-
Question 1
Incorrect
-
A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is prescribed aspirin, clopidogrel, nitrates, and morphine. Due to his high 6-month risk score, percutaneous coronary intervention is planned and he is given intravenous tirofiban. What is the mechanism of action of this medication?
Your Answer: Inhibits the production of thromboxane A2
Correct Answer: Glycoprotein IIb/IIIa receptor antagonist
Explanation:Glycoprotein IIb/IIIa Receptor Antagonists
Glycoprotein IIb/IIIa receptor antagonists are a class of drugs that inhibit the function of the glycoprotein IIb/IIIa receptor, which is found on the surface of platelets. These drugs are used to prevent blood clots from forming in patients with acute coronary syndrome, unstable angina, or during percutaneous coronary intervention (PCI).
Examples of glycoprotein IIb/IIIa receptor antagonists include abciximab, eptifibatide, and tirofiban. These drugs work by blocking the binding of fibrinogen to the glycoprotein IIb/IIIa receptor, which prevents platelet aggregation and the formation of blood clots.
Glycoprotein IIb/IIIa receptor antagonists are typically administered intravenously and are used in combination with other antiplatelet agents, such as aspirin and clopidogrel. While these drugs are effective at preventing blood clots, they can also increase the risk of bleeding. Therefore, careful monitoring of patients is necessary to ensure that the benefits of these drugs outweigh the risks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A parent brings their toddler to the Emergency Department after noticing a pale yellow fluid leaking from their umbilicus. The doctor explains that this is due to the incomplete closure of a remnant from embryological development. What is the name of this remnant, which used to be part of the umbilical ligament?
Your Answer: Prostatic utricle
Correct Answer: Urachus
Explanation:The allantois leaves behind the urachus, while the male prostatic utricle is a vestige of the vagina. The ductus arteriosus is represented by the ligamentum arteriosum, which links the aorta to the pulmonary trunk during fetal development. The ligamentum venosum, on the other hand, is the residual structure of the ductus venous, which diverts blood from the left umbilical vein to the placenta, bypassing the liver.
During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 67-year old man with a history of cardiovascular disease and COPD visits his GP. During a routine blood test, the GP observes that the patient has mild hyponatraemia. Which medication could have played a role in causing his hyponatraemia?
Your Answer: Bendroflumethiazide
Explanation:Thiazide diuretics have been linked to the adverse effect of hyponatremia, while caution is advised when using β2-agonists like salbutamol in patients with hypokalemia due to their potential to decrease serum potassium. In cases of hyperkalemia, β2-agonists may be used as a temporary treatment option. Bendroflumethiazide, a thiazide diuretic, can cause electrolyte imbalances such as hypokalemia, hypomagnesemia, and hypochloremic alkalosis. On the other hand, ACE inhibitors like ramipril may lead to hyperkalemia, especially in patients with renal impairment, diabetes mellitus, or those taking potassium-sparing diuretics, potassium supplements, or potassium-containing salts. Atenolol, however, is not directly associated with electrolyte disturbances.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A nursing student is being consented for a parathyroidectomy for symptomatic hyperparathyroidism. The parathyroid gland consists of 2 superior and 2 inferior glands. The patient is informed that all four glands will be removed in order to achieve a complete resolution of her symptoms. You explain to her that the superior and inferior glands are derived from different structures.
From which one of the following embryological structures are the superior parathyroid glands derived from?Your Answer: First pharyngeal pouch
Correct Answer: Fourth pharyngeal pouch
Explanation:The superior parathyroid glands are formed from the fourth pharyngeal pouch during embryonic development. The pharyngeal pouches develop between the branchial arches, with the first pouch located between the first and second arches. There are four pairs of pouches, with the fifth pouch being either absent or very small. A helpful mnemonic to remember the derivatives of the four pharyngeal pouches is 1A, 2P, 3 TIP, 4 SUB. This stands for the auditory tube, middle ear cavity, and mastoid antrum for the first pouch; the crypts of the palatine tonsil for the second pouch; the thymus and inferior parathyroid gland for the third pouch; and the superior parathyroid gland and ultimobranchial body for the fourth pouch.
Anatomy and Development of the Parathyroid Glands
The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.
The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 32-year-old woman who is 33 weeks pregnant visits the clinic with a complaint of foot pain. The pain is mainly felt on the back of the sole of her foot and is most intense when she takes her first steps after getting out of bed in the morning. Upon examination, the area is tender to touch, and you suspect plantar fasciitis. While NSAIDs are a common treatment for this condition, you are aware that they are not recommended during pregnancy, particularly in the later stages. This is due to the potential risk of premature closure of the fetal vessel that connects which two major arteries?
Your Answer: Umbilical vein
Correct Answer: Ductus arteriosus
Explanation:The correct answer is the ductus arteriosus, which connects the proximal descending aorta to the pulmonary artery, allowing blood to bypass the non-functioning lungs in utero. It closes at birth, forming the ligamentum arteriosum. A patent ductus arteriosus (PDA) occurs when it fails to close. Prostaglandins play a role in maintaining a PDA, and NSAIDs can be used to treat it, but are avoided in pregnancy to prevent early closure.
The ductus venosus, also known as Arantius’ duct, connects the umbilical vein to the inferior vena cava, bypassing the liver in utero. It usually closes within the first week of life, forming the ligamentum venosum.
The foramen ovale is an opening in the atrial septum that allows blood to flow from the right to the left atrium in utero. It usually closes at birth, but a patent foramen ovale can occur if it fails to close.
The umbilical vein carries oxygenated blood from the placenta to the fetus and closes within the first week of life, forming the round ligament of the liver.
The patient in the question is likely experiencing plantar fasciitis, which is caused by inflammation of the plantar fascia in the foot.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 75-year-old man presents to the emergency department with sudden onset chest pain that started 3 hours ago and is radiating to his left shoulder. He reports feeling a heavy pressure over his sternum. The patient has a 40-year history of smoking one pack of cigarettes per day and was diagnosed with hyperlipidaemia 25 years ago. An initial ECG reveals ST elevation in V3 and V4. Despite resuscitative efforts, the patient passes away. Upon autopsy, a section of the left anterior descending artery stained with haematoxylin and eosin shows atheroma formation.
What is the final step in the pathogenesis of the autopsy finding in this case?Your Answer: Development of fatty streaks
Correct Answer: Smooth muscle migration from tunica media
Explanation:An elderly patient with typical anginal pain is likely suffering from ischaemic heart disease, which is commonly caused by atherosclerosis. This patient has risk factors for atherosclerosis, including smoking and hyperlipidaemia.
Atherosclerosis begins with thickening of the tunica intima, which is mainly composed of proteoglycan-rich extracellular matrix and acellular lipid pools. Fatty streaks, which are minimal lipid depositions on the luminal surface, can be seen in normal individuals and are not necessarily a part of the atheroma. They can begin as early as in the twenties.
As the disease progresses, fibroatheroma develops, characterized by infiltration of macrophages and T-lymphocytes, with the formation of a well-demarcated lipid-rich necrotic core. Foam cells appear early in the disease process and play a major role in atheroma formation.
Further progression leads to thin cap fibroatheroma, where the necrotic core becomes bigger and the fibrous cap thins out. Throughout the process, there is a progressive increase in the number of inflammatory cells. Finally, smooth muscle cells from the tunica media proliferate and migrate into the tunica intima, completing the formation of the atheroma.
Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages that phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
What is the equivalent of cardiac preload?
Your Answer:
Correct Answer: End diastolic volume
Explanation:Preload, also known as end diastolic volume, follows the Frank Starling principle where a slight increase results in an increase in cardiac output. However, if preload is significantly increased, such as exceeding 250ml, it can lead to a decrease in cardiac output.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
During ward round, you have been presented with an ECG of a 50-year-old female who was admitted with blackouts and a heart rate of 43bpm. On the ECG you note that the QRS complex is narrow but is missing after every other P wave. What is this condition called?
Your Answer:
Correct Answer: 2:1 heart block
Explanation:The patient has a bradycardia with a narrow QRS complex, ruling out bundle branch blocks. It is not a first-degree heart block or a Wenckebach heart block. The correct diagnosis is a 2:1 heart block with 2 P waves to each QRS complex.
Understanding Heart Blocks: Types and Features
Heart blocks are a type of cardiac conduction disorder that can lead to serious complications such as syncope and heart failure. There are three types of heart blocks: first degree, second degree, and third degree (complete) heart block.
First degree heart block is characterized by a prolonged PR interval of more than 0.2 seconds. Second degree heart block can be further divided into two types: type 1 (Mobitz I, Wenckebach) and type 2 (Mobitz II). Type 1 is characterized by a progressive prolongation of the PR interval until a dropped beat occurs, while type 2 has a constant PR interval but the P wave is often not followed by a QRS complex.
Third degree (complete) heart block is the most severe type of heart block, where there is no association between the P waves and QRS complexes. This can lead to a regular bradycardia with a heart rate of 30-50 bpm, wide pulse pressure, and cannon waves in the neck JVP. Additionally, variable intensity of S1 can be observed.
It is important to recognize the features of heart blocks and differentiate between the types in order to provide appropriate management and prevent complications. Regular monitoring and follow-up with a healthcare provider is recommended for individuals with heart blocks.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 34-year-old woman visits her doctor after discovering she is pregnant. She is currently taking the following medications:
- Loratadine 10mg once daily
- Omeprazole 10mg once daily
- Metformin 500mg three times daily
- Warfarin 5 mg once daily
- Senna 15mg at night
Which medication(s) should she discontinue during her pregnancy?Your Answer:
Correct Answer: Warfarin
Explanation:Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
During surgery on her neck, a woman in her 50s suffers a vagus nerve injury where the nerve is cut near the exit from the skull. She wakes up with a high heart rate and high blood pressure due to loss of parasympathetic tone.
What other features would be expected with a vagus nerve injury?Your Answer:
Correct Answer: Hoarse voice
Explanation:The vagus (X) nerve is responsible for all innervation related to speech, meaning that any injuries to this nerve can lead to speech problems. It’s important to note that the vagus nerve has both autonomic and somatic effects, with the latter being the most crucial for speech. This involves the motor supply to the larynx through the recurrent laryngeal nerves, which are branches of the vagus. If one vagus nerve is damaged, it would have the same impact as damage to a single recurrent laryngeal nerve, resulting in a hoarse voice.
However, it’s worth noting that anal tone, erections, and urination are controlled by the sacral parasympathetics and would not be affected by the loss of the vagus nerve. Similarly, pupillary constriction is controlled by parasympathetics on the oculomotor nerve and would not be impacted by the loss of the vagus nerve.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?
Your Answer:
Correct Answer: L1
Explanation:The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.
The Superior Mesenteric Artery and its Branches
The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.
The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.
The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
An 85-year-old woman arrives at the emergency department with complaints of palpitations and difficulty breathing. During the examination, you observe an irregularly irregular pulse. After conducting an ECG, you discover the absence of P waves and a ventricular rate of 94 beats per minute. What specific part of the heart prevents a rapid atrial rate from transmitting to the ventricles?
Your Answer:
Correct Answer: Atrioventricular node
Explanation:The correct answer is the atrioventricular (AV) node, which is located within the atrioventricular septum near the septal cusp of the tricuspid valve. It regulates the spread of excitation from the atria to the ventricles.
The sinoatrial (SA) node is situated in the right atrium, at the top of the crista terminalis where the right atrium meets the superior vena cava. It is where cardiac impulses originate in a healthy heart.
The bundle of His is a group of specialized cardiac myocytes that transmit the electrical impulse from the AV node to the ventricles.
The Purkinje fibers are a collection of fibers that distribute the cardiac impulse throughout the muscular ventricular walls.
The bundle of Kent is not present in a healthy heart. It refers to the accessory pathway between the atria and ventricles that exists in Wolff-Parkinson-White (WPW) syndrome. This additional conduction pathway allows for fast conduction of impulses between the atria and ventricles, without the additional control of the AV node. This results in a type of supraventricular tachycardia known as an atrioventricular re-entrant tachycardia.
The patient in the above question has presented with palpitations and shortness of breath. An irregularly irregular pulse is highly indicative of atrial fibrillation (AF). ECG signs of atrial fibrillation include an irregularly irregular rhythm and absent P waves. In AF, the impulses from the fibrillating heart are typically prevented from reaching the ventricles by the AV node.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A 36-year-old male comes to his GP complaining of chest pain that has been present for a week. The pain worsens when he breathes in and is relieved when he sits forward. He also has a non-productive cough. He recently had a viral infection. An ECG was performed and showed global saddle-shaped ST elevation.
Your Answer:
Correct Answer: Acute pericarditis
Explanation:Chest pain that is relieved by sitting or leaning forward is often a symptom of acute pericarditis. This condition is commonly caused by a viral infection and may also present with flu-like symptoms, non-productive cough, and dyspnea. ECG changes may show a saddle-shaped ST elevation.
Cardiac tamponade, on the other hand, is characterized by Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds. Dyspnea and tachycardia may also be present.
A myocardial infarction is unlikely if the chest pain has been present for a week, as it typically presents more acutely and with constant chest pain regardless of body positioning. ECG changes would also occur in specific territories rather than globally.
A pneumothorax presents with sudden onset dyspnea, pleuritic chest pain, tachypnea, and sweating. No ECG changes would be observed.
A pulmonary embolism typically presents with acute onset tachypnea, fever, tachycardia, and crackles. Signs of deep vein thrombosis may also be present.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary bypass. Which of the following structures is not located within the right atrium?
Your Answer:
Correct Answer: Trabeculae carnae
Explanation:The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her blood pressure to be 152/91 mmHg. She is curious about her condition and asks her GP to explain the physiology of blood pressure. Can you tell me where the baroreceptors that detect blood pressure are located in the body?
Your Answer:
Correct Answer: Carotid sinus
Explanation:The carotid sinus, located just above the point where the internal and external carotid arteries divide, houses baroreceptors that sense the stretching of the artery wall. These baroreceptors are connected to the glossopharyngeal nerve (cranial nerve IX). The nerve fibers then synapse in the solitary nucleus of the medulla, which regulates the activity of sympathetic and parasympathetic neurons. This, in turn, affects the heart and blood vessels, leading to changes in blood pressure.
Similarly, the aortic arch also has baroreceptors that are connected to the aortic nerve. This nerve combines with the vagus nerve (X) and travels to the solitary nucleus.
In contrast, the carotid body, located near the carotid sinus, contains chemoreceptors that detect changes in the levels of oxygen and carbon dioxide in the blood.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?
Your Answer:
Correct Answer: Uraemia
Explanation:There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.
ECG results do not indicate a recent heart attack.
The patient’s age decreases the likelihood of malignancy.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
You are requested to assess a patient in the emergency department who has experienced abrupt onset chest pain, dyspnoea and diaphoresis. After reviewing the patient's ECG, you identify changes within a specific section and promptly arrange for transfer to the catheterisation laboratory.
What is the underlying process indicated by the affected section of the ECG?Your Answer:
Correct Answer: Period between ventricular depolarisation and repolarisation
Explanation:The ST segment on an ECG indicates the period when the entire ventricle is depolarized. In the case of a suspected myocardial infarction, it is crucial to examine the ST segment for any elevation or depression, which can indicate a STEMI or NSTEMI, respectively.
The ECG does not have a specific section that corresponds to the firing of the sino-atrial node, which triggers atrial depolarization (represented by the p wave). The T wave represents ventricular repolarization.
In atrial fibrillation, the p wave is absent or abnormal due to the irregular firing of the atria.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 25-year-old man has a cannula inserted into his cephalic vein. What is the structure through which the cephalic vein passes?
Your Answer:
Correct Answer: Clavipectoral fascia
Explanation:Preserving the cephalic vein is important for creating an arteriovenous fistula in patients with end stage renal failure, as it is a preferred vessel for this purpose. The vein travels through the calvipectoral fascia, but does not pass through the pectoralis major muscle, before ending in the axillary vein.
The Cephalic Vein: Path and Connections
The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.
After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.
Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 28-year-old man arrives at the emergency department complaining of chest pain. The ECG strip shows an irregularly irregular tachycardia that is not in sinus rhythm.
Where is the site of this pathology?Your Answer:
Correct Answer: Discordance of electrical activity from the myocytes surrounding the pulmonary veins
Explanation:Atrial fibrillation occurs when irregular electrical activity from the myocytes surrounding the pulmonary veins overwhelms the regular impulses from the sinus node. This leads to discordance of electrical activity in the atria, causing the irregularly irregular tachycardia characteristic of AF. It is important to note that AF is not caused by an absence of electrical activity in the atria or bundle of His.
Atrial fibrillation (AF) is a heart condition that requires prompt management. The management of AF depends on the patient’s haemodynamic stability and the duration of the AF. For haemodynamically unstable patients, electrical cardioversion is recommended. For haemodynamically stable patients, rate control is the first-line treatment strategy, except in certain cases. Medications such as beta-blockers, calcium channel blockers, and digoxin are commonly used to control the heart rate. Rhythm control is another treatment option that involves the use of medications such as beta-blockers, dronedarone, and amiodarone. Catheter ablation is recommended for patients who have not responded to or wish to avoid antiarrhythmic medication. The procedure involves the use of radiofrequency or cryotherapy to ablate the faulty electrical pathways that cause AF. Anticoagulation is necessary before and during the procedure to reduce the risk of stroke. The success rate of catheter ablation varies, with around 50% of patients experiencing an early recurrence of AF within three months. However, after three years, around 55% of patients who have undergone a single procedure remain in sinus rhythm.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 47-year-old woman, who is notably tall, visits the surgical clinic due to bilateral inguinal hernias. During her evaluation, she experiences chest discomfort and faints. A chest x-ray reveals indications of mediastinal widening. What is the probable underlying condition?
Your Answer:
Correct Answer: Aortic dissection
Explanation:Individuals with Marfan syndrome may exhibit various connective tissue disorders, including bilateral inguinal hernia. They are particularly susceptible to aortic dissection, as demonstrated in this instance.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
Oliver is an 80-year-old man with known left-sided heart failure. He has a left ventricular ejection fraction of 31%. He has recently been admitted to the cardiology ward as the doctors are concerned his condition is worsening. He is short of breath on exertion and has peripheral oedema.
Upon reviewing his ECG, you note a right bundle branch block (RBBB) indicative of right ventricular hypertrophy. You also observe that this was present on an ECG of his on an emergency department admission last month.
What is the most likely cause of the RBBB in Oliver?Your Answer:
Correct Answer: Cor pulmonale
Explanation:A frequent underlying cause of RBBB that persists over time is right ventricular hypertrophy, which may result from the spread of left-sided heart failure to the right side of the heart. Oliver’s shortness of breath is likely due to an accumulation of fluid in the lungs, which can increase pulmonary perfusion pressure and lead to right ventricular strain and hypertrophy. This type of right heart failure that arises from left heart failure is known as cor-pulmonale. While a pulmonary embolism or rheumatic heart disease can also cause right ventricular strain, they are less probable in this case. Myocardial infarction typically presents with chest pain, which is not mentioned in the question stem regarding Oliver’s symptoms.
Right bundle branch block is a frequently observed abnormality on ECGs. It can be differentiated from left bundle branch block by remembering the phrase WiLLiaM MaRRoW. In RBBB, there is a ‘M’ in V1 and a ‘W’ in V6, while in LBBB, there is a ‘W’ in V1 and a ‘M’ in V6.
There are several potential causes of RBBB, including normal variation which becomes more common with age, right ventricular hypertrophy, chronically increased right ventricular pressure (such as in cor pulmonale), pulmonary embolism, myocardial infarction, atrial septal defect (ostium secundum), and cardiomyopathy or myocarditis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 24-year-old patient is brought to the emergency department after ingesting a bottle of insecticide and experiencing multiple episodes of vomiting. The suspected diagnosis is organophosphate poisoning and the patient is being treated with supportive measures and atropine. What potential side effect of atropine administration should be monitored for in this patient?
Your Answer:
Correct Answer: Hypohidrosis
Explanation:Hypohidrosis is a possible side-effect of Atropine.
Atropine is an anticholinergic drug that works by blocking the muscarinic acetylcholine receptor in a competitive manner. Its side-effects may include tachycardia, mydriasis, dry mouth, hypohidrosis, constipation, and urinary retention. It is important to note that the other listed side-effects are typically associated with muscarinic agonist drugs like pilocarpine.
Understanding Atropine and Its Uses
Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.
Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A man in his 50s arrives at the emergency department with bleeding following a car accident. Despite significant blood loss, his blood pressure has remained stable. What can be said about the receptors responsible for regulating his blood pressure?
Your Answer:
Correct Answer: Baroreceptors are stimulated by arterial stretch
Explanation:Arterial stretch stimulates baroreceptors, which are located at the aortic arch and carotid sinus. The baroreceptor reflex acts on the medulla to regulate parasympathetic and sympathetic activity. When baroreceptors are more stimulated, there is an increase in parasympathetic discharge to the SA node and a decrease in sympathetic discharge. Conversely, reduced stimulation of baroreceptors leads to decreased parasympathetic discharge and increased sympathetic discharge. Baroreceptors are always active, and changes in arterial stretch can either increase or decrease their level of stimulation.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 67-year-old woman visits her GP for a routine hypertension check-up. She has been on amlodipine for a year and her blood pressure is under control, but she frequently experiences ankle swelling. The swelling is more pronounced towards the end of the day since she started taking amlodipine. The GP decides to switch her medication to a diuretic. Which diuretic targets the sodium-chloride transporter in the distal tubule?
Your Answer:
Correct Answer: Bendroflumethiazide (thiazide diuretic)
Explanation:Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 68-year-old man arrives at the emergency department complaining of intense abdominal pain that spreads to his back. His medical history shows that he has an abdominal aortic aneurysm. During a FAST scan, it is discovered that the abdominal aorta is widely dilated, with the most significant expansion occurring at the point where it divides into the iliac arteries. What vertebral level corresponds to the location of the most prominent dilation observed in the FAST scan?
Your Answer:
Correct Answer: L4
Explanation:The abdominal aorta divides into two branches at the level of the fourth lumbar vertebrae. At the level of T12, the coeliac trunk arises, while at L1, the superior mesenteric artery branches off. The testicular artery and renal artery originate at L2, and at L3, the inferior mesenteric artery is formed.
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 65-year-old man was effectively cardioverted for an unstable broad complex tachycardia. The physician opts to initiate oral amiodarone at 200 mg thrice daily, and gradually decrease at weekly intervals until a maintenance dose of 200 mg once daily.
What is the rationale behind this dosing plan?Your Answer:
Correct Answer: Amiodarone has a very long half-life
Explanation:Amiodarone’s long half-life is due to its high lipophilicity and extensive tissue absorption, resulting in reduced bioavailability in serum. To achieve stable therapeutic levels, a prolonged loading regimen is necessary.
To quickly achieve therapeutic levels, high doses of oral amiodarone are required due to poor absorption. Once achieved, a once-daily regimen can be continued. Amiodarone’s plasma half-life ranges from 20 to 100 days, meaning its effects persist long after discontinuation. Patients should be counseled on this and advised to recognize adverse effects and avoid drugs that interact with amiodarone even after stopping it.
The statement that amiodarone has a short half-life is incorrect; it has a long half-life.
Patients do not need to stay admitted for monitoring during the loading regimen. However, thyroid and liver function tests should be performed every 6 months for up to 12 months after discontinuation due to the long half-life.
Amiodarone is excreted via the liver and biliary system, not rapidly metabolized and eliminated by the kidneys. Therefore, patients with amiodarone overdose or toxicity are not suitable for dialysis.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
Mrs. Green is a 64-year-old woman with colon cancer. She is undergoing adjuvant chemotherapy, however in the past six months has suffered four deep vein thrombosis (DVT) events, despite being optimally anticoagulated with the maximum dose of dabigatran. On one occasion she suffered a DVT during treatment with dalteparin (a low molecular weight heparin). She has been admitted with symptoms of another DVT.
What is the recommended treatment for her current DVT?Your Answer:
Correct Answer: Insert an inferior vena caval filter
Explanation:For patients with recurrent venous thromboembolic disease, an inferior vena cava filter may be considered. This is particularly relevant for patients with cancer who have experienced multiple DVTs despite being fully anticoagulated. Before considering an inferior vena cava filter, alternative treatments such as increasing the target INR to 3-4 for long-term high-intensity oral anticoagulant therapy or switching to LMWH should be considered. This recommendation is in line with NICE guidelines on the diagnosis, management, and thrombophilia testing of venous thromboembolic diseases. Prescribing apixaban, increasing the dose of dabigatran off-license, or prescribing Thrombo-Embolic Deterrent (TED) stockings are not appropriate solutions for this patient. Similarly, initiating end-of-life drugs and preparing the family is not indicated based on the clinical description provided.
Management of Pulmonary Embolism
Pulmonary embolism (PE) is a serious condition that requires prompt management. The National Institute for Health and Care Excellence (NICE) updated their guidelines on the management of venous thromboembolism (VTE) in 2020, with some key changes. One of the significant changes is the recommendation to use direct oral anticoagulants (DOACs) as the first-line treatment for most people with VTE, including those with active cancer. Another change is the increasing use of outpatient treatment for low-risk PE patients, determined by a validated risk stratification tool.
Anticoagulant therapy is the cornerstone of VTE management. The guidelines recommend using apixaban or rivaroxaban as the first-line treatment for PE, followed by LMWH, dabigatran, edoxaban, or a vitamin K antagonist (VKA) if necessary. For patients with active cancer, DOACs are now recommended instead of LMWH. The length of anticoagulation depends on whether the VTE was provoked or unprovoked, with treatment typically lasting for at least three months. Patients with unprovoked VTE may continue treatment for up to six months, depending on their risk of recurrence and bleeding.
In cases of haemodynamic instability, thrombolysis is recommended as the first-line treatment for massive PE with circulatory failure. Other invasive approaches may also be considered where appropriate facilities exist. Patients who have repeat pulmonary embolisms, despite adequate anticoagulation, may be considered for inferior vena cava (IVC) filters. However, the evidence base for IVC filter use is weak, and further studies are needed.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
Samantha is a 63-year-old female who has just been diagnosed with hypertension. Her physician informs her that her average blood pressure is influenced by various bodily processes, such as heart function, nervous system activity, and blood vessel diameter. Assuming an average cardiac output (CO) of 4L/min, Samantha's mean arterial pressure (MAP) is recorded at 140mmHg during her examination.
What is Samantha's systemic vascular resistance (SVR) based on these measurements?Your Answer:
Correct Answer: 35 mmhg⋅min⋅mL-1
Explanation:The equation used to calculate systemic vascular resistance is SVR = MAP / CO. For example, if the mean arterial pressure (MAP) is 140 mmHg and the cardiac output (CO) is 4 mL/min, then the SVR would be 35 mmHg⋅min⋅mL-1. Although the theoretical equation for SVR is more complex, it is often simplified by assuming that central venous pressure (CVP) is negligible. However, in reality, MAP is typically measured directly or indirectly using arterial pressure measurements. The equation for calculating MAP at rest is MAP = diastolic pressure + 1/3(pulse pressure), where pulse pressure is calculated as systolic pressure minus diastolic pressure.
Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.
Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.
Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 67-year-old male presents with sudden onset of abdominal pain on the left side that radiates to his back. He also reports vomiting. The patient has no significant medical history.
Upon examination, the patient has a temperature of 37.5°C, a respiratory rate of 28/min, a pulse of 110/min, and a blood pressure of 160/82 mmHg. The abdomen is tender to touch, especially over the hypochondrium, and bowel sounds are present. Urinalysis reveals amylase 3+ with glucose 2+.
What is the most likely diagnosis?Your Answer:
Correct Answer: Acute pancreatitis
Explanation:Possible Causes of Acute Abdominal Pain with Radiation to the Back
The occurrence of acute abdominal pain with radiation to the back can be indicative of two possible conditions: a dissection or rupture of an aortic aneurysm or pancreatitis. However, the presence of amylase in the urine suggests that the latter is more likely. Pancreatitis is a condition characterized by inflammation of the pancreas, which can cause severe abdominal pain that radiates to the back. The presence of amylase in the urine is a common diagnostic marker for pancreatitis.
In addition, acute illness associated with pancreatitis can lead to impaired insulin release and increased gluconeogenesis, which can cause elevated glucose levels. Therefore, glucose levels may also be monitored in patients with suspected pancreatitis. It is important to promptly diagnose and treat pancreatitis as it can lead to serious complications such as pancreatic necrosis, sepsis, and organ failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
Which of the following structures separates the subclavian artery from the subclavian vein?
And for the age change:
Which of the following structures separates the subclavian artery from the subclavian vein in a 30-year-old patient?Your Answer:
Correct Answer: Scalenus anterior
Explanation:The scalenus anterior muscle separates the artery and vein. It originates from the transverse processes of C3, C4, C5, and C6 and inserts onto the scalene tubercle of the first rib.
The Subclavian Artery: Origin, Path, and Branches
The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.
From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.
The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.
In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)