00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and...

    Incorrect

    • Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and swollen ankles that have been worsening for the past four months. During the consultation, the doctor observes that Sarah is using more pillows than usual. She has a medical history of hypertension, hypercholesterolemia, type 2 diabetes mellitus, and a previous myocardial infarction. The doctor also notices a raised jugular venous pressure (JVP) and suspects congestive heart failure. What would indicate a normal JVP?

      Your Answer: 5cm from the vertical height above the sternal angle

      Correct Answer: 2 cm from the vertical height above the sternal angle

      Explanation:

      The normal range for jugular venous pressure is within 3 cm of the vertical height above the sternal angle. This measurement is used to estimate central venous pressure by observing the internal jugular vein, which connects to the right atrium. To obtain this measurement, the patient is positioned at a 45º angle, the right internal jugular vein is observed between the two heads of sternocleidomastoid, and a ruler is placed horizontally from the highest pulsation point of the vein to the sternal angle, with an additional 5cm added to the measurement. A JVP measurement greater than 3 cm from the sternal angle may indicate conditions such as right-sided heart failure, cardiac tamponade, superior vena cava obstruction, or fluid overload.

      Understanding the Jugular Venous Pulse

      The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.

      The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.

      The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.

      Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      15.2
      Seconds
  • Question 2 - A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty...

    Incorrect

    • A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty exercising. After undergoing various tests, including echocardiography and right heart catheterization, it is determined that he has pulmonary arterial hypertension (PAH) with a mean pulmonary artery pressure of 35 mmhg and a pulmonary capillary wedge pressure of 8mmhg. One of the medications prescribed for him is ambrisentan. What is the mechanism of action of this drug?

      Your Answer: Prostaglandin (PGE2) analogue

      Correct Answer: Endothelin-1 receptor antagonist

      Explanation:

      Ambrisentan is an antagonist of endothelin-1 receptors, which are involved in vasoconstriction. In pulmonary arterial hypertension (PAH), the expression of endothelin-1 is increased, leading to constriction of blood vessels. Ambrisentan selectively targets ETA receptors found in vascular smooth muscle, reducing morbidity and mortality in PAH patients. Common side effects include peripheral edema, sinusitis, flushing, and nasal congestion. Prostacyclins like PGI2 can also be used to manage PPH by dilating blood vessels and inhibiting platelet aggregation. PGE2, an inflammatory mediator, is not used in PAH treatment. PDE inhibitors like sildenafil increase cGMP levels in pulmonary vessels, relaxing vascular smooth muscle and reducing pulmonary artery pressure.

      Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.

      The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.

      Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.

    • This question is part of the following fields:

      • Cardiovascular System
      22.2
      Seconds
  • Question 3 - As a doctor on the cardiology ward, I am currently treating a 50-year-old...

    Correct

    • As a doctor on the cardiology ward, I am currently treating a 50-year-old patient who was admitted due to syncope and dyspnoea. The patient has just returned from an echocardiography which revealed a pedunculated mass. What is the most probable primary tumor that this patient is suffering from?

      Your Answer: Myxoma

      Explanation:

      Atrial myxoma is the most frequently occurring primary cardiac tumor.

      Primary cardiac tumors are uncommon, and among them, myxomas are the most prevalent. Most of these tumors are benign and are found in the atria. Imaging typically reveals a pedunculated mass.

      The remaining options are also primary cardiac tumors.

      Atrial Myxoma: Overview and Features

      Atrial myxoma is a primary cardiac tumor that is commonly found in the left atrium, with 75% of cases occurring in this area. It is more prevalent in females and is often attached to the fossa ovalis. Symptoms of atrial myxoma include dyspnea, fatigue, weight loss, pyrexia of unknown origin, and clubbing. Emboli and atrial fibrillation may also occur. A mid-diastolic murmur, known as a tumor plop, may be present. Diagnosis is typically made through echocardiography, which shows a pedunculated heterogeneous mass attached to the fossa ovalis region of the interatrial septum.

    • This question is part of the following fields:

      • Cardiovascular System
      13.1
      Seconds
  • Question 4 - A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her...

    Incorrect

    • A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her blood pressure to be 152/91 mmHg. She is curious about her condition and asks her GP to explain the physiology of blood pressure. Can you tell me where the baroreceptors that detect blood pressure are located in the body?

      Your Answer: Carotid body

      Correct Answer: Carotid sinus

      Explanation:

      The carotid sinus, located just above the point where the internal and external carotid arteries divide, houses baroreceptors that sense the stretching of the artery wall. These baroreceptors are connected to the glossopharyngeal nerve (cranial nerve IX). The nerve fibers then synapse in the solitary nucleus of the medulla, which regulates the activity of sympathetic and parasympathetic neurons. This, in turn, affects the heart and blood vessels, leading to changes in blood pressure.

      Similarly, the aortic arch also has baroreceptors that are connected to the aortic nerve. This nerve combines with the vagus nerve (X) and travels to the solitary nucleus.

      In contrast, the carotid body, located near the carotid sinus, contains chemoreceptors that detect changes in the levels of oxygen and carbon dioxide in the blood.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      18.3
      Seconds
  • Question 5 - A 67-year-old man with a stable angina history for two years visits his...

    Incorrect

    • A 67-year-old man with a stable angina history for two years visits his cardiologist for a regular check-up. During the review, the cardiologist observes that the patient's heart rate is low at 46 bpm. As a result, the cardiologist decides to replace his beta-blocker with a new anti-anginal drug called nicorandil.

      What is the mode of action of the patient's new medication?

      Your Answer: Potassium channel inhibitor through deactivation of guanylyl cyclase

      Correct Answer: Potassium channel activator through activation of guanylyl cyclase

      Explanation:

      Nicorandil activates potassium channels, leading to vasodilation. This activation triggers guanylyl cyclase, which increases the production of cyclic GMP (cGMP) and activates protein kinase G (PKG). PKG phosphorylates and inhibits GTPase RhoA, reducing Rho-kinase activity and increasing myosin phosphatase activity. As a result, the smooth muscle becomes less sensitive to calcium, leading to dilation of the large coronary arteries and improved perfusion. Nicorandil does not significantly affect calcium or sodium channels. This mechanism helps alleviate anginal symptoms.

      Nicorandil is a medication that is commonly used to treat angina. It works by activating potassium channels, which leads to vasodilation. This process is achieved through the activation of guanylyl cyclase, which results in an increase in cGMP. However, there are some adverse effects associated with the use of nicorandil, including headaches, flushing, and the development of ulcers on the skin, mucous membranes, and eyes. Additionally, gastrointestinal ulcers, including anal ulceration, may also occur. It is important to note that nicorandil should not be used in patients with left ventricular failure.

    • This question is part of the following fields:

      • Cardiovascular System
      19.5
      Seconds
  • Question 6 - A 39-year-old woman is being evaluated for progressive dyspnea and is found to...

    Incorrect

    • A 39-year-old woman is being evaluated for progressive dyspnea and is found to have primary pulmonary hypertension. She is prescribed bosentan. What is the mode of action of bosentan?

      Your Answer: Slow calcium channel blocker

      Correct Answer: Endothelin receptor antagonist

      Explanation:

      Bosentan is an antagonist of the endothelin-1 receptor.

      Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.

      The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.

      Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.

    • This question is part of the following fields:

      • Cardiovascular System
      9.5
      Seconds
  • Question 7 - A 67-year-old woman visits her GP for a routine hypertension check-up. She has...

    Incorrect

    • A 67-year-old woman visits her GP for a routine hypertension check-up. She has been on amlodipine for a year and her blood pressure is under control, but she frequently experiences ankle swelling. The swelling is more pronounced towards the end of the day since she started taking amlodipine. The GP decides to switch her medication to a diuretic. Which diuretic targets the sodium-chloride transporter in the distal tubule?

      Your Answer: Furosemide (loop diuretic)

      Correct Answer: Bendroflumethiazide (thiazide diuretic)

      Explanation:

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      12.7
      Seconds
  • Question 8 - Which of the following complications is the least commonly associated with ventricular septal...

    Incorrect

    • Which of the following complications is the least commonly associated with ventricular septal defects in pediatric patients?

      Your Answer: Infective endocarditis

      Correct Answer: Atrial fibrillation

      Explanation:

      Understanding Ventricular Septal Defect

      Ventricular septal defect (VSD) is a common congenital heart disease that affects many individuals. It is caused by a hole in the wall that separates the two lower chambers of the heart. In some cases, VSDs may close on their own, but in other cases, they require specialized management.

      There are various causes of VSDs, including chromosomal disorders such as Down’s syndrome, Edward’s syndrome, Patau syndrome, and cri-du-chat syndrome. Congenital infections and post-myocardial infarction can also lead to VSDs. The condition can be detected during routine scans in utero or may present post-natally with symptoms such as failure to thrive, heart failure, hepatomegaly, tachypnea, tachycardia, pallor, and a pansystolic murmur.

      Management of VSDs depends on the size and symptoms of the defect. Small VSDs that are asymptomatic may require monitoring, while moderate to large VSDs may result in heart failure and require nutritional support, medication for heart failure, and surgical closure of the defect.

      Complications of VSDs include aortic regurgitation, infective endocarditis, Eisenmenger’s complex, right heart failure, and pulmonary hypertension. Eisenmenger’s complex is a severe complication that results in cyanosis and clubbing and is an indication for a heart-lung transplant. Women with pulmonary hypertension are advised against pregnancy as it carries a high risk of mortality.

      In conclusion, VSD is a common congenital heart disease that requires specialized management. Early detection and appropriate treatment can prevent severe complications and improve outcomes for affected individuals.

    • This question is part of the following fields:

      • Cardiovascular System
      9
      Seconds
  • Question 9 - A 65-year-old patient presents with sudden onset of chest pain, ankle edema, and...

    Correct

    • A 65-year-old patient presents with sudden onset of chest pain, ankle edema, and difficulty breathing. The diagnosis is heart failure. Which of the following is the cause of the inadequate response of his stroke volume?

      Your Answer: Preload

      Explanation:

      The response of stroke volume in a normal heart to changes in preload is governed by Starling’s Law. This means that an increase in end diastolic volume in the left ventricle should result in a higher stroke volume, as the cardiac myocytes stretch. However, this effect has a limit, as seen in cases of heart failure where excessive stretch of the cardiac myocytes prevents this response.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      7.7
      Seconds
  • Question 10 - What is the mechanism of action of dipyridamole when prescribed alongside aspirin for...

    Correct

    • What is the mechanism of action of dipyridamole when prescribed alongside aspirin for a 70-year-old man who has had an ischaemic stroke?

      Your Answer: Phosphodiesterase inhibitor

      Explanation:

      Although Dipyridamole is commonly referred to as a non-specific phosphodiesterase inhibitor, it has been found to have a strong effect on PDE5 (similar to sildenafil) and PDE6. Additionally, it reduces the uptake of adenosine by cells.

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      9.4
      Seconds
  • Question 11 - A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at...

    Correct

    • A 58-year-old man has an out-of-hospital cardiac arrest and is pronounced dead at the scene. A post-mortem examination is carried out to determine the cause of death, which demonstrates 90% stenosis of the left anterior descending artery.

      What is the ultimate stage in the development of this stenosis?

      Your Answer: Smooth muscle proliferation and migration from the tunica media into the intima

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      11.8
      Seconds
  • Question 12 - A 75-year-old man has been experiencing illness for several years and after his...

    Correct

    • A 75-year-old man has been experiencing illness for several years and after his passing, an autopsy is conducted. Microscopic examination of tissue samples reveals the presence of apple green birefringence under polarised light in sections of the myocardium. What is the probable diagnosis?

      Your Answer: Amyloidosis

      Explanation:

      When viewed under polarised light, amyloidosis exhibits a distinctive apple green birefringence.

      Understanding Amyloid: Protein Deposits that Affect Tissue Structure and Function

      Amyloid refers to the accumulation of insoluble protein deposits outside of cells. These deposits can disrupt the normal structure of tissues and, if excessive, can impair their function. Amyloid is composed of a major fibrillar protein that defines its type, along with various minor components. The different types of amyloid are classified with the prefix A and a suffix that corresponds to the fibrillary protein present. The two main clinical types are AA and AL amyloidosis.

      Systemic AA amyloidosis is a long-term complication of several chronic inflammatory disorders, such as rheumatoid arthritis, ankylosing spondylitis, Crohn’s disease, malignancies, and conditions that predispose individuals to recurrent infections. On the other hand, AL amyloidosis results from the deposition of fibril-forming monoclonal immunoglobulin light chains, most commonly of lambda isotype, outside of cells. Most patients with AL amyloidosis have evidence of isolated monoclonal gammopathy or asymptomatic myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The kidney and heart are two of the most commonly affected sites.

      Diagnosis of amyloidosis is based on surgical biopsy and characteristic histological features, which consist of birefringence under polarised light. Immunohistochemistry is used to determine the subtype. Treatment is usually targeted at the underlying cause. Understanding amyloid and its different types is crucial in the diagnosis and management of patients with amyloidosis.

    • This question is part of the following fields:

      • Cardiovascular System
      12.4
      Seconds
  • Question 13 - A 36-year-old woman presents to her GP with a history of long-standing fatigue,...

    Incorrect

    • A 36-year-old woman presents to her GP with a history of long-standing fatigue, dyspnea, and chest discomfort that has recently worsened. Despite being physically active, she has been experiencing these symptoms. She is a social drinker and does not smoke. Her family history is unremarkable except for her mother who died of 'chest disease' at the age of 50. During examination, her observations are as follows:

      Blood pressure: 135/85mmHg
      Pulse: 95 beats/min
      Respiration: 25 breaths/min

      An ECG shows no abnormalities, and cardiac enzymes are within normal ranges. She is referred for echocardiography, which reveals a right pulmonary artery pressure of 35 mmhg.

      What substance is elevated in this patient, underlying the disease process?

      Your Answer: Interleukin-1 (IL-1)

      Correct Answer: Endothelin

      Explanation:

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      23.6
      Seconds
  • Question 14 - A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is...

    Incorrect

    • A 65-year-old man is admitted after experiencing an acute coronary syndrome. He is prescribed aspirin, clopidogrel, nitrates, and morphine. Due to his high 6-month risk score, percutaneous coronary intervention is planned and he is given intravenous tirofiban. What is the mechanism of action of this medication?

      Your Answer: Coronary vasodilator

      Correct Answer: Glycoprotein IIb/IIIa receptor antagonist

      Explanation:

      Glycoprotein IIb/IIIa Receptor Antagonists

      Glycoprotein IIb/IIIa receptor antagonists are a class of drugs that inhibit the function of the glycoprotein IIb/IIIa receptor, which is found on the surface of platelets. These drugs are used to prevent blood clots from forming in patients with acute coronary syndrome, unstable angina, or during percutaneous coronary intervention (PCI).

      Examples of glycoprotein IIb/IIIa receptor antagonists include abciximab, eptifibatide, and tirofiban. These drugs work by blocking the binding of fibrinogen to the glycoprotein IIb/IIIa receptor, which prevents platelet aggregation and the formation of blood clots.

      Glycoprotein IIb/IIIa receptor antagonists are typically administered intravenously and are used in combination with other antiplatelet agents, such as aspirin and clopidogrel. While these drugs are effective at preventing blood clots, they can also increase the risk of bleeding. Therefore, careful monitoring of patients is necessary to ensure that the benefits of these drugs outweigh the risks.

    • This question is part of the following fields:

      • Cardiovascular System
      19.8
      Seconds
  • Question 15 - A 63-year-old woman comes to her doctor for a review of her angina...

    Incorrect

    • A 63-year-old woman comes to her doctor for a review of her angina medication. She expresses worry about her condition and inquires about the cause of the narrowing of her coronary arteries.

      What alteration takes place during the progression of atherosclerosis?

      Your Answer: Infiltration of the tunica externa by LDL particles

      Correct Answer: Fatty infiltration of the subendothelial space

      Explanation:

      The subendothelial space is where fatty infiltration takes place.

      Foam cells are created by the ingestion of LDLs, not HDLs.

      Infiltration does not occur in the tunica externa, but rather in the subendothelial space.

      Smooth muscle proliferation occurs, not hypertrophy.

      Endothelial dysfunction leads to a decrease in nitric oxide bioavailability.

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      14.6
      Seconds
  • Question 16 - A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding...

    Correct

    • A 3-week-old male is brought to the paediatrician with concerns of inadequate feeding and weight gain. During cardiac examination, a continuous 'machine-like' murmur is detected. An echocardiogram confirms the presence of a patent ductus arteriosus (PDA).

      What is the name of the structure that would remain if the PDA had closed at birth?

      Your Answer: Ligamentum arteriosum

      Explanation:

      The ligamentum arteriosum is what remains of the ductus arteriosus after it typically closes at birth. If the ductus arteriosus remains open, known as a patent ductus arteriosus, it can cause infants to fail to thrive. The ventricles of the heart come from the bulbus cordis and primitive ventricle. The coronary sinus is formed by a group of cardiac veins merging together. The ligamentum venosum is the leftover of the ductus venosum. The fossa ovalis is created when the foramen ovale closes.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      19.4
      Seconds
  • Question 17 - Where is troponin T located within the body? ...

    Correct

    • Where is troponin T located within the body?

      Your Answer: Heart

      Explanation:

      Troponin and Its Significance in Cardiac Health

      Troponin is an enzyme that is specific to the heart and is used to detect injury to the heart muscle. It is commonly measured in patients who present with chest pain that may be related to heart problems. Elevated levels of troponin can indicate a heart attack or other acute coronary syndromes. However, it is important to note that troponin levels may also be slightly elevated in other conditions such as renal failure, cardiomyopathy, myocarditis, and large pulmonary embolism.

      Troponin is a crucial marker in the diagnosis and management of cardiac conditions. It is a reliable indicator of heart muscle damage and can help healthcare professionals determine the best course of treatment for their patients. Additionally, troponin levels can provide prognostic information, allowing doctors to predict the likelihood of future cardiac events. It is important for individuals to understand the significance of troponin in their cardiac health and to seek medical attention if they experience any symptoms of heart problems.

    • This question is part of the following fields:

      • Cardiovascular System
      3.7
      Seconds
  • Question 18 - A 50-year-old man is brought to the hospital after a head-on collision. Upon...

    Incorrect

    • A 50-year-old man is brought to the hospital after a head-on collision. Upon initial resuscitation, a chest X-ray reveals a widened mediastinum. An urgent CT aortogram confirms a traumatic aortic rupture.

      Where is the most probable location for a traumatic aortic rupture to occur?

      Your Answer: Abdominal aorta

      Correct Answer: Proximal descending aorta distal to origin of left subclavian artery (aortic isthmus)

      Explanation:

      Although the aorta can be ruptured by trauma at any location, the aortic isthmus (the section of the proximal descending aorta located below the left subclavian artery) is the most frequent site of rupture resulting from deceleration injuries.

      Thoracic Aorta Rupture: Causes, Symptoms, Diagnosis, and Treatment

      Thoracic aorta rupture is a life-threatening condition that occurs due to decelerating force, such as a road traffic accident or a fall from a great height. Most people die at the scene, while survivors may have an incomplete laceration at the ligamentum arteriosum of the aorta. The clinical features of thoracic aorta rupture include a contained hematoma and persistent hypotension, which can be detected mainly by history and changes in chest X-rays. The X-ray changes include a widened mediastinum, trachea/esophagus to the right, depression of the left main stem bronchus, widened paratracheal stripe/paraspinal interfaces, obliteration of the space between the aorta and pulmonary artery, and rib fracture/left hemothorax.

      The diagnosis of thoracic aorta rupture is usually made through angiography, with CT aortogram being the preferred method. Treatment involves repair or replacement of the ruptured aorta, with endovascular repair being the ideal option. In summary, thoracic aorta rupture is a serious condition that requires prompt diagnosis and treatment to prevent fatal outcomes.

    • This question is part of the following fields:

      • Cardiovascular System
      14.5
      Seconds
  • Question 19 - What is the most suitable pathological explanation for the initial processes that occur...

    Correct

    • What is the most suitable pathological explanation for the initial processes that occur in an abdominal aortic aneurysm in a 67-year-old male with hypertension who is otherwise healthy?

      Your Answer: Loss of elastic fibres from the media

      Explanation:

      Aneurysmal disease is characterized by the expansion of all layers of the arterial wall and the depletion of both elastin and collagen. The initial occurrence involves the breakdown of elastic fibers, which leads to the deterioration of collagen fibers.

      Understanding the Pathology of Abdominal Aortic Aneurysm

      Abdominal aortic aneurysms occur when the elastic proteins within the extracellular matrix fail, resulting in the dilation of all layers of the arterial wall. This degenerative disease is primarily caused by the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration. Aneurysms are typically considered aneurysmal when the diameter of the infrarenal aorta is 3 cm or greater, which is significantly larger than the normal diameter of 1.5cm in females and 1.7cm in males after the age of 50 years.

      Smoking and hypertension are major risk factors for the development of aneurysms, while rare but important causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. Understanding the pathology of abdominal aortic aneurysm is crucial in identifying and managing the risk factors associated with this condition. By addressing these risk factors, individuals can reduce their likelihood of developing an aneurysm and improve their overall health.

    • This question is part of the following fields:

      • Cardiovascular System
      12
      Seconds
  • Question 20 - A 49-year-old male has sustained a facial burn at work. During the morning...

    Incorrect

    • A 49-year-old male has sustained a facial burn at work. During the morning ward round, it is observed in the surgeon's notes that the facial artery has good arterial blood supply, leading to hope for satisfactory healing. What is the name of the major artery that the facial artery branches off from?

      Your Answer: Internal carotid artery

      Correct Answer: External carotid artery

      Explanation:

      The facial artery is the primary source of blood supply to the face, originating from the external carotid artery after the lingual artery. It follows a winding path and terminates as the angular artery at the inner corner of the eye.

      The internal carotid artery provides blood to the front and middle parts of the brain, while the vertebral artery, a branch of the subclavian artery, supplies the spinal cord, cerebellum, and back part of the brain. The brachiocephalic artery supplies the right side of the head and arm, giving rise to the subclavian and common carotid arteries on the right side.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      13.6
      Seconds
  • Question 21 - Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother...

    Incorrect

    • Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother has observed that Sophie has been experiencing shortness of breath for the past 3 weeks, particularly during feeding. Sophie was born at 36 weeks and her mother reports no other issues since birth.

      During the examination, a continuous machinery murmur with a left-sided sub-clavicular thrill is detected, and a diagnosis of patent ductus arteriosus is made. Surgery is not deemed necessary, but a medication that inhibits prostaglandin synthesis is recommended.

      What is the most probable pharmacological treatment that will be offered?

      Your Answer: Bisoprolol

      Correct Answer: Indomethacin

      Explanation:

      The inhibition of prostaglandin synthesis in infants with patent ductus arteriosus is achieved through the use of indomethacin. This medication (or ibuprofen) is effective in promoting closure of the ductus arteriosus by inhibiting prostaglandin synthesis.

      Beta-blockers such as bisoprolol are not used in the management of PDA, making this answer incorrect.

      Steroids like dexamethasone and prednisolone are not typically used in the treatment of PDA, although they may be given to the mother if premature delivery is expected. Therefore, these answers are also incorrect.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      15.7
      Seconds
  • Question 22 - A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical...

    Incorrect

    • A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical examination, an irregular pulsatile hepatomegaly and a pansystolic murmur that is most pronounced during inspiration are detected. What diagnostic test could provide insight into the probable underlying condition?

      Your Answer: Echocardiogram

      Correct Answer: Urinary 5-HIAA (5-hydroxyindole acetic acid)

      Explanation:

      Carcinoid Syndrome and its Diagnosis

      Carcinoid syndrome is characterized by the presence of vasoactive amines such as serotonin in the bloodstream, leading to various clinical features. The primary carcinoid tumor is usually found in the small intestine or appendix, but it may not cause significant symptoms as the liver detoxifies the blood of these amines. However, systemic effects occur when malignant cells spread to other organs, such as the lungs, which are not part of the portal circulation. One of the complications of carcinoid syndrome is damage to the right heart valves, which can cause tricuspid regurgitation, as evidenced by a pulsatile liver and pansystolic murmur.

      To diagnose carcinoid syndrome, the 5-HIAA test is usually performed, which measures the breakdown product of serotonin in a 24-hour urine collection. If the test is positive, imaging and histology are necessary to confirm malignancy.

    • This question is part of the following fields:

      • Cardiovascular System
      15.2
      Seconds
  • Question 23 - Mrs. Green is a 64-year-old woman with colon cancer. She is undergoing adjuvant...

    Incorrect

    • Mrs. Green is a 64-year-old woman with colon cancer. She is undergoing adjuvant chemotherapy, however in the past six months has suffered four deep vein thrombosis (DVT) events, despite being optimally anticoagulated with the maximum dose of dabigatran. On one occasion she suffered a DVT during treatment with dalteparin (a low molecular weight heparin). She has been admitted with symptoms of another DVT.

      What is the recommended treatment for her current DVT?

      Your Answer: Add apixaban to his prescription

      Correct Answer: Insert an inferior vena caval filter

      Explanation:

      For patients with recurrent venous thromboembolic disease, an inferior vena cava filter may be considered. This is particularly relevant for patients with cancer who have experienced multiple DVTs despite being fully anticoagulated. Before considering an inferior vena cava filter, alternative treatments such as increasing the target INR to 3-4 for long-term high-intensity oral anticoagulant therapy or switching to LMWH should be considered. This recommendation is in line with NICE guidelines on the diagnosis, management, and thrombophilia testing of venous thromboembolic diseases. Prescribing apixaban, increasing the dose of dabigatran off-license, or prescribing Thrombo-Embolic Deterrent (TED) stockings are not appropriate solutions for this patient. Similarly, initiating end-of-life drugs and preparing the family is not indicated based on the clinical description provided.

      Management of Pulmonary Embolism

      Pulmonary embolism (PE) is a serious condition that requires prompt management. The National Institute for Health and Care Excellence (NICE) updated their guidelines on the management of venous thromboembolism (VTE) in 2020, with some key changes. One of the significant changes is the recommendation to use direct oral anticoagulants (DOACs) as the first-line treatment for most people with VTE, including those with active cancer. Another change is the increasing use of outpatient treatment for low-risk PE patients, determined by a validated risk stratification tool.

      Anticoagulant therapy is the cornerstone of VTE management. The guidelines recommend using apixaban or rivaroxaban as the first-line treatment for PE, followed by LMWH, dabigatran, edoxaban, or a vitamin K antagonist (VKA) if necessary. For patients with active cancer, DOACs are now recommended instead of LMWH. The length of anticoagulation depends on whether the VTE was provoked or unprovoked, with treatment typically lasting for at least three months. Patients with unprovoked VTE may continue treatment for up to six months, depending on their risk of recurrence and bleeding.

      In cases of haemodynamic instability, thrombolysis is recommended as the first-line treatment for massive PE with circulatory failure. Other invasive approaches may also be considered where appropriate facilities exist. Patients who have repeat pulmonary embolisms, despite adequate anticoagulation, may be considered for inferior vena cava (IVC) filters. However, the evidence base for IVC filter use is weak, and further studies are needed.

    • This question is part of the following fields:

      • Cardiovascular System
      22.1
      Seconds
  • Question 24 - A 79-year-old man has just noticed that his heart is beating irregularly. Upon...

    Incorrect

    • A 79-year-old man has just noticed that his heart is beating irregularly. Upon examination, his pulse is found to be irregularly irregular with a rate of 56 bpm. What ECG findings would you anticipate?

      Your Answer: A P wave preceding each QRS complex

      Correct Answer: No P wave preceding each QRS complex

      Explanation:

      Atrial Fibrillation and its Causes

      Atrial fibrillation (AF) is a condition characterized by irregular heartbeats due to the constant activity of the atria. This can lead to the absence of distinct P waves, making it difficult to diagnose. AF can be caused by various factors such as hyperthyroidism, alcohol excess, mitral stenosis, and fibrous degeneration. The primary risks associated with AF are strokes and cardiac failure. Blood clots can form in the atria due to the lack of atrial movement, which can then be distributed into the systemic circulation, leading to strokes. High rates of AF can also cause syncopal episodes and cardiac failure.

      The treatment of AF can be divided into controlling the rate or rhythm. If the rhythm cannot be controlled reliably, long-term anticoagulation with warfarin may be necessary to reduce the risk of stroke, depending on other risk factors. Bifid P waves are associated with hypertrophy of the left atrium, while regular P waves with no relation to QRS complexes are seen in complete heart block. Small P waves can be seen in hypokalaemia.

      In cases of AF with shock, immediate medical attention is necessary, and emergency drug or electronic cardioversion may be needed. the causes and risks associated with AF is crucial in managing the condition and preventing complications.

    • This question is part of the following fields:

      • Cardiovascular System
      14.8
      Seconds
  • Question 25 - A 45-year-old man undergoes a routine medical exam and his blood pressure is...

    Incorrect

    • A 45-year-old man undergoes a routine medical exam and his blood pressure is measured at 155/95 mmHg, which is unusual as it has been normal for the past five annual check-ups. What could be the reason for this sudden change?

      Your Answer: The patient talking during the reading

      Correct Answer: An undersized blood pressure cuff

      Explanation:

      Ensuring Accurate Blood Pressure Measurements

      Blood pressure is a crucial physiological measurement in medicine, and it is essential to ensure that the values obtained are accurate. Inaccurate readings can occur due to various reasons, such as using the wrong cuff size, incorrect arm positioning, and unsupported arms. For instance, using a bladder that is too small can lead to an overestimation of blood pressure, while using a bladder that is too large can result in an underestimation of blood pressure. Similarly, lowering the arm below heart level can lead to an overestimation of blood pressure, while elevating the arm above heart level can result in an underestimation of blood pressure.

      It is recommended to measure blood pressure in both arms when considering a diagnosis of hypertension. If there is a difference of more than 20 mmHg between the readings obtained from both arms, the measurements should be repeated. If the difference remains greater than 20 mmHg, subsequent blood pressures should be recorded from the arm with the higher reading. By following these guidelines, healthcare professionals can ensure that accurate blood pressure measurements are obtained, which is crucial for making informed medical decisions.

    • This question is part of the following fields:

      • Cardiovascular System
      19.5
      Seconds
  • Question 26 - A 42-year-old man presents to the emergency department with gradual-onset central chest pain....

    Incorrect

    • A 42-year-old man presents to the emergency department with gradual-onset central chest pain. The pain is 7/10 in severity and started six hours ago. He reports no shortness of breath or haemoptysis. The pain worsens when taking a deep breath in and improves when leaning forward.

      The patient has no significant medical history and is not taking any regular medications, but he recently completed a course of amoxicillin for an upper respiratory tract infection. His grandfather died of a heart attack at the age of 84. He has a smoking history of 3 pack-years but currently does not smoke or drink alcohol. He has not traveled recently. During a recent well man check at his GP, his 10-year QRISK score was determined to be 3%.

      On examination, the patient appears comfortable at rest. His heart rate is 88/min, blood pressure is 136/78 mmHg, oxygen saturation is 98% on air, respiratory rate is 16 breaths per minute, and temperature is 36.8ºC. No additional heart sounds are heard, and lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present.

      An ECG taken on admission shows concave ST-segment elevation and PR depression present in all leads.

      What is the most likely diagnosis?

      Your Answer: Pulmonary embolism

      Correct Answer: Pericarditis

      Explanation:

      The most likely diagnosis for a patient with global ST and PR segment changes is pericarditis. This condition is characterized by inflammation of the pericardium, which often occurs after a respiratory illness. Patients with pericarditis typically experience sharp chest pain that worsens with inspiration or lying down and improves when leaning forward.

      While benign early repolarization (BER) can also cause ST elevation, it is less likely in this case as the patient’s symptoms are more consistent with pericarditis. Additionally, BER often presents with a fish hook pattern on the ECG.

      Infective endocarditis, pulmonary embolism (PE), and myocardial infarction (MI) are less likely diagnoses. Infective endocarditis typically presents with fever and a murmur, while PE is associated with tachycardia, haemoptysis, and signs of deep vein thrombosis. MI is usually confined to a specific territory on the ECG and is unlikely in a patient with low cardiac risk factors.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      14.3
      Seconds
  • Question 27 - A 57-year-old woman visits her doctor with complaints of flushing and warmth. She...

    Correct

    • A 57-year-old woman visits her doctor with complaints of flushing and warmth. She has been in good health lately, except for a stomach bug she had two weeks ago. Her medical history includes hyperlipidemia, hypertension, myocardial infarction, and type II diabetes mellitus. Although she used to smoke, she has quit and does not drink alcohol. She lives with her husband in a bungalow.

      During the consultation, she reveals that her cardiologist recently prescribed niacin to her. Her recent lab results show an increase in total cholesterol.

      Which of the following is responsible for the adverse effects observed in this patient?

      Substance P
      15%
      Bradykinin
      20%
      Prostaglandins
      48%
      Serotonin
      9%
      Kallikreins
      8%

      The adverse effects of niacin, such as flushing, warmth, and itching, are caused by prostaglandins.

      Your Answer: Prostaglandins

      Explanation:

      The adverse effects of niacin, such as flushing, warmth, and itchiness, are caused by the release of prostaglandins. Niacin activates dermal Langerhans cells, which leads to an increase in prostaglandin release and subsequent vasodilation. To prevent these side effects, aspirin is often given 30 minutes before niacin administration. Aspirin works by altering the activity of COX-2, which reduces prostaglandin release.

      Substance P acts as a neurotransmitter in the central nervous system, and its neurokinin (NK) receptor 1 is found in specific areas of the brain that affect behavior and the neurochemical response to both psychological and somatic stress.

      Bradykinin is an inflammatory mediator that causes vasodilation, but it is not responsible for the adverse effects seen with niacin use.

      Serotonin is a neurotransmitter that plays a role in regulating various processes in the brain. Low levels of serotonin are often associated with anxiety, panic attacks, obesity, and insomnia. However, serotonin does not mediate the side effects observed with niacin use.

      Nicotinic acid, also known as niacin, is a medication used to treat hyperlipidaemia. It is effective in reducing cholesterol and triglyceride levels while increasing HDL levels. However, its use is limited due to the occurrence of side-effects. One of the most common side-effects is flushing, which is caused by prostaglandins. Additionally, nicotinic acid may impair glucose tolerance and lead to myositis.

    • This question is part of the following fields:

      • Cardiovascular System
      6
      Seconds
  • Question 28 - A 6-year-old boy is brought to the paediatrician by his parents due to...

    Correct

    • A 6-year-old boy is brought to the paediatrician by his parents due to a fever and sore throat that has been bothering him for the past 24 hours. The boy is experiencing significant discomfort in his throat and has been refusing to eat or drink. He does not report having a cough or a runny nose. The boy was delivered via spontaneous vaginal delivery and has been developing normally. He has two healthy older siblings. During the examination, the doctor observes that the boy's tonsils are inflamed and enlarged, with some white exudates, as well as enlarged cervical lymph nodes. The boy's temperature is 38.2 °C. The doctor informs the parents that the boy requires antibiotics to treat the current infection and prevent the risk of a severe complication commonly associated with this particular infection. What complication can be prevented with prompt antibiotic treatment?

      Your Answer: Acute rheumatic fever

      Explanation:

      Pharyngitis is the likely diagnosis for this patient based on their presenting symptoms. Group A streptococcus, also known as Streptococcus pyogenes, is a common cause of pharyngitis in young patients. One of the most concerning complications of this infection is acute rheumatic fever, which can lead to damage to the heart valves. Early antibiotic treatment can prevent the development of this serious condition.

      1: Septicemia can result from various bacterial infections, but it is not typically associated with Group A streptococcal pharyngitis. Additionally, septicemia is rare in patients with this type of pharyngitis, as the condition usually resolves on its own without treatment.

      2: Acute rheumatic fever is a serious complication of Group A streptococcal pharyngitis. It is an immune system reaction that damages the heart valves, particularly the mitral valve. Mitral valve regurgitation is common in the early stages of the disease, followed by mitral stenosis later on.

      3: Post-streptococcal glomerulonephritis is another possible complication of Group A streptococcal pharyngitis. Unlike acute rheumatic fever, however, prompt antibiotic treatment does not prevent its development.

      4: While Group A streptococcus can cause cellulitis, this is a separate condition from pharyngitis and is not a complication of the same bacterial infection.

      5:

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      3.2
      Seconds
  • Question 29 - A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She...

    Correct

    • A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She has left-sided heart failure and her recent echo revealed a reduced ejection fraction. She complains of nocturnal breathlessness and needing multiple pillows to sleep.

      She is prescribed bisoprolol and another medication with the explanation that it will help decrease mortality.

      What is the probable medication she has been prescribed?

      Your Answer: Ramipril

      Explanation:

      In the treatment of heart failure, medications are used to improve the heart’s ability to pump blood effectively. Beta blockers, such as bisoprolol, are commonly prescribed to slow the heart rate and improve filling. The first-line drugs for heart failure are beta blockers and ACE inhibitors. Therefore, the patient in question will be prescribed an ACE inhibitor, such as ramipril, as the second drug. Ramipril works by reducing venous resistance, making it easier for the heart to pump blood out, and lowering arterial pressures, which increases the heart’s pre-load.

      Carvedilol is not the correct choice for this patient. Although it can be used in heart failure, the patient is already taking a beta blocker, and adding another drug from the same class could cause symptomatic bradycardia or hypotension.

      Digoxin is not the appropriate choice either. While it can be used in heart failure, it should only be initiated by a specialist.

      Sacubitril-valsartan is also not the right choice for this patient. Although it is becoming more commonly used in heart failure patients, it should only be prescribed by a specialist after first and second-line treatment options have been exhausted.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      3.8
      Seconds
  • Question 30 - A 65-year-old man presents for a coronary angiogram due to worsening symptoms of...

    Incorrect

    • A 65-year-old man presents for a coronary angiogram due to worsening symptoms of unstable angina. The cardiologist observes multiple significant coronary stenoses, which are likely related to the patient's numerous risk factors, including hypertension, heavy smoking, hypercholesterolemia, and type 2 diabetes mellitus. What is the ultimate step in the development of this pathology?

      Your Answer:

      Correct Answer: Smooth muscle proliferation and migration

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (11/29) 38%
Passmed