00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A man in his 50s arrives at the emergency department exhibiting signs of...

    Correct

    • A man in his 50s arrives at the emergency department exhibiting signs of a stroke. After undergoing a CT angiogram, it is revealed that there is a constriction in the artery that provides blood to the right common carotid.

      What is the name of the affected artery?

      Your Answer: Brachiocephalic artery

      Explanation:

      The largest branch from the aortic arch is the brachiocephalic artery, which originates from it. This artery gives rise to both the right subclavian artery and the right common carotid arteries. The brachiocephalic artery is supplied by the aortic arch, while the coronary arteries are supplied by the ascending aorta. Additionally, the coeliac trunk is a branch that stems from the abdominal aorta.

      The Brachiocephalic Artery: Anatomy and Relations

      The brachiocephalic artery is the largest branch of the aortic arch, originating at the apex of the midline. It ascends superiorly and posteriorly to the right, lying initially anterior to the trachea and then on its right-hand side. At the level of the sternoclavicular joint, it divides into the right subclavian and right common carotid arteries.

      In terms of its relations, the brachiocephalic artery is anterior to the sternohyoid, sterno-thyroid, thymic remnants, left brachiocephalic vein, and right inferior thyroid veins. Posteriorly, it is related to the trachea, right pleura, right lateral, right brachiocephalic vein, superior part of the SVC, left lateral, thymic remnants, origin of left common carotid, inferior thyroid veins, and trachea at a higher level.

      The brachiocephalic artery typically has no branches, but it may have the thyroidea ima artery. Understanding the anatomy and relations of the brachiocephalic artery is important for medical professionals, as it is a crucial vessel in the human body.

    • This question is part of the following fields:

      • Cardiovascular System
      40.4
      Seconds
  • Question 2 - A 57-year-old Asian man arrived at the emergency department with complaints of chest...

    Incorrect

    • A 57-year-old Asian man arrived at the emergency department with complaints of chest pain. After initial investigations, he was diagnosed with a non-ST elevation myocardial infarction. The patient was prescribed dual antiplatelet therapy, consisting of aspirin and ticagrelor, along with subcutaneous fondaparinux. However, a few days after starting the treatment, he reported experiencing shortness of breath. What is the mechanism of action of the drug responsible for this adverse reaction?

      Your Answer: Non-selective COX-1 and COX-2 inhibitor

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      19.7
      Seconds
  • Question 3 - A newborn male delivered at 38 weeks gestation presents with severe cyanosis within...

    Incorrect

    • A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.

      During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.

      A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.

      What is the most likely embryological pathology underlying this neonate's congenital heart defect?

      Your Answer: Defect in interatrial septum

      Correct Answer: Failure of the aorticopulmonary septum to spiral

      Explanation:

      Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      106.6
      Seconds
  • Question 4 - A 45-year-old woman presents to the emergency department with a severe headache that...

    Incorrect

    • A 45-year-old woman presents to the emergency department with a severe headache that started suddenly during exercise. She reports vomiting and recurrent vertigo sensations. On examination, she has an ataxic gait, left-sided horizontal nystagmus, and an intention tremor during the 'finger-to-nose' test. An urgent CT scan is ordered. Which arteries provide blood supply to the affected area of the brain?

      Your Answer: Anterior and middle cerebral arteries

      Correct Answer: Basilar and the vertebral arteries

      Explanation:

      The correct answer is the basilar and vertebral arteries, which form branches that supply the cerebellum. The patient’s sudden onset headache, vomiting, and vertigo suggest a pathology focused on the brain, with ataxia, nystagmus, and intention tremor indicating cerebellar syndrome. A CT scan is necessary to rule out a cerebellar haemorrhage or stroke, as the basilar and vertebral arteries are the main arterial supply to the cerebellum.

      The incorrect answer is the anterior and middle cerebral arteries, which supply the cerebral cortex and would present with different symptoms. The anterior and posterior spinal arteries are also incorrect, as they supply the spine and would present with different symptoms. The ophthalmic and central retinal artery is also incorrect, as it would only present with visual symptoms and not the other symptoms seen in this patient.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      43.7
      Seconds
  • Question 5 - An 85-year-old man presents to the hospital with complaints of breathlessness at rest....

    Correct

    • An 85-year-old man presents to the hospital with complaints of breathlessness at rest. He has a medical history of type 2 diabetes and hypertension, for which he takes metformin, lisinopril, and metoprolol. He also smokes five cigarettes a day. On examination, he has a heart rate of 100 bpm, blood pressure of 128/90 mmHg, and a respiratory rate of 26 with oxygen saturation of 88% on 2l/minute. He has a regular, slow rising pulse, an ejection systolic murmur, crepitations at both lung bases, and oedema at the ankles and sacrum.

      What investigation is most crucial for his immediate management?

      Your Answer: Electrocardiogram

      Explanation:

      Managing Pulmonary Edema from Congestive Cardiac Failure

      Pulmonary edema from congestive cardiac failure requires prompt investigation and management. The most crucial investigation is an ECG to check for a possible silent myocardial infarction. Even if the ECG is normal, a troponin test may be necessary to rule out a NSTEMI. Arterial blood gas analysis is also important to guide oxygen therapy. Additionally, stopping medications such as metformin, lisinopril, and metoprolol, and administering diuretics can help manage the condition.

      It is likely that the patient has aortic stenosis, which is contributing to the cardiac failure. However, acute management of the valvular disease will be addressed separately. To learn more about heart failure and its management, refer to the ABC of heart failure articles by Millane et al. and Watson et al.

    • This question is part of the following fields:

      • Cardiovascular System
      381.4
      Seconds
  • Question 6 - A senior gentleman visits the GP for his routine INR check. He was...

    Incorrect

    • A senior gentleman visits the GP for his routine INR check. He was prescribed warfarin five years ago upon being diagnosed with atrial fibrillation.

      Which enzyme does warfarin inhibit?

      Your Answer: Protein C

      Correct Answer: Epoxide reductase

      Explanation:

      Warfarin prevents the activation of Vitamin K by inhibiting epoxide reductase. This enzyme is responsible for converting Vitamin K epoxide to Vitamin K quinone, a necessary step in the Vitamin K metabolic pathway. Without this conversion, the production of clotting factors (10, 9, 7 and 2) is decreased.

      Gamma-glutamyl carboxylase is the enzyme responsible for carboxylating glutamic acid to produce clotting factors. Warfarin does not directly inhibit this enzyme.

      CYP2C9 is an enzyme involved in the metabolism of many drugs, including warfarin.

      Protein C is a plasma protein that functions as an anticoagulant. It is dependent on Vitamin K for activation and works by inhibiting factor 5 and 8. Protein C is produced as an inactive precursor enzyme, which is then activated to exert its anticoagulant effects.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      35.3
      Seconds
  • Question 7 - A 68-year-old man visits his doctor complaining of exertional dyspnea and is diagnosed...

    Incorrect

    • A 68-year-old man visits his doctor complaining of exertional dyspnea and is diagnosed with heart failure. Afterload-induced increases can lead to systolic dysfunction in heart failure.

      What factors worsen his condition by increasing afterload?

      Your Answer: Decreased systemic vascular resistance

      Correct Answer: Ventricular dilatation

      Explanation:

      Ventricular dilation can increase afterload, which is the resistance the heart must overcome during contraction. Afterload is often measured as ventricular wall stress, which is influenced by ventricular pressure, radius, and wall thickness. As the ventricle dilates, the radius increases, leading to an increase in wall stress and afterload. This can eventually lead to heart failure if the heart is unable to compensate. Conversely, decreased systemic vascular resistance and hypotension can decrease afterload, while increased venous return can increase preload. Mitral valve stenosis, on the other hand, can decrease preload.

      The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.

    • This question is part of the following fields:

      • Cardiovascular System
      238.2
      Seconds
  • Question 8 - A 59-year-old man with a history of hypertension presents to the ED with...

    Incorrect

    • A 59-year-old man with a history of hypertension presents to the ED with sudden palpitations that started six hours ago. He denies chest pain, dizziness, or shortness of breath.

      His vital signs are heart rate 163/min, blood pressure 155/92 mmHg, respiratory rate 17/min, oxygen saturations 98% on air, and temperature 36.2ºC. On examination, his pulse is irregularly irregular, and there is no evidence of pulmonary edema. His Glasgow Coma Scale is 15.

      An ECG shows atrial fibrillation with a rapid ventricular response. Despite treatment with IV fluids, IV metoprolol, and IV digoxin, his heart rate remains elevated at 162 beats per minute.

      As the onset of symptoms was less than 48 hours ago, the decision is made to attempt chemical cardioversion with amiodarone. Why is a loading dose necessary for amiodarone?

      Your Answer: Renal excretion

      Correct Answer: Long half-life

      Explanation:

      Amiodarone requires a prolonged loading regime to achieve stable therapeutic levels due to its highly lipophilic nature and wide absorption by tissue, which reduces its bioavailability in serum. While it is predominantly a class III anti-arrhythmic, it also has numerous effects similar to class Ia, II, and IV. Amiodarone is primarily eliminated through hepatic excretion and has a long half-life, meaning it is eliminated slowly and only requires a low maintenance dose to maintain appropriate therapeutic concentrations. The inhibition of cytochrome P450 by amiodarone is not the reason for administering a loading dose.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      146.1
      Seconds
  • Question 9 - A 72-year-old male with urinary incontinence visits the urogynaecology clinic and is diagnosed...

    Correct

    • A 72-year-old male with urinary incontinence visits the urogynaecology clinic and is diagnosed with overactive bladder incontinence. He is prescribed a medication that works by blocking the parasympathetic pathway. What other drugs have a similar mechanism of action to the one he was prescribed?

      Your Answer: Atropine

      Explanation:

      Atropine is classified as an antimuscarinic drug that works by inhibiting the M1 to M5 muscarinic receptors. While oxybutynin is commonly prescribed for urinary incontinence due to its ability to block the M3 muscarinic receptors, atropine is more frequently used in anesthesia to reduce salivation before intubation.

      Alfuzosin, on the other hand, is an alpha blocker that is primarily used to treat benign prostate hyperplasia.

      Meropenem is an antibiotic that is reserved for infections caused by bacteria that are resistant to most beta-lactams. However, it is typically used as a last resort due to its potential adverse effects.

      Mirabegron is another medication used to treat urinary incontinence, but it works by activating the β3 adrenergic receptors.

      Understanding Atropine and Its Uses

      Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.

      Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.

    • This question is part of the following fields:

      • Cardiovascular System
      26.1
      Seconds
  • Question 10 - A 65-year-old male with chronic cardiac failure visits his doctor and reports experiencing...

    Incorrect

    • A 65-year-old male with chronic cardiac failure visits his doctor and reports experiencing dyspnoea even with minimal physical exertion, and only feeling comfortable when at rest. What class of the New York Heart Association scale does he fall under?

      Your Answer: II

      Correct Answer: III

      Explanation:

      The NYHA Scale for Cardiac Failure Patients

      The NYHA scale is a tool used to standardize the description of the severity of cardiac failure patients. It classifies patients into four categories based on their symptoms and limitations of activities. Class I patients have no limitations and do not experience any symptoms during ordinary activities. Class II patients have mild limitations and are comfortable with rest or mild exertion. Class III patients have marked limitations and are only comfortable at rest. Finally, Class IV patients should be at complete rest and are confined to bed or chair. Any physical activity brings discomfort and symptoms occur even at rest.

      The NYHA scale is an important tool for healthcare professionals to assess the severity of cardiac failure in patients. It helps to determine the appropriate treatment plan and level of care needed for each patient. By using this scale, healthcare professionals can communicate more effectively with each other and with patients about the severity of their condition. It also helps patients to understand their limitations and adjust their activities accordingly. Overall, the NYHA scale is a valuable tool in the management of cardiac failure patients.

    • This question is part of the following fields:

      • Cardiovascular System
      113.2
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (3/10) 30%
Passmed