steroids can lead to a higher risk of psychiatric disorders such as depression, mania, psychosis, and insomnia. This risk is even greater if the patient has a history of recreational drug use or mental disorders. While proximal myopathy is a known adverse effect of long-term steroid use, distal myopathy is not commonly observed. However, some studies have reported it as a rare and uncommon adverse effect. Steroids are also known to increase appetite, leading to weight gain, making the last two options incorrect.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
A 70-year-old male has been diagnosed with polymyalgia rheumatica and prescribed prednisolone. What is the most likely adverse effect he may experience?
Your Answer: Weight loss
Correct Answer: Hyperglycaemia
Explanation:Hyperglycemia is the correct answer. Most patients who take steroids experience an increase in appetite and weight gain, so anorexia or weight loss are not appropriate responses.
Steroid hormones can also affect the aldosterone receptor in the collecting duct, potentially leading to hyponatremia.
Although changes in vision are possible due to steroid-induced cataracts, they are much less common.
High levels of non-endogenous steroids have several risk factors, including hyperglycemia, high blood pressure, obesity (particularly around the waist), muscle wasting, poor wound healing, and mood swings or depression.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Correct
-
A 27-year-old man who has been morbidly obese for the past six years is being evaluated at the surgical bariatric clinic. Which hormone release would lead to an increase in appetite in this patient?
Your Answer: Ghrelin
Explanation:Leptin is a hormone that reduces appetite, while ghrelin is a hormone that stimulates appetite. Although thyroxine can increase appetite, it is not consistent with the symptoms being described.
The Physiology of Obesity: Leptin and Ghrelin
Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.
Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.
In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Correct
-
A 42-year-old woman visits her GP complaining of chest pain. She has a history of hypertension and is currently taking metformin for diabetes. The GP observes that her BMI is 45. What is a possible complication of the metabolic syndrome in this case?
Your Answer: Ischemic stroke
Explanation:Metabolic syndrome is a group of risk factors for cardiovascular disease that are caused by insulin resistance and central obesity.
Obesity is associated with higher rates of illness and death, as well as decreased productivity and functioning, increased healthcare expenses, and social and economic discrimination.
The consequences of obesity include strokes, type 2 diabetes, heart disease, certain cancers (such as breast, colon, and endometrial), polycystic ovarian syndrome, obstructive sleep apnea, fatty liver, gallstones, and mental health issues.
The Physiology of Obesity: Leptin and Ghrelin
Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.
Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.
In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Incorrect
-
A 45-year-old woman comes to the clinic complaining of polyuria. Upon further inquiry, she reports experiencing polyphagia and polydipsia as well. Her blood test reveals hyperglycaemia and low C-peptide levels.
What is the underlying mechanism causing her hyperglycaemia?Your Answer: Increased SGLT-2 expression
Correct Answer: Decreased GLUT-4 expression
Explanation:The movement of glucose into cells requires insulin. In this case, the patient is likely suffering from type 1 diabetes mellitus or latent autoimmune diabetes in adults (LADA) with low c-peptide levels, indicating a complete lack of insulin. As a result, insulin is unable to stimulate the expression of GLUT-4, which significantly reduces the uptake of glucose into skeletal and adipose cells.
The patient’s low GLUT-1 expression is unlikely to be the cause of hyperglycemia. GLUT-1 is primarily expressed in fetal tissues and has a higher affinity for oxygen, allowing fetal cells to survive even in hypoglycemic conditions.
GLUT-2 expression is mainly found in hepatocytes and beta-cells of the pancreas. It allows for the bi-directional movement of glucose, equalizing glucose concentrations inside and outside the cell membrane, and enabling glucose-sensitive cells to measure serum glucose levels and respond accordingly.
GLUT-3 expression is mainly found in neuronal cells and has a high affinity, similar to GLUT-1. This allows for the survival of brain cells in hypoglycemic conditions.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Incorrect
-
A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of premenstrual dysphoric disorder diagnosed 3 years ago. After a series of tests, the patient is diagnosed with primary polydipsia. What results are expected from her water deprivation test?
Your Answer: Low urine osmolality after fluid deprivation, but high after desmopressin
Correct Answer: High urine osmolality after both fluid deprivation and desmopressin
Explanation:The patient has primary polydipsia, a psychogenic disorder causing excessive drinking despite being hydrated. Urine osmolality is high after both fluid deprivation and desmopressin, as the patient still produces and responds to ADH. Low urine osmolality after both fluid deprivation and desmopressin is typical of nephrogenic DI, while low urine osmolality after fluid deprivation but high after desmopressin is typical of cranial DI. Low urine osmolality after desmopressin and low urine osmolality after fluid deprivation but normal after desmopressin are not commonly seen with any pathological state.
The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
A 12-year-old girl is being informed about the typical changes that occur during puberty by her doctor. The doctor explains that there are three main changes that usually happen before menarche. What is the order in which these changes occur?
Your Answer: Growth of axillary hair, growth of pubic hair, breast buds
Correct Answer: Breast buds, growth of pubic hair, growth of axillary hair
Explanation:The onset of menarche is preceded by three sequential physical changes: the development of breast buds, growth of pubic hair, and growth of axillary hair. These changes are brought about by the hormone estrogen, which is crucial for the process of puberty.
Puberty: Normal Changes in Males and Females
Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.
During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Incorrect
-
Which of the following is the least probable cause of hypercalcemia?
Your Answer: Thiazides
Correct Answer: Coeliac disease
Explanation:Patients with coeliac disease are prone to developing hypocalcaemia as a result of calcium malabsorption by the bowel.
Understanding the Causes of Hypercalcaemia
Hypercalcaemia is a medical condition characterized by high levels of calcium in the blood. The two most common causes of hypercalcaemia are primary hyperparathyroidism and malignancy. Primary hyperparathyroidism is the most common cause in non-hospitalized patients, while malignancy is the most common cause in hospitalized patients. Malignancy-related hypercalcaemia may be due to various processes, including PTHrP from the tumor, bone metastases, and myeloma. Measuring parathyroid hormone levels is crucial in diagnosing hypercalcaemia.
Other causes of hypercalcaemia include sarcoidosis, tuberculosis, histoplasmosis, vitamin D intoxication, acromegaly, thyrotoxicosis, milk-alkali syndrome, drugs such as thiazides and calcium-containing antacids, dehydration, Addison’s disease, and Paget’s disease of the bone. Paget’s disease of the bone usually results in normal calcium levels, but hypercalcaemia may occur with prolonged immobilization.
In summary, hypercalcaemia can be caused by various medical conditions, with primary hyperparathyroidism and malignancy being the most common. It is essential to identify the underlying cause of hypercalcaemia to provide appropriate treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
Cortisol is mainly synthesized by which of the following?
Your Answer: Adrenal medulla
Correct Answer: Zona fasciculata of the adrenal
Explanation:The adrenal gland’s zona fasciculata produces cortisol, with a relative glucocorticoid activity of 1. Prednisolone has a relative glucocorticoid activity of 4, while dexamethasone has a relative glucocorticoid activity of 25.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)