-
Question 1
Correct
-
A 23-year-old semi-professional rugby player is playing a game when he is tackled by other players and experiences a dislocation at the glenohumeral joint.
What is the structure responsible for deepening the glenoid fossa?Your Answer: Glenoid labrum
Explanation:The Glenoid Labrum and Other Shoulder Joint Structures
The glenoid labrum is a type of cartilage that helps to deepen the glenoid cavity, which is a shallow depression on the lateral border of the scapula bone. This cavity forms the glenohumeral joint with the humerus bone, and the labrum helps to stabilize this joint. If the labrum is injured, it can lead to recurrent dislocations of the shoulder joint.
Another important structure in the shoulder joint is the conoid ligament, which is an extension of the coracoclavicular ligament. This ligament helps to connect the clavicle bone to the scapula bone and provides additional stability to the joint.
The inferior and superior angles are two points on the scapula bone that refer to the lower and upper corners of the bone, respectively. These angles are important landmarks for identifying the position and orientation of the scapula in relation to other bones in the shoulder joint.
Overall, the glenoid labrum, conoid ligament, and angles of the scapula are all important structures that contribute to the stability and function of the shoulder joint. these structures can help healthcare professionals diagnose and treat injuries and conditions that affect the shoulder joint.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 2
Incorrect
-
A 45-year-old woman is currently being treated with lithium for bipolar depression. It is believed that the drug affects the phosphoinositide cycle, resulting in a decrease in both Km and Vmax. This can be observed on a Lineweaver-Burk plot, where the Y-intercept shifts upwards, the X-intercept shifts to the left, and the slope remains constant. What type of inhibition is being described in this situation?
Your Answer: Competitive
Correct Answer: Uncompetitive
Explanation:Types of Reversible Enzyme Inhibition
There are three types of reversible enzyme inhibition: competitive, non-competitive, and uncompetitive. Competitive inhibitors are similar in structure to the substrate and compete for the active site of the enzyme. This results in an increase in Km, but Vmax remains unchanged. Non-competitive inhibitors bind to a different site on the enzyme and do not resemble the substrate. This causes a decrease in Vmax, but Km remains unchanged. Uncompetitive inhibitors bind to the enzyme-substrate complex and render the enzyme inactive, leading to a decrease in both Km and Vmax. On a Lineweaver-Burk plot, the slope increases for competitive and non-competitive inhibitors, but remains the same for uncompetitive inhibitors. The Y-intercept shifts upwards for non-competitive inhibitors, but remains unchanged for competitive and uncompetitive inhibitors. The X-intercept shifts to the right for competitive inhibitors, but remains unchanged for non-competitive and uncompetitive inhibitors. It is important to note that irreversible inhibitors covalently bind to the enzyme and permanently inactivate it, causing the same kinetic effects as non-competitive inhibitors. Dilution is not a mechanism of enzyme inhibition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 3
Incorrect
-
What structures are found alongside the median nerve in the carpal tunnel?
Your Answer: Flexor carpi ulnaris
Correct Answer: Flexor digitorum profundis
Explanation:The Carpal Tunnel: A Passage for Nerves and Tendons
The carpal tunnel is a narrow passage located in the wrist that is made up of the flexor retinaculum, a band of connective tissue. This tunnel serves as a pathway for the median nerve and the tendons of the long flexor muscles of the fingers. These structures pass through the tunnel to reach the hand and fingers. However, all other structures, such as blood vessels and other nerves, are located outside of the carpal tunnel.
In summary, the carpal tunnel is a crucial passage for the median nerve and tendons of the long flexor muscles of the digits. It is formed by the flexor retinaculum and is located in the wrist. the anatomy of the carpal tunnel is important in diagnosing and treating conditions that affect the hand and wrist.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 4
Incorrect
-
A 54-year-old man with a history of acromegaly presents for a check-up. He reports experiencing pins and needles in his hands in the early morning hours, and a positive Tinel's sign. Which muscle is most likely to be weak?
Your Answer: Flexor digiti minimi
Correct Answer: Abductor pollicis brevis
Explanation:Carpal Tunnel Syndrome and Median Nerve Innervation
Carpal tunnel syndrome is a condition that can cause weakness in the abductor pollicis brevis muscle, which is innervated by the median nerve. This muscle, along with the opponens pollicis, is controlled by the median nerve. The flexor pollicis brevis muscle may also be innervated by either the median or ulnar nerve. In this case, the symptoms suggest carpal tunnel syndrome, which is often associated with acromegaly. Early intervention is crucial in treating carpal tunnel syndrome, as permanent nerve damage can occur if decompression is delayed.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 5
Correct
-
What is the molecule produced at the end of glycolysis that connects to the Kreb cycle?
Your Answer: Acetyl CoA
Explanation:The Process of Energy Production from Glucose
The process of producing energy from glucose involves several steps. The first step is glycolysis, where glucose is converted into fructose 1,6 bisphosphate and split into two 3-carbon particles. These particles are then converted into acetyl CoA, which provides the link with the Kreb cycle. The Kreb cycle, also known as the tricarboxylic acid cycle, is a process where organic acids are modified in a series of steps to produce NADH. Succinate and oxaloacetate are intermediates in the Kreb cycle.
The final step in the process is the electron transfer chain, which occurs inside mitochondria. The NADH generated during the Kreb cycle is used to produce energy in the form of adenosine triphosphate (ATP) by a series of redox reactions. This process is essential for the production of energy in the body, as ATP is the primary source of energy for cellular processes. By the process of energy production from glucose, we can better understand the importance of maintaining a healthy diet and lifestyle to ensure optimal energy production in the body.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 6
Incorrect
-
In which type of liver cells do oxygen-dependent metabolic reactions occur mostly?
Your Answer: Kupffer cells
Correct Answer: Zone 1 hepatocytes
Explanation:The Liver’s Dual Blood Supply and Cell Zones
The liver is composed of small units called acini, each with a dual blood supply from the hepatic artery and portal vein. The blood flows through the hepatic sinusoids, allowing solutes and oxygen to move freely into the hepatocytes. The blood eventually drains into the hepatic vein and back into the systemic circulation.
The hepatocytes in the periportal region, closest to the hepatic arterial and portal vein supply, are called zone 1 hepatocytes. They are highly metabolically active due to their oxygen-rich and solute-rich supply, but are also more susceptible to damage from toxins. Zone 1 hepatocytes are responsible for oxygen-requiring reactions such as the electron transport chains, Krebs’ cycle, fatty acid oxidation, and urea synthesis.
Zone 2 and 3 hepatocytes receive less oxygen and are involved in reactions requiring little or no oxygen, such as glycolysis. Ito cells store fats and vitamin A and are involved in the production of connective tissue. Kupffer cells, specialized macrophages, are part of the reticuloendothelial system and are involved in the breakdown of haemoglobulin and the removal of haem for further metabolism in the hepatocytes. Kupffer cells also play a role in immunity. In liver disease, Ito cells are thought to be fundamental in the development of fibrosis and cirrhosis.
Overall, the liver’s dual blood supply and cell zones play important roles in the metabolic and immune functions of the liver.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 7
Incorrect
-
A 12-year-old girl complains of fainting on exertion and her teacher noticed a bluish tinge to her skin before one episode. She says she can prevent fainting by squatting down. During examination, a mid-systolic murmur is heard and her fingernails are clubbed. What is a possible cardiac reason for her clubbing?
Your Answer: Aortic valve sclerosis
Correct Answer: Tetralogy of Fallot
Explanation:The causes of clubbing are varied and complex. Clubbing is a medical condition that affects the fingers and toes, causing them to become enlarged and rounded. Although the exact cause of clubbing is not fully understood, it is commonly associated with respiratory, gastrointestinal, and cardiovascular disorders.
Among the cardiovascular causes of clubbing, two main conditions stand out: infective endocarditis and tetralogy of Fallot. Tetralogy of Fallot is a congenital heart disorder that is characterized by four malformations in the heart. These include ventricular septal defect, pulmonary stenosis, over-riding aorta, and right ventricular hypertrophy.
As a result of these malformations, oxygenated and deoxygenated blood mix in the patient’s body, leading to low blood oxygen saturation. This can cause a range of symptoms, including sudden cyanosis followed by syncope, which is commonly referred to as tet spells in children. In older children, squatting can help relieve these symptoms by reducing circulation to the legs and relieving syncope.
Understanding the causes of clubbing is important, particularly for medical examinations, as it can help identify underlying conditions that may require further investigation and treatment. By recognizing the signs and symptoms of clubbing, healthcare professionals can provide appropriate care and support to patients with this condition.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 8
Incorrect
-
What is the function of aldosterone in the kidney?
Your Answer: Retain sodium with no effect on potassium
Correct Answer: Retain sodium and excrete potassium
Explanation:The Role of Aldosterone in Sodium and Potassium Balance
Aldosterone is a hormone that plays a crucial role in regulating the balance of sodium and potassium in the body. It is the final stage of the renin-angiotensin-aldosterone axis, which is triggered by reduced flow to the kidneys. The main function of aldosterone is to retain sodium at the expense of potassium. This helps to increase fluid volume by retaining water, which is important for maintaining blood pressure and electrolyte balance.
To maintain electrochemical balance, potassium has to be excreted to retain sodium. This means that when aldosterone levels are high, the body will excrete more potassium in the urine. Conversely, when aldosterone levels are low, the body will retain more potassium and excrete more sodium. This delicate balance is essential for proper functioning of the body’s cells and organs.
In summary, aldosterone is a hormone that helps to regulate the balance of sodium and potassium in the body. It is triggered by reduced flow to the kidneys and works to retain sodium at the expense of potassium. This helps to increase fluid volume and maintain electrolyte balance.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 9
Incorrect
-
What is the primary cell-cell interaction necessary for the development of granulomas?
Your Answer: Th2 CD4+ T cells and CD8+ T cells
Correct Answer: Th1 CD4+ T cell and macrophages
Explanation:The Formation of Granulomas
Granulomas are formed when bacteria that cannot be killed are ingested by macrophages. These macrophages, which are filled with resistant bacteria such as Mycobacterium tuberculosis or Mycobacterium leprae, receive assistance from Th1 CD4+ T cells in the form of IFN-gamma. The macrophage then releases IL-12 to maintain its association with the T cell, and IFN-gamma helps activate the macrophage’s killing mechanisms. However, if this fails to clear the bacteria, the response moves to a more protective role. Fibroblasts seal off the area, forming a capsule that may become calcified. In TB infection, it is common for the macrophages within to undergo necrosis.
FDC and B cells interact to produce high-affinity antibody, while NK cells and macrophages do not directly interact with any particular response. Th2 CD4+ T cells provide stimulatory signals to B cells for the production of antibody. Th2 CD4+ T cells and CD8+ T cells do not directly interact for any specific response. Th1 CD4+ cells are part of the antiviral response, along with CD8+ T cells.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 10
Incorrect
-
A 25-year-old individual is undergoing testing for asthma. Prior to administering bronchodilators, their FEV1/FVC ratio is measured at 0.85, with the FVC at 90% of normal. What does this indicate?
Your Answer:
Correct Answer: Normal exam
Explanation:The FEV1/FVC ratio is a measure used in lung function tests to assess the health of the lungs. In normal individuals, this ratio ranges from 0.75 to 0.85. If the ratio falls below 0.70, it suggests an obstructive problem that reduces the volume of air that can be expelled in one second (FEV1). However, in restrictive lung disease, the FVC is also reduced, which can result in a normal or high FEV1/FVC ratio.
It is important to understand the FEV1/FVC ratio as it can help diagnose and monitor lung diseases such as chronic obstructive pulmonary disease (COPD) and asthma. A low ratio indicates that the airways are obstructed, while a normal or high ratio suggests a restrictive lung disease. Lung function tests are often used to assess the severity of these conditions and to monitor the effectiveness of treatment. By the FEV1/FVC ratio, healthcare professionals can provide appropriate care and management for patients with lung diseases.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 11
Incorrect
-
You are a third year medical student assisting a plastic surgeon in theatre. The plastic surgeon hands you a surgical retractor and asks you to retract the latissimus dorsi muscle. Once you have successfully done so, the surgeon inquires about the nerve responsible for innervating this muscle.
What is the nerve that innervates the latissimus dorsi muscle?Your Answer:
Correct Answer: Thoracodorsal nerve
Explanation:The Functions of Different Nerves in the Brachial Plexus
The brachial plexus is a network of nerves that originate from the spinal cord and provide innervation to the upper limb. Each nerve in the brachial plexus has a specific function and innervates a particular muscle or group of muscles. the functions of these nerves is essential for diagnosing and treating various neurological conditions.
One of the nerves in the brachial plexus is the thoracodorsal nerve, which originates from the posterior cord of the brachial plexus. Its primary function is to provide somatic innervation to the latissimus dorsi muscle, which is a large muscle in the posterior thorax involved in shoulder joint movement.
Another nerve in the brachial plexus is the upper subscapular nerve, which innervates the subscapularis muscle. The long thoracic nerve, on the other hand, innervates the serratus anterior muscle, and damage to this nerve can cause a winging effect on the scapula.
The axillary nerve is another nerve in the brachial plexus that originates from the posterior cord. Its primary motor supply is to the deltoid muscle, which is involved in shoulder abduction.
Lastly, the lateral pectoral nerve is a branch of the lateral cord and innervates the pectoralis major muscle. The pectoralis major muscle also receives innervation from the medial pectoral nerve, which is a branch of the median cord of the brachial plexus.
In summary, each nerve in the brachial plexus has a specific function and innervates a particular muscle or group of muscles. the functions of these nerves is crucial for diagnosing and treating various neurological conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 12
Incorrect
-
A 17-year-old female is seeking a termination and she is currently 16 weeks pregnant.
At what point in the pregnancy does the law impose more restrictions on obtaining a termination?Your Answer:
Correct Answer: 24 weeks
Explanation:Abortion Law in the UK
The Abortion Act 1967, which was amended by the Human Fertilisation and Embryology Act 1990, governs the law on abortion in the UK. According to this law, an abortion can be carried out until 24 weeks of pregnancy if two doctors agree that continuing with the pregnancy would pose a risk to the physical or psychological health of the mother or her existing children.
If the pregnancy has progressed beyond 24 weeks, an abortion can only be carried out if two doctors agree that the woman’s health is gravely threatened by the pregnancy or if the infant is likely to be born with severe physical or mental abnormalities. It is important to note that there is no time limit on procuring an abortion if these criteria are met.
In summary, the law on abortion in the UK allows for abortions to be carried out up to 24 weeks if there is a risk to the mother’s health or the health of her existing children. After 24 weeks, an abortion can only be carried out if the woman’s health is at risk or if the infant is likely to be born with severe physical or mental abnormalities.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 13
Incorrect
-
What is the primary function of vitamin B12 within the human body?
Your Answer:
Correct Answer: Synthesis of DNA
Explanation:The Importance of Vitamin B12 in the Body
Vitamin B12, also known as cobalamin, is a compound that contains cobalt and is obtained from the diet. The body has limited ability to store B12, which is why it is important to consume it regularly. Vitamin B12 works closely with folate in the body and has several important roles. It is essential for the synthesis of DNA, which allows for cell replication and tissue growth. B12 and folate are both necessary for this process. Additionally, B12 is involved in the synthesis of the myelin sheath that covers nerves and speeds up nervous transmission. It also plays a role in the metabolism of amino acids to remove harmful homocysteine, the metabolism of fats, and has an antioxidant function in association with glutathione. B12 is required for bone marrow turnover to produce healthy blood cells and platelets, which means it has some role in immunity and coagulation.
However, a deficiency in vitamin B12 can lead to several signs and symptoms. These include megaloblastic anaemia, fatigue, breathlessness, abnormal bleeding due to reduced platelet production, impaired immune response due to reduced leucocyte production, poor function of tissues such as the skin and gut which require a high cell turnover to maintain function, and infertility. It is important to ensure that you are consuming enough vitamin B12 in your diet to avoid these deficiencies and maintain optimal health.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 14
Incorrect
-
A 65-year-old African American woman has been diagnosed with iodine deficiency.
What are the primary clinical manifestations of iodine deficiency?Your Answer:
Correct Answer: Impaired memory and concentration
Explanation:The Importance of Iodine in the Diet
Iodine is a crucial mineral that is necessary for the proper functioning of the body. Unfortunately, it is also one of the most common nutrient deficiencies worldwide. This deficiency can lead to a variety of iodine-related disorders, which are considered one of the most common preventable causes of mental incapacity.
One of the primary functions of iodine is the production of thyroid hormones, which are essential for all body cells. These hormones are particularly important for the development of the fetal brain, and a lack of thyroid hormones at this stage can lead to devastating and irreversible effects. Iodine deficiency commonly causes goitre, and the clinical effects are comparable to profound hypothyroidism.
The effects of iodine deficiency can be severe and long-lasting. In utero, it can lead to impaired cognitive function, deafness, and motor defects, a condition known as cretinism. In children and adolescents, it can cause cognitive impairment and poor growth. In adults, it can lead to confusion, poor concentration, and goitre.
Iodine is abundant in the sea, but inland areas are more at risk of iodine deficiency. If the soil is iodine deficient, all plants that grow on it, and livestock that feed upon them, will also be iodine deficient. It is essential to ensure that the diet contains sufficient iodine to prevent these devastating effects.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 15
Incorrect
-
A study investigated the effectiveness of a new statin therapy in preventing ischaemic heart disease in a diabetic population aged 60 and above. Over a period of five years, 1000 patients were randomly assigned to receive the new therapy and 1000 were given a placebo. The results showed that there were 150 myocardial infarcts (MI) in the placebo group and 100 in the group treated with the new statin. What is the number needed to treat to prevent one MI during the study period?
Your Answer:
Correct Answer: 20
Explanation:The Glycaemic Index Method is a commonly used tool by dieticians and patients to determine the impact of different foods on blood glucose levels. This method involves calculating the area under a curve that shows the rise in blood glucose after consuming a test portion of food containing 50 grams of carbohydrate. The rationale behind using the GI index is that foods that cause a rapid and significant increase in blood glucose levels can lead to an increase in insulin production. This can put individuals at a higher risk of hyperinsulinaemia and weight gain.
High GI foods are typically those that contain refined sugars and processed cereals, such as white bread and white rice. These foods can cause a rapid increase in blood glucose levels, leading to a surge in insulin production. On the other hand, low GI foods, such as vegetables, legumes, and beans, are less likely to cause a significant increase in blood glucose levels.
Overall, the Glycaemic Index Method can be helpful in making informed food choices and managing blood glucose levels. By choosing low GI foods, individuals can reduce their risk of hyperinsulinaemia and weight gain, while still enjoying a healthy and balanced diet.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 16
Incorrect
-
A 28-year-old man with Crohn's disease is prescribed azathioprine. His doctor orders a blood test to evaluate TPMT activity. What is the doctor's primary concern?
Your Answer:
Correct Answer: Low enzyme activity leading to accumulation of 6-mercaptopurine
Explanation:Enzyme Deficiencies and Drug Toxicity
Enzyme deficiencies can lead to drug toxicity and adverse effects in patients. One example is TPMT deficiency, which can cause accumulation of 6-mercaptopurine, the active metabolite of azathioprine. This can result in bone marrow suppression and other serious complications. Approximately 10% of individuals have low TPMT activity, while 0.3% have very low activity, putting them at high risk for azathioprine-related toxicity.
Another example of enzyme deficiency is phenylalanine hydroxylase deficiency, which leads to the accumulation of phenylalanine. This condition, known as phenylketonuria, can be detected through neonatal screening using a blood spot taken from the heel several days after birth.
In clinical practice, many gastroenterologists will start patients on azathioprine and send for TPMT enzyme activity testing. Patients are advised to stop the drug if they experience symptoms, but to continue taking it while waiting for the results if they do not. Early detection of enzyme deficiencies can help prevent drug toxicity and improve patient outcomes.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 17
Incorrect
-
Can you provide a definition for moderate intensity exercise?
Your Answer:
Correct Answer: Exercising at 60% of maximal individual capacity
Explanation:Exercise Intensity Levels
Exercise intensity can be determined by comparing it to your maximum capacity or your typical resting state of activity. It is important to note that what may be considered moderate or intense for one person may differ for another based on their fitness and strength levels. Mild intensity exercise involves working at less than 3 times the activity at rest and 20-50% of your maximum capacity. Moderate intensity exercise involves working at 3-5.9 times the activity at rest or 50-60% of your maximum capacity. Examples of moderate intensity exercises include cycling on flat ground, walking fast, hiking, volleyball, and basketball. Vigorous intensity exercise involves working at 6-7 times the activity at rest or 70-80% of your maximum capacity. Examples of vigorous intensity exercises include running, swimming fast, cycling fast or uphill, hockey, martial arts, and aerobics. exercise intensity levels can help you tailor your workouts to your individual needs and goals.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 18
Incorrect
-
A 78-year-old woman is admitted after a fall and is diagnosed with a fractured neck of femur. What tests should be ordered to investigate the potential presence of osteoporosis in this patient?
Your Answer:
Correct Answer: DXA scan
Explanation:DXA Scanning for Osteoporosis Diagnosis
DXA scanning is a diagnostic tool commonly used in hospitals to diagnose and monitor osteoporosis. It involves directing two x-rays towards the patient from perpendicular angles to measure density within different parts of the body. This allows for the determination of body composition and bone mineral density.
The results of a DXA scan are expressed as T and Z scores. The T score represents the number of standard deviations above or below the mean in a population of healthy young adults, while the Z score represents the number of standard deviations above or below the mean in a population of adults matched by age and sex to the patient.
In younger patients, the T and Z scores are usually similar and close to the mean. However, for older age groups, where more than 50% of people may have osteoporosis, the T score is particularly important for diagnosis. This is because a score based on expected values for an age and sex matched population may under-diagnose osteoporosis in elderly women.
Overall, DXA scanning is a valuable tool in the diagnosis and monitoring of osteoporosis, especially in older age groups where the risk of osteoporosis is higher.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 19
Incorrect
-
You are asked to see a 4-year-old girl with severe chronic malnutrition.
You are concerned about kwashiorkor.
What clinical feature is typical in cases of kwashiorkor?Your Answer:
Correct Answer: Abdominal swelling
Explanation:Protein-Energy Malnutrition
Protein-energy malnutrition (PEM) or protein energy undernutrition (PEU) occurs when the body’s intake of energy and protein is insufficient to meet its requirements. This can happen due to inadequate intake or an increase in requirements without a corresponding increase in intake. The result is a range of health problems, including undernutrition, which is sadly common in many parts of the world.
Undernutrition can take different forms, including kwashiorkor and marasmus. Kwashiorkor is characterized by inadequate protein intake, leading to oedema, abdominal swelling, and fat accumulation in the liver. Marasmus, on the other hand, involves inadequate consumption of both energy and protein, resulting in emaciation without oedema or abdominal swelling. The term ‘protein-energy undernutrition’ encompasses both of these scenarios.
It’s worth noting that malnutrition can refer to both overnutrition (obesity) and undernutrition, both of which have negative effects on the body’s health. However, in common usage, malnutrition typically refers to undernutrition. Additionally, malnutrition can also result from isolated deficiencies in vitamins or minerals. Overall, protein-energy malnutrition is crucial for promoting and preserving good health.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 20
Incorrect
-
What is the enzyme necessary for the degradation of glycogen (glycogenolysis)?
Your Answer:
Correct Answer: Glycogen phosphorylase
Explanation:Enzymes Involved in Glycogen Degradation and Production
Glycogen degradation is a process that requires several enzymes. One of these enzymes is glycogen phosphorylase, which plays a role in releasing glucose molecules from the polysaccharide chain by removing α1-4 glycosidic linkages. Another enzyme required for glycogen degradation is the debranching enzyme, which removes the α1-6 glycosidic linkages that occur only at the branch points. This enzyme accomplishes this by removing a short row of glucose molecules near a branch point and attaching it to the end of a glucose chain. Once this is done, glucose phosphorylase can remove the glucose units one by one.
It is important to note that the debranching enzyme and glycogen phosphorylase are both used in the breakdown of glycogen, while the branching enzyme and glycogen synthase are involved in glycogen production. Additionally, phosphofructokinase is an enzyme in the glycolysis pathway, while pyruvate carboxylase is required for gluconeogenesis. the roles of these enzymes is crucial in the complex processes involved in glycogen metabolism.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 21
Incorrect
-
A 67-year-old man is scheduled for open surgery to treat a popliteal artery aneurysm. What is the structure that forms the supero-lateral boundary of the popliteal fossa?
Your Answer:
Correct Answer: Tendon of biceps femoris
Explanation:The Polpiteal Fossa and Sartorius Muscle
The area behind the knee is known as the polpiteal fossa. It is bordered by the tenodon of biceps femoris on the superolateral side, and the tendons of semimembranous and semitendinosus on the superomedial side. The medial head of gastrocnemius forms the inferomedial border, while the lateral head of gastrocnemius forms the inferolateral border.
The sartorius muscle is attached to the medial surface of the tibia. This muscle is located in the thigh and runs from the hip to the knee. It is responsible for flexing and rotating the hip joint, as well as flexing the knee joint. The sartorius muscle is one of the longest muscles in the body and is important for maintaining proper posture and movement. the anatomy of the polpiteal fossa and the sartorius muscle can be helpful in diagnosing and treating injuries or conditions in this area.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 22
Incorrect
-
In which part of the gastrointestinal system is water mainly taken up?
Your Answer:
Correct Answer: Small intestine
Explanation:The Function of the Large Intestine
Although many people believe that the primary function of the large intestine is to absorb water, this is not entirely accurate. In fact, the majority of water and fluids that are ingested or secreted are actually reabsorbed in the small intestine, which is located before the large intestine in the digestive tract. While the large intestine does play a role in absorbing some water and electrolytes, its primary function is to store and eliminate waste products from the body. This is achieved through the formation of feces, which are then eliminated through the rectum and anus. Overall, while the large intestine is an important part of the digestive system, its function is more complex than simply absorbing water.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 23
Incorrect
-
What is a correct statement regarding meta-analysis?
Your Answer:
Correct Answer: The weight of each study should depend on the sample size
Explanation:Factors Considered in Meta-Analysis
Meta-analysis is a statistical technique used to combine the results of multiple studies on a particular topic. When conducting a meta-analysis, the sample size of each study is taken into account for weighting purposes. This means that studies with larger sample sizes will have a greater impact on the final result than studies with smaller sample sizes.
It is possible to perform a meta-analysis on aggregate data, as long as there is enough information available. However, it is not necessary to exclude studies with missing data. The effect size of each study should not affect its weight in the meta-analysis, but it will impact the overall result.
In the past, trial quality was often incorporated into meta-analysis weightings. However, this practice has become less common as it can be subjective and arbitrary. Overall, the sample size of each study is the most important factor to consider when conducting a meta-analysis.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 24
Incorrect
-
A 50-year-old female patient presents with a lump in her groin that appears and disappears. Upon consultation, it is determined that the hernia is protruding between the pectineal (Cooper's) ligament, lacunar ligament, and femoral vein. What type of hernia is being described by the consultant?
Your Answer:
Correct Answer: Femoral
Explanation:Types of Hernias and their Borders
Hernias are a medical condition where an organ or tissue protrudes through a weak spot in the surrounding muscle or tissue. One type of hernia is the Femoral hernia, which protrudes through the femoral canal. This type of hernia is more common in women due to their pelvic structure and childbirth. The femoral ring is narrow, making it more likely for these hernias to become strangulated.
Another type of hernia is the inguinal hernia, which protrudes through the inguinal canal. Petit’s hernia protrudes through the inferior lumbar triangle, Grynfeltt’s through the superior lumbar triangle, and obturator hernias through the obturator foramen. Each type of hernia has its own unique borders and characteristics.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 25
Incorrect
-
Which compound is classified as a ketone?
Your Answer:
Correct Answer: Acetoacetate
Explanation:Ketone Bodies and their Production
Ketone bodies, namely acetoacetate and beta-hydroxybutyrate, are synthesized when the levels of fatty acids in the bloodstream are elevated. This can occur during fasting, starvation, or when following a high-fat, low-carbohydrate diet. When these conditions arise, triglycerides from adipose tissue are broken down into fatty acids and re-enter the bloodstream. The fatty acids then enter liver cells and undergo beta-oxidation in the mitochondria to form acetyl CoA. As acetyl CoA accumulates, two molecules can combine to form acetoacetyl CoA, which is then converted to HMGCoA by the enzyme HMG CoA synthetase. HMGCoA lyase then changes the HMG CoA into acetoacetate, which is a ketone body.
Ketones are essential as they provide fuel for body cells during times of fasting when glucose may be scarce. Brain cells are particularly able to use ketones as a fuel source.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 26
Incorrect
-
A mother brings her 6-year-old daughter to the doctor's office. She has been researching online and is worried that her child may have a deficiency in vitamin B2 (riboflavin). What signs or symptoms would indicate a diagnosis of riboflavin deficiency?
Your Answer:
Correct Answer: Angular stomatitis and cheilosis
Explanation:Isolated Riboflavin Deficiency
Isolated riboflavin deficiency is a rare occurrence, as it is more common to have a deficiency of multiple B vitamins. Riboflavin plays a crucial role in the normal function of vitamins B3 (niacin) and B6 (pyridoxine), which can cause overlapping clinical features with deficiencies of B3 and B6.
When an individual experiences isolated riboflavin deficiency, they may suffer from various symptoms. These symptoms include itchy, greasy, and inflamed skin, angular stomatitis (cracking at the edge of the mouth), cheilosis (cracked lips), excessive light sensitivity with red and painful eyes, fatigue, and depression.
It is important to note that riboflavin deficiency can be prevented by consuming a balanced diet that includes foods rich in B vitamins, such as whole grains, dairy products, and leafy green vegetables. If an individual suspects they may have a riboflavin deficiency, they should consult with a healthcare professional for proper diagnosis and treatment.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 27
Incorrect
-
What respiratory disorder is identified by the existence of Curschmann's spirals and Charcot-Leyden crystals?
Your Answer:
Correct Answer: Asthma
Explanation:Respiratory Pathologies and Their Pathological Features
Asthma is a respiratory pathology that is characterized by an excessive inflammatory response of the small bronchial airways to harmless stimuli. This response involves the infiltration of eosinophils, which can aggregate and form Charcot-Leyden crystals. The accumulation of mucus in the airways can lead to the formation of Curschmann spirals. Bronchiectasis is another respiratory pathology that involves the progressive dilation of the small airways. COPD shares similar features with chronic asthma, but with more marked smooth muscle hyperplasia. Cystic fibrosis has pathological features similar to bronchiectasis, but it predominantly affects the upper lobes. Pulmonary fibrosis is a pathological term for the deposition of excess connective and fibrous tissue in the pulmonary interstitial space. Although there are multiple causes, the underlying pathology is the same.
In summary, respiratory pathologies can have different pathological features, but they all involve some form of inflammation or structural damage to the airways. Asthma, bronchiectasis, COPD, cystic fibrosis, and pulmonary fibrosis are some of the most common respiratory pathologies. their underlying pathology is crucial for developing effective treatments and improving patient outcomes.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 28
Incorrect
-
What is the likely arrangement of openings in the cellular membrane?
Your Answer:
Correct Answer: A protein molecule in the membrane with a channel through it
Explanation:Composition and Structure of the Cell Membrane
The cell membrane is made up of a lipid matrix that primarily consists of phospholipids, cholesterol, and triglycerides. This lipid matrix is interspersed with large protein molecules that have channels running through them, which act as tiny pores. These pores allow for the selective transport of molecules in and out of the cell. The cell membrane is a crucial component of all living cells, as it serves as a barrier between the cell and its environment, regulating the flow of substances in and out of the cell. Its composition and structure are essential for maintaining the integrity and function of the cell.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 29
Incorrect
-
During a surgical procedure, the anaesthetist administers an intravenous antibiotic to a patient in their 60s. Later on, the anaesthetist observes a sudden drop in the patient's blood pressure. The patient's pulse rate increases to over 120, and their extremities appear pale. Capillary refill takes more than 2 seconds, indicating slow blood flow. Despite minimal blood loss during the operation, the anaesthetist suspects the patient is experiencing circulatory shock. What type of shock is the patient likely to be suffering from?
Your Answer:
Correct Answer: Anaphylactic
Explanation:Shock and its Causes
Shock is a condition where the circulation fails to adequately perfuse the body’s tissues. There are various types of shock, each with specific causes. Hypovolaemic shock may occur if there is an unidentified internal bleed, while cardiogenic shock may result from an increased risk of myocardial infarction during surgery. Septic shock is unlikely to occur during surgery as there is not enough time for an infection to establish itself in the circulation. The most probable cause of shock during surgery is anaphylactic shock, which may result from the administration of an anaesthetic agent. The components that are most likely to cause intra-operative anaesthesia are muscle relaxants, latex gloves, and intravenous antibiotics. the different types of shock and their causes is crucial in identifying and treating the condition promptly. Proper management of shock can help prevent further complications and improve patient outcomes.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 30
Incorrect
-
Which organ is the least probable to exhibit cells or glands that secrete mucus?
Your Answer:
Correct Answer: Vagina
Explanation:Epithelial Tissue in Different Parts of the Body
The lining of the vagina and oesophagus is made up of stratified squamous non-keratinising epithelium. However, mucus glands are present at the lower end of the oesophagus. The intestines, on the other hand, are lined by a simple columnar epithelium throughout the small and large intestine. Lastly, the cervix is lined by simple columnar epithelium.
In summary, the type of epithelial tissue that lines different parts of the body varies. The vagina and oesophagus have a stratified squamous non-keratinising epithelium, while the intestines have a simple columnar epithelium. The cervix is also lined by simple columnar epithelium. It is important to note that mucus glands are present at the lower end of the oesophagus. the different types of epithelial tissue in the body is crucial in identifying and treating various medical conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)