00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 70-year-old male smoker complains of calf pain.

    The GP performs a clinical...

    Correct

    • A 70-year-old male smoker complains of calf pain.

      The GP performs a clinical test by raising the patient's legs and observing for the angle at which there is blanching. After one minute, the legs are lowered over the side of the couch so that they are fully dependent with feet on the floor. Reactive hyperaemia is observed.

      Which clinical test does this describe?

      Your Answer: Buerger's test

      Explanation:

      Tests for Assessing Arterial and Venous Circulation, Hip Dysfunction, and Meniscal Tear

      Buerger’s test is a method used to evaluate the arterial circulation of the lower limb. The test involves observing the angle at which blanching occurs, with a lower angle indicating a higher likelihood of arterial insufficiency. Additionally, the degree of reactive hyperaemia on dependency of the limb after one minute is another positive sign of arterial insufficiency during the test.

      Another test used to assess circulation is the Ankle-Brachial Pressure Index (ABPI), which involves using blood pressure cuffs to determine the degree of claudication. McMurray’s test, on the other hand, is used to evaluate for a meniscal tear within the knee joint.

      Perthe’s test is a method used to assess the patency of the deep femoral vein prior to varicose vein surgery. Lastly, Trendelenburg’s test is used to evaluate hip dysfunction. These tests are important in diagnosing and treating various conditions related to circulation and joint function.

    • This question is part of the following fields:

      • Basic Sciences
      15.2
      Seconds
  • Question 2 - A man in his forties comes in with chest pain resembling a heart...

    Incorrect

    • A man in his forties comes in with chest pain resembling a heart attack and is diagnosed with a myocardial infarction. During his hospitalization, it is discovered that he has familial hypercholesterolemia but his triglyceride levels are normal. What is the underlying biochemical abnormality?

      Your Answer: Decreased clearance of chylomicrons

      Correct Answer: Defective LDL receptors

      Explanation:

      Lipid Metabolism and Transport in the Body

      The breakdown of triglycerides in the small intestine is facilitated by pancreatic lipase. These triglycerides are then transported to the liver and other parts of the body through chylomicrons.

      Very low-density lipoprotein (VLDL) is responsible for carrying triglycerides from the liver to peripheral tissues. When there is an overproduction of VLDL in the liver, it can lead to high levels of triglycerides in the body.

      Pure hypercholesterolaemia is a condition that arises due to a defect in the process of cholesterol uptake into cells. This process relies on apolipoprotein B-100 binding to LDL receptors and facilitating endocytosis. When this process is disrupted, it can lead to high levels of cholesterol in the body.

    • This question is part of the following fields:

      • Basic Sciences
      33.8
      Seconds
  • Question 3 - In scientific experimentation, what is the term used to describe the movement of...

    Incorrect

    • In scientific experimentation, what is the term used to describe the movement of charged particles or solutes in a liquid medium due to an electric field?

      Your Answer: Chromatography

      Correct Answer: Electrophoresis

      Explanation:

      Electrophoresis: Separating Molecules Based on Charge and Mass

      Electrophoresis is a technique that separates solutes, molecules, or nucleic acids based on their mass and charge. It involves the migration of charged particles in a liquid medium under the influence of an electric field. The apparatus consists of two electrodes placed at either end of a support medium, or gel, which is suspended in a buffer solution. The sample is inserted into a well and a current is applied. Over time, positively charged solutes move towards the negative electrode, while negatively charged substances move towards the positive electrode. Once the migration is complete, the gel is removed and stained to color the substance being tested for, such as protein.

      This technique is widely used in medical testing, but it requires a higher degree of operational and interpretive skill than many other tests, which is why it often takes longer to get a result. Electrophoresis has various uses and adaptations, such as standard electrophoresis for protein detection in the diagnosis of myeloma, identification of unusual lipid fractions in patients with inherited diseases, and detection of viral DNA through Southern Blotting. There is also Northern blotting, primarily a research technique at present, which uses electrophoresis to separate RNA. Additionally, Western blotting is used to test for the presence of antibodies to DNA through protein separation.

    • This question is part of the following fields:

      • Basic Sciences
      10.6
      Seconds
  • Question 4 - What function does vitamin E serve in the body? ...

    Incorrect

    • What function does vitamin E serve in the body?

      Your Answer: Pro-inflammatory

      Correct Answer: Antioxidant

      Explanation:

      Vitamin E and its Functions

      Several substances are classified as vitamin E, with alpha-tocopherol being the most common, accounting for 90% of human vitamin E. Alpha-tocopherol is composed of two carbon rings and a long saturated hydrocarbon chain, making it hydrophobic. It has an aromatic ring with an OH- group attached to it. Other substances with vitamin E activity include other tocopherols and tocotrienols, all of which act as antioxidants. Alpha-tocopherol is particularly important in cell membranes, preventing the peroxidation of unsaturated fatty acids by free radicals. It also has other functions, such as regulating gene transcription, inhibiting clotting formation, reducing proliferation of vascular smooth muscle, and playing a role in immunity.

      Despite claims that taking vitamin E can reduce the risk of heart disease, cancer, and enhance sexual performance, there is currently no strong evidence to support these claims.

    • This question is part of the following fields:

      • Basic Sciences
      12.6
      Seconds
  • Question 5 - What are the typical clinical manifestations of a deficiency in vitamin B6 (pyridoxine)?...

    Incorrect

    • What are the typical clinical manifestations of a deficiency in vitamin B6 (pyridoxine)?

      Your Answer: Bleeding tendency

      Correct Answer: Sensory neuropathy

      Explanation:

      The Importance of Pyridoxine in the Body

      Pyridoxine is a group of B-vitamins that are crucial in various bodily functions. They act as essential cofactors in many reactions, particularly in the metabolism of amino acids and neurotransmitters. Pyridoxine also plays a role in regulating gene transcription and controlling steroid hormones.

      The body can produce pyridoxine through bacterial flora in the gut, and it is also present in many dietary sources. However, overheating certain foods can destroy pyridoxine, and some medications can alter its metabolism. Pyridoxine is also used therapeutically to prevent neuropathy in the treatment of tuberculosis.

      Deficiency in pyridoxine can lead to sensory neuropathy, skin changes, and damage to mucous membranes. On the other hand, deficiency in vitamin C can cause gingivitis and increased bleeding, while vitamin K deficiency can also lead to bleeding. Sleep disturbance is rarely attributed to vitamin B3 (niacin) deficiency.

      In summary, pyridoxine is a vital nutrient that plays a crucial role in various bodily functions. Its deficiency can lead to various health problems, highlighting the importance of maintaining adequate levels of this vitamin in the body.

    • This question is part of the following fields:

      • Basic Sciences
      18.7
      Seconds
  • Question 6 - What are the primary constituents of the cytoskeleton in eukaryotic cells? ...

    Correct

    • What are the primary constituents of the cytoskeleton in eukaryotic cells?

      Your Answer: Microfilaments, intermediate filaments and microtubules

      Explanation:

      The Eukaryotic Cytoskeleton: A Structural Support System

      The eukaryotic cytoskeleton is a network of structures that provide structural support to the cell. It helps the cell maintain its shape, protects it from external pressure, and performs intracellular transport. The cytoskeleton is made up of three major structures: microfilaments, intermediate filaments, and microtubules. Microfilaments are thin double helices made up of actin and are involved in pressure resistance and cell motility. Intermediate filaments have a more complex structure and maintain cell shape while bearing tension. Microtubules are hollow cylinders made up of alpha and beta tubulin proteins and are involved in intracellular transport, cell movement, and form the mitotic spindle during cytokinesis.

      Cilia, flagella, and lamellipodia are structures that are not part of the cell’s cytoskeleton but are made up of components of it and perform unique functions such as cell movement and extracellular sensing. Kinesin and dynein are motor proteins that support microtubule function. Microfilaments and alpha/beta microtubules are incorrect because they leave out intermediate filaments. Tubulin and actin are proteins of microtubules and microfilaments, respectively, but myosin is a motility protein involved in muscle contraction. The eukaryotic cytoskeleton is an essential component of the cell that provides structural support and enables various cellular functions.

    • This question is part of the following fields:

      • Basic Sciences
      51.5
      Seconds
  • Question 7 - What are the defining features of an amino acid? ...

    Correct

    • What are the defining features of an amino acid?

      Your Answer: It has the formula H2N - CHR - COOH where R is the variable group

      Explanation:

      The Versatility of Amino Acids and its Applications in Electrophoresis

      Amino acids are the building blocks of proteins and are composed of a basic structure of H2N – CHR – COOH, where R represents the variable group that distinguishes one amino acid from another. The simplest amino acid is glycine, where the R group is just H. Amino acids are capable of forming complex and useful molecules due to their dipolar or amphoteric nature, which makes them simultaneously acidic and basic. In solution, they form zwitterions, which can act as either an acid or a base depending on the pH of the solution. This versatility of amino acids is what allows for the process of electrophoresis, which separates proteins based on their charge in a solution. By using solutions of different pH, different proteins can be assessed, making it a useful tool in the diagnosis of bone marrow malignancies like myeloma.

    • This question is part of the following fields:

      • Basic Sciences
      6.5
      Seconds
  • Question 8 - What stage of cellular respiration is responsible for the production of pyruvic acid?...

    Incorrect

    • What stage of cellular respiration is responsible for the production of pyruvic acid?

      Your Answer: Oxidative decarboxylation

      Correct Answer: Glycolysis

      Explanation:

      The Versatility of Pyruvic Acid in Cellular Metabolism

      Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.

      Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.

      In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.

    • This question is part of the following fields:

      • Basic Sciences
      10.2
      Seconds
  • Question 9 - A 40-year-old male complains of a painful and swollen right calf. The possibility...

    Incorrect

    • A 40-year-old male complains of a painful and swollen right calf. The possibility of deep vein thrombosis (DVT) is being considered. What tests should be conducted to confirm the diagnosis?

      Your Answer: D dimer concentrations

      Correct Answer: Dopplers of the leg veins

      Explanation:

      Diagnostic Methods for Deep Vein Thrombosis

      When it comes to diagnosing deep vein thrombosis (DVT), there are several methods available. The most common ones are Doppler studies and venography. Doppler studies use B mode ultrasonography to examine the venous system, while venography involves injecting a contrast dye into the veins and taking X-rays. CT scans are not typically used for DVT diagnosis because they require contrast and expose the patient to radiation. D-Dimer concentrations can help rule out DVT if they are negative, but they cannot diagnose it. MRI scans are useful for examining soft tissues and bones, but they are not the best option for visualizing the vasculature. Finally, oxygen saturation of the limbs is not a reliable diagnostic method because tissue perfusion can be the same even if there is arterial disease. Overall, Doppler studies and venography are the most effective methods for diagnosing DVT.

    • This question is part of the following fields:

      • Basic Sciences
      5.4
      Seconds
  • Question 10 - The diabetes prevention program has been running for the last 5 years. At...

    Incorrect

    • The diabetes prevention program has been running for the last 5 years. At baseline, a well conducted study with a sample size of 500 showed that the prevalence of diabetes among adults aged 40 and above was 15%.
      Five years later another survey (of 400 responders) showed that the prevalence of diabetes was 10%.
      In the above example, which definition of prevalence is correct?

      Your Answer: Prevalence is the numbers of new and old smokers at baseline and at 10 years

      Correct Answer: Prevalence is the number of new and old smokers in a year

      Explanation:

      Prevalence and Incidence in Smoking

      Prevalence and incidence are two important concepts in the smoking habits of a population. Prevalence refers to the number of people who smoke at a particular time point, such as at the beginning or end of a study period. This is calculated by dividing the number of smokers by the total population.

      On the other hand, incidence refers to the number of new cases of smoking at a particular time point. For example, this could be at the beginning of a study period for the whole year or at the 10th year. This is calculated by dividing the number of new smokers by the number of smoke-free individuals who are potentially at risk of taking up smoking.

      prevalence and incidence is important in evaluating the effectiveness of smoking cessation programs and policies. By tracking changes in prevalence and incidence over time, researchers and policymakers can determine whether their efforts are making a difference in reducing smoking rates. Additionally, these concepts can help identify populations that are at higher risk of taking up smoking, allowing for targeted interventions to prevent smoking initiation.

    • This question is part of the following fields:

      • Basic Sciences
      4.5
      Seconds
  • Question 11 - Of which cellular structure is the fibrillar centre a component? ...

    Incorrect

    • Of which cellular structure is the fibrillar centre a component?

      Your Answer: The ribosomes

      Correct Answer: The nucleolus

      Explanation:

      The Fibrillar Centre in the Nucleolus

      The fibrillar centre is a crucial component of the nucleolus, which is found in most metazoan nucleoli, particularly in higher eukaryotes. Along with the dense fibrillar components and the granular component, it forms the three major components of the nucleolus. During the end of mitosis, the fibrillar centre serves as a storage point for nucleolar ribosomal chromatin and associated ribonucleoprotein transcripts. As the nucleolus becomes active, the ribosomal chromatin and ribonucleoprotein transcripts begin to form the dense fibrillar components, which are more peripherally located and surround the fibrillar centres. The transcription zone for multiple copies of the pre-rRNA genes is the border between these two structures. It is important to note that the fibrillar centre is not a component of any of the cell structures mentioned in the incorrect answer options.

    • This question is part of the following fields:

      • Basic Sciences
      5.7
      Seconds
  • Question 12 - A 50-year-old female patient with varicose veins presents to the vascular clinic for...

    Correct

    • A 50-year-old female patient with varicose veins presents to the vascular clinic for evaluation.

      During the assessment, a test is conducted to determine the location of incompetence. The patient is instructed to lie down, and the veins are emptied by elevating her legs off the couch. The examiner then identifies the site of the sapheno-femoral junction and applies pressure with their fingers. The patient is then asked to stand up to evaluate vein filling.

      What is the name of this test?

      Your Answer: Trendelenburg's test

      Explanation:

      Assessing Varicose Vein Site of Incompetence

      The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction site, while in the tourniquet test, a tourniquet is placed just below the junction level.

      If the veins fill quickly upon standing, it indicates that the sapheno-femoral junction is not the source of the incompetence. These tests are essential in determining the location of the varicose vein site of incompetence, which is crucial in planning the appropriate treatment. By identifying the site of incompetence, physicians can perform targeted interventions to improve venous function and alleviate symptoms. Therefore, the Trendelenburg and tourniquet tests are valuable tools in the diagnosis and management of varicose veins.

    • This question is part of the following fields:

      • Basic Sciences
      10.8
      Seconds
  • Question 13 - What type of molecule does haemoglobin belong to? ...

    Correct

    • What type of molecule does haemoglobin belong to?

      Your Answer: Quaternary protein structure

      Explanation:

      The Structure and Functions of Proteins

      Proteins are complex molecules that can vary in structure from single amino acids to large, folded molecules. Amino acids are joined together by peptide bonds to form dipeptides and polypeptides. More complex molecules can also have disulphide bonds and ionic bonds. The primary structure of a protein is a simple amino acid chain, while the secondary structure is a specific shape such as a helix or pleated sheet. The tertiary structure is a more globular shape, arranged by ionic, hydrogen, and disulphide bonds, and hydrophobic interactions. The quaternary structure is a complex protein containing several polypeptide chains held together by interactions.

      Proteins have multiple roles within the human body, including as hormones, food substrates, enzymes, receptor molecules, muscles, cell membrane constituents, carrier molecules in blood, and determinants of oncotic/osmotic pressures. However, proteins can be easily damaged by denaturation, which is the loss of the specific three-dimensional shape of a molecule. Denaturation can be caused by heat, salts, heavy metals, solvents, detergents, and extremes of pH.

      In summary, proteins are essential molecules with a diverse range of structures and functions within the human body. their structure and potential for denaturation is crucial for maintaining their proper function.

    • This question is part of the following fields:

      • Basic Sciences
      3.2
      Seconds
  • Question 14 - What are the clinical effects that can occur due to acute or chronic...

    Incorrect

    • What are the clinical effects that can occur due to acute or chronic over-administration of multivitamins leading to Vitamin A toxicity?

      Your Answer: Bone overgrowth with deformity

      Correct Answer: Nausea, vomiting and headaches

      Explanation:

      The Importance and Risks of Vitamin A

      Vitamin A is an essential nutrient that plays a crucial role in various bodily functions such as growth and development, vision, enzyme signalling pathways, and the maintenance of epithelial membranes. However, excessive intake of vitamin A can lead to toxicity, which can cause several adverse effects. These include raised intracranial pressure resulting in headaches, nausea, vomiting, and visual loss, increased bone resorption leading to osteoporosis and hypercalcaemia, liver damage, hair loss, and skin changes. Moreover, there is a possible increased risk of malignancy, particularly among smokers. Pregnant women are also advised to avoid foods rich in vitamin A, such as liver and fish oils, due to the teratogenicity of vitamin A-derived drugs. Therefore, it is crucial to maintain a balanced intake of vitamin A to avoid the risks associated with its toxicity.

    • This question is part of the following fields:

      • Basic Sciences
      13.8
      Seconds
  • Question 15 - What are the vitamins that are soluble in fat? ...

    Incorrect

    • What are the vitamins that are soluble in fat?

      Your Answer: Vitamins D, E and K

      Correct Answer: Vitamins A, D, E and K

      Explanation:

      Absorption of Fat-Soluble Vitamins

      Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.

      However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.

    • This question is part of the following fields:

      • Basic Sciences
      10.8
      Seconds
  • Question 16 - What significance do leucine, lysine, and phenylalanine hold? ...

    Correct

    • What significance do leucine, lysine, and phenylalanine hold?

      Your Answer: They are essential amino acids

      Explanation:

      Essential Amino Acids and their Importance in the Diet

      There are approximately 20 essential amino acids that are crucial for human health. These amino acids are considered essential because the body cannot produce them on its own and they must be obtained through the diet. While some of these essential amino acids can be used to create other non-essential amino acids, they are still necessary for overall health and wellbeing.

      Some examples of essential amino acids include histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. However, the amount of these essential amino acids can vary depending on the type of dietary protein consumed. Additionally, cooking or preserving proteins can alter the amino acid composition, making them less effective for the body.

      In summary, essential amino acids play a vital role in maintaining human health and must be obtained through the diet. the importance of these amino acids and their sources can help individuals make informed decisions about their dietary choices.

    • This question is part of the following fields:

      • Basic Sciences
      85.8
      Seconds
  • Question 17 - What could be a potential cause of metabolic acidosis? ...

    Correct

    • What could be a potential cause of metabolic acidosis?

      Your Answer: Poorly controlled diabetes

      Explanation:

      Acid-Base Imbalances in Different Medical Conditions

      Poorly controlled diabetes can cause the breakdown of fatty acids, leading to the production of ketones as an alternative energy source. However, an excess of ketones can result in metabolic acidosis due to their acidic nature. On the other hand, chronic obstructive pulmonary disease (COPD) and suffocation can cause the retention of carbon dioxide, leading to respiratory acidosis. In COPD, there may be a compensatory metabolic alkalosis. Voluntary hyperventilation can cause respiratory alkalosis due to the reduction of carbon dioxide. Vomiting can also lead to metabolic alkalosis. Diabetic ketoacidosis is a complication of type 1 diabetes that results in high blood sugar levels, ketone production, and acidosis.

      In summary, different medical conditions can cause acid-base imbalances in the body. It is important to identify the underlying cause of the imbalance to provide appropriate treatment.

    • This question is part of the following fields:

      • Basic Sciences
      16.9
      Seconds
  • Question 18 - What RNA base pairs with adenine when synthesizing a complementary RNA strand from...

    Incorrect

    • What RNA base pairs with adenine when synthesizing a complementary RNA strand from DNA, using RNA polymerase to split the helix at specific points?

      Your Answer:

      Correct Answer: Uracil

      Explanation:

      Differences between DNA and RNA

      DNA and RNA differ in several ways. The primary sugar in DNA is deoxyribose, while in RNA it is ribose. Additionally, DNA is double stranded, while RNA is single stranded. This single stranded structure with un-paired bases allows for transcription to occur when the DNA bases are freed. Each base has a specific pairing, with guanine always binding to cytosine and adenine always binding to thymine in the DNA strand. During transcription, the same complementary RNA bases assemble with the DNA bases, except for thymine, which is not an RNA base. Instead, uracil serves as the RNA pyrimidine base equivalent of thymine. Finally, lysine is an amino acid coded for by the RNA base triplet AAA, where A represents adenine.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 19 - You are evaluating a geriatric patient in the emergency department who has fallen...

    Incorrect

    • You are evaluating a geriatric patient in the emergency department who has fallen and needs a venous cannula for fluid resuscitation. To ensure maximum flow into the vein, you plan to apply the Hagen-Poiseuille equation to select an appropriate cannula size. Which of the following statements is true according to this law?

      Your Answer:

      Correct Answer: Flow will be faster through a shorter cannula

      Explanation:

      Poiseuille’s Equation and Fluid Flow in Cylinders

      Poiseuille’s equation is used to describe the flow of non-pulsatile laminar fluids through a cylinder. The equation states that the flow rate is directly proportional to the pressure driving the fluid and the fourth power of the radius. Additionally, it is inversely proportional to the viscosity of the fluid and the length of the tube. This means that a short, wide cannula with pressure on the bag will deliver fluids more rapidly than a long, narrow one.

      It is important to note that even small changes in the radius of a tube can greatly affect the flow rate. This is because the fourth power of the radius is used in the equation. Therefore, any changes in the radius will have a significant impact on the flow rate. Poiseuille’s equation is crucial in determining the optimal conditions for fluid delivery in medical settings.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds
  • Question 20 - A couple in their early 30s come to your clinic seeking advice. The...

    Incorrect

    • A couple in their early 30s come to your clinic seeking advice. The husband has a history of haemophilia B and they are worried about the possibility of passing it on to their children. Can you determine which of their offspring will be affected by the disease?

      Your Answer:

      Correct Answer: All daughters will be carriers; no sons will be affected

      Explanation:

      The inheritance of Haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. Haemophilia A and B are genetic disorders that are inherited in an X-linked recessive manner. Haemophilia A is caused by a deficiency in clotting factor VIII, while haemophilia B is caused by a deficiency in clotting factor IX.

      On the other hand, haemophilia C, which is caused by a deficiency in clotting factor XI, is primarily inherited in an autosomal recessive manner. In X-linked recessive conditions like haemophilia B, males are more likely to be affected than females. This is because males only need one abnormal copy of the gene, which is carried on the X chromosome, to be affected.

      Females, on the other hand, can be carriers of the condition if they carry one normal and one abnormal copy of the gene. While carriers can have clotting abnormalities, these are usually milder than those seen in affected individuals. Men cannot pass the condition to their sons, but they will pass on the abnormal X chromosome to all their daughters, who will be carriers.

      Female carriers can pass on the condition to around half their sons, and half their daughters will be carriers. Females can only be affected if they are the offspring of an affected male and a carrier female. In summary, the inheritance of haemophilia A and B is crucial in identifying individuals who are at risk of developing the condition. It also helps in providing appropriate genetic counseling and management for affected individuals and their families.

    • This question is part of the following fields:

      • Basic Sciences
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (6/17) 35%
Passmed