-
Question 1
Correct
-
A 50-year-old man has a long femoral line inserted to measure CVP. The catheter travels from the common iliac vein to the inferior vena cava. At what vertebral level does this occur?
Your Answer: L5
Explanation:At the level of L5, the common iliac veins join together to form the inferior vena cava (IVC).
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 56-year-old male comes to your clinic complaining of occasional chest pain that usually occurs after meals and typically subsides within a few hours. He has a medical history of bipolar disorder, osteoarthritis, gout, and hyperparathyroidism. Currently, he is undergoing a prolonged course of antibiotics for prostatitis.
During his visit, an ECG reveals a QT interval greater than 520 ms.
What is the most likely cause of the observed ECG changes?
- Lithium overdose
- Paracetamol use
- Hypercalcemia
- Erythromycin use
- Amoxicillin use
Explanation: The most probable cause of the prolonged QT interval is erythromycin use, which is commonly associated with this ECG finding. Given the patient's medical history, it is likely that he is taking erythromycin for his prostatitis. Amoxicillin is not known to cause QT prolongation. Lithium toxicity typically presents with symptoms such as vomiting, diarrhea, tremors, and agitation. Hypercalcemia is more commonly associated with a short QT interval, making it an unlikely cause. Paracetamol is not known to cause QT prolongation.Your Answer: Amoxicillin
Correct Answer: Erythromycin use
Explanation:The prolonged QT interval can be caused by erythromycin.
It is highly probable that the patient is taking erythromycin to treat his prostatitis, which is the reason for the prolonged QT interval.
Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.
There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.
LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.
Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?
Your Answer: Cyanosis
Correct Answer: Splinter haemorrhages
Explanation:Symptoms and Diagnosis of Infective Endocarditis
This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
As a medical student on placement in the pathology lab, you are observing the pathologist examine a section of a blood vessel. Specifically, what can be found within the tunica media of a blood vessel?
Your Answer: Smooth muscle
Explanation:Artery Histology: Layers of Blood Vessel Walls
The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 79-year-old man has just noticed that his heart is beating irregularly. Upon examination, his pulse is found to be irregularly irregular with a rate of 56 bpm. What ECG findings would you anticipate?
Your Answer: Regular P waves but not associated with QRS complexes
Correct Answer: No P wave preceding each QRS complex
Explanation:Atrial Fibrillation and its Causes
Atrial fibrillation (AF) is a condition characterized by irregular heartbeats due to the constant activity of the atria. This can lead to the absence of distinct P waves, making it difficult to diagnose. AF can be caused by various factors such as hyperthyroidism, alcohol excess, mitral stenosis, and fibrous degeneration. The primary risks associated with AF are strokes and cardiac failure. Blood clots can form in the atria due to the lack of atrial movement, which can then be distributed into the systemic circulation, leading to strokes. High rates of AF can also cause syncopal episodes and cardiac failure.
The treatment of AF can be divided into controlling the rate or rhythm. If the rhythm cannot be controlled reliably, long-term anticoagulation with warfarin may be necessary to reduce the risk of stroke, depending on other risk factors. Bifid P waves are associated with hypertrophy of the left atrium, while regular P waves with no relation to QRS complexes are seen in complete heart block. Small P waves can be seen in hypokalaemia.
In cases of AF with shock, immediate medical attention is necessary, and emergency drug or electronic cardioversion may be needed. the causes and risks associated with AF is crucial in managing the condition and preventing complications.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
A 68-year-old man is diagnosed with a transient ischaemic attack and started on modified-release dipyridamole as part of combination antiplatelet treatment. He already takes a statin. After a week of treatment, he visits his GP with concerns of the drug's mechanism of action.
What is the mechanism of action of modified-release dipyridamole?Your Answer: Phosphodiesterase inhibitor
Explanation:Dipyridamole is a medication that inhibits phosphodiesterase in a non-specific manner and reduces the uptake of adenosine by cells.
As an antiplatelet agent, dipyridamole works by inhibiting phosphodiesterase. It can be used in combination with aspirin to prevent secondary transient ischemic attacks if clopidogrel is not well-tolerated.
Tirofiban is a drug that inhibits the platelet glycoprotein IIb/IIIa receptor, which binds to collagen.
The platelet receptor glycoprotein VI interacts with subendothelial collagen.
Glycoprotein 1b is the platelet receptor for von Willebrand Factor. Although there is no specific drug that targets this interaction, autoantibodies to glycoprotein Ib are the basis of immune thrombocytopenic purpura (ITP).
Clopidogrel targets the platelet receptor P2Y12, which interacts with adenosine diphosphate.
Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
An 80-year-old patient is initiated on warfarin after being diagnosed with atrial fibrillation. The patient has a medical history of a metallic heart valve.
The patient is informed that INR levels will be used to monitor the effects of warfarin. INR is a ratio of the value during warfarin treatment to the normal value, which is used to measure a specific aspect of clotting.
What is the value that is utilized during this monitoring process?Your Answer: Prothrombin time
Explanation:Warfarin leads to an extended prothrombin time, which is the correct answer. The prothrombin time assesses the extrinsic and common pathways of the clotting cascade, and warfarin affects factor VII from the extrinsic pathway, as well as factor II (prothrombin) and factor X from the common pathway. This results in a prolonged prothrombin time, and the INR is a ratio of the prothrombin time during warfarin treatment to the normal prothrombin time.
The activated partial thromboplastin time is an incorrect answer. Although high levels of warfarin may prolong the activated partial thromboplastin time, the INR is solely based on the prothrombin time.
Bleeding time is also an incorrect answer. While warfarin can cause a prolonged bleeding time, the INR measures the prothrombin time.
Fibrinogen levels are another incorrect answer. Fibrinogen is necessary for blood clotting, and warfarin can decrease fibrinogen levels after prolonged use. However, fibrinogen levels are not used in the INR measurement.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.
He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.
On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.
An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².
His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.
What is the most likely diagnosis?Your Answer: Hypertrophic obstructive cardiomyopathy
Explanation:The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.
Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.
Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.
Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 57-year-old man is diagnosed with angina and prescribed medications for symptom control and secondary prevention. The doctor advises him to make dietary changes to address excess fat in the blood that can lead to angina. During the explanation, the doctor asks which apolipoprotein macrophages recognize to uptake lipids under normal circumstances?
Your Answer: ApoA-II
Correct Answer: ApoB100
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Correct
-
A 75-year-old man presents to the emergency department following a syncopal episode. He has no significant medical history and denies any loss of bladder or bowel control or tongue biting.
During examination, an ejection systolic murmur is detected at the right sternal edge in the second intercostal space. The murmur is heard radiating to the carotids.
What intervention can be done to decrease the intensity of the murmur heard during auscultation?Your Answer: Valsalva manoeuvre
Explanation:The intensity of the ejection systolic murmur heard in aortic stenosis can be decreased by performing the Valsalva manoeuvre. On the other hand, the intensity of the murmur can be increased by administering amyl nitrite, raising legs, expiration, and squatting. These actions increase the volume of blood flow through the valve.
Aortic stenosis is a condition characterized by the narrowing of the aortic valve, which can lead to various symptoms. These symptoms include chest pain, dyspnea, syncope or presyncope, and a distinct ejection systolic murmur that radiates to the carotids. Severe aortic stenosis can cause a narrow pulse pressure, slow rising pulse, delayed ESM, soft/absent S2, S4, thrill, duration of murmur, and left ventricular hypertrophy or failure. The condition can be caused by degenerative calcification, bicuspid aortic valve, William’s syndrome, post-rheumatic disease, or subvalvular HOCM.
Management of aortic stenosis depends on the severity of the condition and the presence of symptoms. Asymptomatic patients are usually observed, while symptomatic patients require valve replacement. Surgical AVR is the preferred treatment for young, low/medium operative risk patients, while TAVR is used for those with a high operative risk. Balloon valvuloplasty may be used in children without aortic valve calcification and in adults with critical aortic stenosis who are not fit for valve replacement. If the valvular gradient is greater than 40 mmHg and there are features such as left ventricular systolic dysfunction, surgery may be considered even if the patient is asymptomatic.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Correct
-
A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives at the hospital complaining of severe chest pain that spreads to his jaw. He has vomited twice and feels lightheaded.
An electrocardiogram (ECG) reveals widespread ST elevation with reciprocal ST-segment depression. A troponin T serum level is obtained and confirms an elevated reading.
What is the target of this cardiac biomarker?Your Answer: Tropomyosin
Explanation:The troponin-tropomyosin complex is formed when troponin T binds to tropomyosin. In cases of ST-elevation myocardial infarction (STEMI), elevated levels of troponin T in the bloodstream can confirm the presence of cardiac tissue damage. This biomarker plays a role in regulating muscle contraction by binding to tropomyosin. However, troponin I, not troponin T, binds to actin to hold the troponin-tropomyosin complex in place. While troponin T is released in cases of cardiac cell damage, it is considered less sensitive and specific than troponin I in diagnosing myocardial infarction.
Understanding Troponin: The Proteins Involved in Muscle Contraction
Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.
Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.
Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 50-year-old woman comes to you complaining of increased urinary frequency and lower abdominal pain. She has a medical history of hypertension that is managed with a high dose of ramipril.
Upon conducting a urine dipstick test, the results indicate a urinary tract infection. You prescribe a 5-day course of trimethoprim.
What blood test will require monitoring in this patient?Your Answer: Full blood count
Correct Answer: Urea and electrolytes
Explanation:Patients taking ACE-inhibitors should be cautious when using trimethoprim as it can lead to life-threatening hyperkalaemia, which may result in sudden death. Therefore, it is essential to monitor the potassium levels regularly by conducting urea and electrolyte tests.
When using trimethoprim with methotrexate, it is crucial to monitor the complete blood count regularly due to the increased risk of myelosuppression. However, if the patient is only taking trimethoprim, there is no need to monitor troponins and creatine kinase.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 65-year-old man with a history of angina, hypertension, and hypercholesterolaemia has been discharged from the hospital after experiencing a non-ST-elevation myocardial infarction (NSTEMI). He was already taking aspirin, atorvastatin, bisoprolol, and ramipril before his NSTEMI. As part of his post-discharge instructions, he has been advised to take ticagrelor for the next 12 months. What is the mechanism of action of this newly prescribed medication?
Your Answer:
Correct Answer: P2Y12 receptor antagonist
Explanation:Ticagrelor functions similarly to clopidogrel by hindering the binding of ADP to platelet receptors. It is prescribed to prevent atherothrombotic events in individuals with acute coronary syndrome (ACS) and is typically administered in conjunction with aspirin. Additionally, it is a specific and reversible inhibitor.
ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 55-year-old male with hypertension visits his GP complaining of a persistent dry cough. He reports that this started two weeks ago after he was prescribed ramipril. What alternative medication class might the GP consider switching him to?
Your Answer:
Correct Answer: Angiotensin receptor blockers
Explanation:A dry cough is a common and bothersome side effect of ACE inhibitors like ramipril. However, angiotensin receptor blockers work by blocking angiotensin II receptors and have similar adverse effects to ACE inhibitors, but without the cough. According to guidelines, ACE inhibitors are the first line of treatment for white patients under 55 years old. If they are ineffective, angiotensin receptor blockers should be used instead. Beta-blockers, diuretics, calcium channel blockers, and alpha blockers are reserved for later use.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
An 80-year-old man arrives at the emergency department complaining of severe chest pain that spreads to his left arm. He also experiences nausea and excessive sweating. After conducting an ECG, you observe ST-segment elevation in leads II, III, and aVF, leading to a diagnosis of an inferior ST-elevation MI. Can you identify the primary coronary vessel that supplies blood to the base of the heart?
Your Answer:
Correct Answer: Right coronary artery
Explanation:The heart has several arteries that supply blood to different areas. The right coronary artery supplies the right side of the heart and can cause a heart attack in the lower part of the heart, which can lead to abnormal heart rhythms. The left anterior descending artery and left circumflex artery supply the left side of the heart and can cause heart attacks in different areas, which can be detected by changes in specific leads on an ECG. The left marginal artery branches off the left circumflex artery and supplies blood to the outer edge of the heart.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 67-year-old woman arrives at the emergency department complaining of palpitations. Upon examination, her ECG reveals tall tented T waves. What causes the distinctive shape of the T wave, which corresponds to phase 3 of the cardiac action potential?
Your Answer:
Correct Answer: Repolarisation due to efflux of potassium
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
An 82-year-old woman visits her doctor with a medical history of myocardial infarction that has resulted in permanent damage to the conduction system of her heart. The damage has affected the part of the conduction system with the highest velocities, causing desynchronisation of the ventricles.
What is the part of the heart that conducts the fastest?Your Answer:
Correct Answer: Purkinje fibres
Explanation:The Purkinje fibres have the highest conduction velocities in the heart’s electrical conduction system. The process starts with the SA node generating spontaneous action potentials, which are then conducted across both atria through cell to cell conduction at a speed of approximately 1 m/s. The only pathway for the action potential to enter the ventricles is through the AV node, which has a slow conduction speed of 0.05ms to allow for complete atrial contraction and ventricular filling. The action potentials are then conducted through the Bundle of His, which splits into the left and right bundle branches, with a conduction speed of approximately 2m/s. Finally, the action potential reaches the Purkinje fibres, which are specialized conducting cells that allow for a faster conduction speed of 2-4m/s. This fast conduction speed is crucial for a synchronized and efficient contraction of the ventricle, generating pressure during systole.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 20-year-old man experienced recurrent episodes of breathlessness and palpitations lasting approximately 20 minutes and resolving gradually. No unusual physical signs were observed. What is the probable cause of these symptoms?
Your Answer:
Correct Answer: Panic attacks
Explanation:Likely Diagnosis for Sudden Onset of Symptoms
When considering the sudden onset of symptoms, drug abuse is an unlikely cause as the symptoms are short-lived and not accompanied by other common drug abuse symptoms. Paroxysmal SVT would present with sudden starts and stops, rather than a gradual onset. Personality disorder and thyrotoxicosis would both lead to longer-lasting symptoms and other associated symptoms. Therefore, the most likely diagnosis for sudden onset symptoms would be panic disorder. It is important to consider all possible causes and seek medical attention to properly diagnose and treat any underlying conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 67-year-old male arrives at the emergency department complaining of crushing chest pain, sweating, and palpitations. Upon examination, an ECG reveals ST elevation in leads V1-V4, indicating a myocardial infarction. Which coronary artery is most likely blocked?
Your Answer:
Correct Answer: Anterior descending artery
Explanation:Anteroseptal myocardial infarction is typically caused by blockage of the left anterior descending artery. This is supported by the patient’s symptoms and ST segment elevation in leads V1-V4, which correspond to the territory supplied by this artery. Other potential occlusions, such as the left circumflex artery, left marginal artery, posterior descending artery, or right coronary artery, would cause different changes in specific leads.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 65-year-old man presents to the vascular clinic with bilateral buttock claudication that spreads down the thigh and erectile dysfunction. The vascular surgeon is unable to palpate his left femoral pulse and the right is weakly palpable. The patient is diagnosed with Leriche syndrome, which is caused by atherosclerotic occlusion of blood flow at the abdominal aortic bifurcation. He has been consented for aorto-iliac bypass surgery and is currently awaiting the procedure.
What is the vertebral level of the affected artery that requires bypassing?Your Answer:
Correct Answer: L4
Explanation:The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 55-year-old male patient complains of sudden chest pain and is being evaluated for acute coronary syndrome. Upon fasting, his serum cholesterol level was found to be 7.1 mmol/L (<5.2). What is the best initial course of action for managing this patient?
Your Answer:
Correct Answer: Statin therapy
Explanation:Statin Therapy for Hypercholesterolemia in Acute Coronary Syndrome
Hypercholesterolemia is a common condition in patients with acute coronary syndrome. The initial treatment approach for such patients is statin therapy, which includes drugs like simvastatin, atorvastatin, and rosuvastatin. Statins have been proven to reduce mortality in both primary and secondary prevention studies. The target cholesterol concentration for patients with hypercholesterolemia and acute coronary syndrome is less than 5 mmol/L.
According to NICE guidance, statins should be used more widely in conjunction with a QRISK2 score to stratify risk. This will help prevent cardiovascular disease and improve patient outcomes. The guidance recommends that statins be used in patients with a 10% or greater risk of developing cardiovascular disease within the next 10 years. By using statins in conjunction with risk stratification, healthcare professionals can provide more targeted and effective treatment for patients with hypercholesterolemia and acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
Which of the following clotting factors is unaffected by warfarin?
Your Answer:
Correct Answer: Factor XII
Explanation:Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 68-year-old man comes to his GP for a medication review. His medical record shows that he has vertebral artery stenosis, which greatly elevates his chances of experiencing a stroke in the posterior circulation.
Can you identify the location where the impacted arteries converge to create the basilar artery?Your Answer:
Correct Answer: Base of the pons
Explanation:The basilar artery is formed by the union of the vertebral arteries at the base of the pons, which is the most appropriate answer. If a patient has stenosis in their vertebral artery, it can increase the risk of a posterior circulation stroke by reducing perfusion to the brain or causing an arterial embolus.
The anterior aspect of the spinal cord is not the most appropriate answer as it is supplied by the anterior spinal arteries, which branch off the vertebral arteries and descend past the anterior aspect of the brainstem to supply the spinal cord’s anterior aspects.
The region anterior to the cavernous sinus is not the most appropriate answer. The internal carotid arteries pass anterior to the cavernous sinus before branching off to anastomose with the circle of Willis, mainly contributing to the anterior circulation of the brain.
The pontomesencephalic junction is not the most appropriate answer. The superior cerebellar arteries branch off from the distal basilar artery at the pontomesencephalic junction.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
What is the correct description of the cardiac cycle in the middle of diastole?
Your Answer:
Correct Answer: Aortic pressure is falling
Explanation:the Cardiac Cycle
The cardiac cycle is a complex process that involves the contraction and relaxation of the heart muscles to pump blood throughout the body. One important aspect of this cycle is the changes in aortic pressure during diastole and systole. During diastole, the aortic pressure falls as the heart relaxes and fills with blood. This is represented by the second heart sound, which signals the closing of the aortic and pulmonary valves.
At the end of diastole and the beginning of systole, the mitral valve closes, marking the start of the contraction phase. This allows the heart to pump blood out of the left ventricle and into the aorta, increasing aortic pressure. the different phases of the cardiac cycle and the changes in pressure that occur during each phase is crucial for diagnosing and treating cardiovascular diseases. By studying the cardiovascular physiology concepts related to the cardiac cycle, healthcare professionals can better understand how the heart functions and how to maintain its health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 65-year-old man presents for a coronary angiogram due to worsening symptoms of unstable angina. The cardiologist observes multiple significant coronary stenoses, which are likely related to the patient's numerous risk factors, including hypertension, heavy smoking, hypercholesterolemia, and type 2 diabetes mellitus. What is the ultimate step in the development of this pathology?
Your Answer:
Correct Answer: Smooth muscle proliferation and migration
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.
What other features would be expected with a vagus nerve injury?Your Answer:
Correct Answer: Hoarse voice
Explanation:The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.
However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?
Your Answer:
Correct Answer: T12
Explanation:The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
As a medical student working in the emergency department, you come across a 75-year-old man with a medical history of hypertension, dyslipidaemia, and atrial fibrillation. He was brought in by ambulance after collapsing at home. During the examination, you notice that he is unable to raise his right arm and has reduced sensation on the right side of his body. The consultant suspects that the patient is having a stroke and orders an urgent CT head.
Upon reviewing the results, the consultant informs you that there is a significant area of ischaemia affecting the insula, somatosensory cortex, and part of the frontal cortex. Your task is to identify the artery that is most likely to be occluded by an infarct.Your Answer:
Correct Answer: Left middle cerebral artery
Explanation:The correct blood vessel supplying the frontal, temporal, and parietal lobes is the left middle cerebral artery. This is evident from the patient’s symptoms of right-sided loss of sensation and weakness, which are controlled by the contralateral somatosensory and motor cortex. The other options, such as the anterior spinal artery and the anterior cerebral arteries, are incorrect as they do not supply the brain or the specific areas affected in this patient.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 30-year-old man visits his GP with complaints of fever and malaise. Upon further inquiry, the GP discovers that the patient has been using intravenous drugs for several years and suspects infective endocarditis after a thorough examination. Which embryological structure is most likely affected in this patient?
Your Answer:
Correct Answer: Endocardial cushion
Explanation:The AV and semilunar valves originate from the endocardial cushion during embryonic development. When a patient is positive for IVDU, infective endocarditis typically affects the tricuspid valve. It is important to note that all valves in the heart are derived from the endocardial cushion.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
An 68-year-old woman is presented to the vascular clinic with a painful ulcer on the anterior aspect of her shin. She reports experiencing pain in the same leg at night and while sitting in a chair.
The patient has a medical history of diabetes for 11 years, hypertension for 12 years, and has been a smoker for over 50 years.
Upon examination, a pale ulcer with a 'punched out' appearance is observed. The patient declines further examination.
Based on the given clinical scenario, what is the most probable type of ulcer?Your Answer:
Correct Answer: Arterial ulcer
Explanation:The correct answer is arterial ulcer. These types of leg ulcers are typically pale, painful, and have a punched-out appearance. They are often associated with peripheral vascular disease, which is likely in this patient given her cardiovascular risk factors and claudication pain. The fact that she experiences pain while sitting down suggests critical ischemia. Venous ulcers, on the other hand, appear red and oozing with irregular margins and are usually associated with varicose veins, edema, or lipodermatosclerosis. Marjolin ulcers are a malignant transformation of chronic ulcers into squamous cell carcinoma, while neuropathic ulcers typically occur over pressure areas such as the sole of the foot and are associated with a sensory neuropathy. Although this patient has diabetes, the history and appearance of the ulcer are more consistent with an arterial ulcer.
Venous leg ulcers are caused by venous hypertension and can be managed with compression banding. Marjolin’s ulcers are a type of squamous cell carcinoma that occur at sites of chronic inflammation. Arterial ulcers are painful and occur on the toes and heel, while neuropathic ulcers commonly occur over the plantar surface of the metatarsal head and hallux. Pyoderma gangrenosum is associated with inflammatory bowel disease and can present as erythematous nodules or pustules that ulcerate.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)