00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What is the enzyme necessary for the production of glycogen? ...

    Incorrect

    • What is the enzyme necessary for the production of glycogen?

      Your Answer: Glycogen phosphorylase

      Correct Answer: Glycogen synthase

      Explanation:

      Enzymes Involved in Glycogen Formation

      Glycogen formation is a complex process that requires the involvement of several enzymes. One of the key enzymes involved in this process is glycogen synthase, which is responsible for extending the length of glucose chains within glycogen. This is achieved by creating α1-4 glycosidic linkages between glucose molecules to form a long chain.

      However, the branching on the glycogen chain is created by another enzyme known as the branching enzyme or transferase enzyme. This enzyme produces α1-6 glycosidic linkages, which create branch points on the glycogen chain.

      It is important to note that the debranching enzyme and glycogen phosphorylase are not involved in glycogen production but are instead used in the breakdown of glycogen. Similarly, phosphofructokinase is an enzyme in the glycolysis pathway, while pyruvate carboxylase is required for gluconeogenesis.

      In summary, glycogen formation is a complex process that involves several enzymes, including glycogen synthase and the branching enzyme. These enzymes work together to create the long chains and branch points that make up glycogen.

    • This question is part of the following fields:

      • Clinical Sciences
      13.7
      Seconds
  • Question 2 - Following a meal, what is the primary body tissue where glycogen production occurs?...

    Correct

    • Following a meal, what is the primary body tissue where glycogen production occurs?

      Your Answer: Liver

      Explanation:

      Glycogen Production and Structure

      The liver and muscle are the primary sites of glycogen production, which serves as a storage reservoir for excess glucose. In muscle, glycogen provides a readily available source of energy to support muscle contraction and exertion. The process of glycogen formation involves the conversion of glucose into glucose-6-phosphate and glucose-1-phosphate, which are then attached to a larger molecule called UDP. This provides a platform for glucose to be added onto the glycogen polymer in straight chains through an α1-4 glycosidic linkage. Once a chain reaches around 11 residues long, a branching enzyme removes a 6-8 unit fragment to create a new branch. The highly branched structure of glycogen allows for the storage of a large amount of glucose in a relatively small area. The diagram of glycogen structure illustrates its composition of glucose chains linked by α1-4 glycosidic linkage and branch points linked by α1-6 glycosidic linkage.

    • This question is part of the following fields:

      • Clinical Sciences
      5.5
      Seconds
  • Question 3 - What is the main role of cholecystokinin? ...

    Correct

    • What is the main role of cholecystokinin?

      Your Answer: Triggers gallbladder contraction

      Explanation:

      Hormones and their Functions in Digestion

      Cholecystokinin is a hormone that helps in digestion by neutralizing the partially digested food. It does this by stimulating the gallbladder to contract and the pancreas to release alkaline pancreatic fluid. This fluid helps to neutralize the acidic food and aids in the digestion process.

      Gastrin is another hormone that plays a crucial role in digestion. It increases the production of stomach acid and also increases the rate of gastric emptying. This helps to break down the food more efficiently and move it through the digestive system.

      Secretin is a hormone that reduces the production of stomach acid. It is released by the small intestine in response to the acidic food passing through it. This helps to prevent the stomach from becoming too acidic and causing discomfort.

      Leptin is a hormone that helps to regulate appetite. It is produced by fat cells and acts on the brain to suppress appetite. This helps to maintain a healthy weight and prevent overeating.

      In summary, hormones play a vital role in digestion by regulating the production of stomach acid, neutralizing acidic food, and suppressing appetite.

    • This question is part of the following fields:

      • Clinical Sciences
      14.6
      Seconds
  • Question 4 - In which section of the digestive system are Brunner's glands located? ...

    Incorrect

    • In which section of the digestive system are Brunner's glands located?

      Your Answer: Jejunum

      Correct Answer: Duodenum

      Explanation:

      Glands and Structures of the Digestive System

      The digestive system is composed of various glands and structures that play important roles in the digestion and absorption of nutrients. One of these structures is the Brunner’s glands, which are coiled glands found in the submucosa of the duodenum. These glands produce an alkaline fluid that helps neutralize the acidic contents of the stomach as they enter the small intestine.

      In contrast, salivary glands are typical exocrine glands that are composed of acini and ducts. These glands produce saliva, which contains enzymes that begin the process of breaking down carbohydrates in the mouth.

      The stomach has deep pits that contain different cell types, including endocrine cells and goblet cells. These cells secrete various substances that aid in digestion and protect the stomach lining from the corrosive effects of gastric acid.

      The jejunum and ileum are parts of the small intestine that have villi, which are finger-like projections that increase the surface area for absorption. At the base of the villi are the crypts of Lieberkuhn, where new enterocytes are produced and migrate up to the tip of the villi. These enterocytes are responsible for absorbing nutrients from the digested food.

      Overall, the digestive system is a complex network of glands and structures that work together to ensure the proper digestion and absorption of nutrients from the food we eat.

    • This question is part of the following fields:

      • Clinical Sciences
      13.8
      Seconds
  • Question 5 - Which mechanism is not involved in the development of physiological jaundice in newborns?...

    Correct

    • Which mechanism is not involved in the development of physiological jaundice in newborns?

      Your Answer: Bilirubin present in breast milk

      Explanation:

      Physiological Jaundice in Newborns

      After birth, newborns experience increased erythrocyte turnover which requires faster action of enzymes involved in bilirubin metabolism and excretion. However, there can be a relative lack of UDP-glucuronyltransferase, leading to dysfunctional erythropoeisis and excess haem production that is metabolized to bilirubin. Meconium, which contains beta-glucuronidase, can further exacerbate the situation by changing conjugated bilirubin to an unconjugated form that is readily reabsorbed in the enterohepatic circulation.

      Breast milk does not contain bilirubin, but it does contain substances that can inhibit the conjugation reaction, slowing the metabolism of bilirubin and allowing unconjugated bilirubin levels in the blood to rise. While physiological jaundice in newborns is usually not harmful, levels of unconjugated bilirubin above 170-200 µmol/l can lead to kernicterus, which can cause seizures, brain damage, or death. To prevent this, infants are treated with phototherapy at 450 nm, which disrupts the strong hydrogen bonds holding together molecules of unconjugated bilirubin, allowing the structure to unfold and become more soluble. This facilitates its excretion and reduces serum concentrations.

    • This question is part of the following fields:

      • Clinical Sciences
      22.4
      Seconds
  • Question 6 - A 25-year-old patient complains of abdominal pain and a recent alteration in bowel...

    Correct

    • A 25-year-old patient complains of abdominal pain and a recent alteration in bowel movements. Upon conducting a colonic biopsy, the results reveal the presence of granulomas, inflammation lesions that extend to the submucosa and muscularis, and areas of unaffected mucosa in the rectum. What is the probable diagnosis?

      Your Answer: Crohn's disease

      Explanation:

      Inflammatory bowel disease should be considered in young adults with a change in bowel habit and raised inflammatory markers. Crohn’s disease has skip lesions and can affect anywhere from the mouth to anus, while ulcerative colitis affects a continuous stretch of bowel starting in the rectum. Biopsy of Crohn’s shows intramural inflammation with lymphocyte infiltration and granulomas, while ulcerative colitis only causes intramural inflammation without granulomas. Bacterial overgrowth syndrome occurs after major reconstructive bowel surgery and can cause diarrhea, flatulence, abdominal distension, and pain. Cryptosporidiosis is a protozoan infection that can cause severe colitis in immunocompromised patients with AIDS. Whipple’s disease is a rare infection caused by Tropheryma whipplei and mainly presents with symptoms of malabsorption.

    • This question is part of the following fields:

      • Clinical Sciences
      7.9
      Seconds
  • Question 7 - What is the hormone responsible for controlling blood sodium levels? ...

    Correct

    • What is the hormone responsible for controlling blood sodium levels?

      Your Answer: Antidiuretic hormone

      Explanation:

      The Role of Antidiuretic Hormone in Regulating Blood Sodium Levels

      Antidiuretic hormone (ADH) is a polypeptide hormone produced in the hypothalamus and released into the circulation by the posterior pituitary. Its main function is to promote the reabsorption of water from the kidney, preventing its loss in the urine. This, in turn, has a secondary effect on blood sodium levels.

      ADH works by stimulating the production of a water channel called aquaporin, which is inserted into the cell membrane of cells lining the collecting duct of the kidney. This allows water molecules to move from the collecting duct lumen into the cells, from where they can move back to the interstitial fluid and the bloodstream. As a result, less water is lost in the urine, and blood sodium levels are regulated.

      In summary, ADH plays a crucial role in regulating blood sodium levels by conserving water and preventing its loss in the urine. Its action on aquaporin production allows for the reabsorption of water from the kidney, which has a secondary effect on blood sodium levels.

    • This question is part of the following fields:

      • Clinical Sciences
      8.4
      Seconds
  • Question 8 - What function does high density lipoprotein (HDL) serve? ...

    Correct

    • What function does high density lipoprotein (HDL) serve?

      Your Answer: To move lipids from the arterial walls to the liver

      Explanation:

      The Role of HDL in Reverse Cholesterol Transport

      HDL, also known as good cholesterol, is initially secreted by the liver into the bloodstream as immature or nascent HDL. This nascent HDL contains apoplipoprotein A-I, C, and E but has very little triglyceride or cholesterol ester content. However, upon secretion, it undergoes modification to form the mature form of HDL.

      The mature HDL particle plays a crucial role in reverse cholesterol transport. It receives triglycerides and cholesterol esters from VLDL and IDL particles and picks up excess cholesterol from body cells. As it does so, it loses apoC and E to form the mature HDL particle, which contains only apoA-I.

      The primary function of HDL is to remove excess triglycerides from arterial walls and body cells via VLDL and IDL and to return the excess lipid to the liver for repackaging or excretion in bile. This process is known as reverse cholesterol transport and is essential in maintaining healthy cholesterol levels in the body.

    • This question is part of the following fields:

      • Clinical Sciences
      25.2
      Seconds
  • Question 9 - To which major food group does the molecule CH3CH(NH2)COOH belong? ...

    Incorrect

    • To which major food group does the molecule CH3CH(NH2)COOH belong?

      Your Answer: Vitamin

      Correct Answer: Protein

      Explanation:

      The Basics of Amino Acids and Alanine

      Amino acids are the building blocks of proteins, which are essential for the functioning of living organisms. One such amino acid is alanine, also known as CH3CH(NH2)COOH. The basic structure of an amino acid consists of an amine group (NH2) and a carboxylic acid group (COOH), which are both acidic and basic, respectively. These groups combine to give proteins a unique set of characteristics.

      Alanine is a simple amino acid with a methyl group in its R region. The formula for proteins is R-CH-NH2COOH, where R is a variable region. Amino acids combine to form dipeptides and polypeptides, which make up proteins. the basics of amino acids and their structures is crucial in the complex nature of proteins and their functions in living organisms.

    • This question is part of the following fields:

      • Clinical Sciences
      26.8
      Seconds
  • Question 10 - What is the safest method to prevent needlestick injury when obtaining an arterial...

    Correct

    • What is the safest method to prevent needlestick injury when obtaining an arterial blood gas sample?

      Your Answer: Removing the needle, disposing of it, and putting a cap on the sample

      Explanation:

      Safe Disposal of Blood Gas Sample Needles

      When obtaining a blood gas sample, it is important for health professionals to dispose of the needle safely before transporting it to the laboratory. This can be done by placing the needle in a sharps bin. It is crucial to handle the needle with care to prevent any accidental injuries or infections. Once the sample has been obtained, the needle should be immediately disposed of in the sharps bin to avoid any potential hazards. By following proper disposal procedures, health professionals can ensure the safety of themselves and others while handling blood gas samples. Remember to always prioritize safety when handling medical equipment.

    • This question is part of the following fields:

      • Clinical Sciences
      8.6
      Seconds
  • Question 11 - What is the primary function of niacin, also known as vitamin B3? ...

    Correct

    • What is the primary function of niacin, also known as vitamin B3?

      Your Answer: Antioxidant function

      Explanation:

      The Many Functions of Niacin in the Body

      Niacin, also known as vitamin B3, plays a crucial role in various processes within the body. It acts as a cofactor in cellular reactions, aiding in the metabolism of fatty acids and steroid hormones. Additionally, niacin functions as an antioxidant, protecting the liver from free radical damage. It is also required for DNA replication and repair, as it is necessary for the synthesis of histone proteins that facilitate DNA storage, replication, and repair.

      Furthermore, niacin is involved in lipid metabolism and cholesterol regulation, with high doses of niacin being used as a lipid-lowering agent. Although not fully understood, niacin may also have a role in regulating blood sugar concentrations.

      Niacin can be obtained through the diet in two forms: nicotinic acid and nicotinamide. The body can also produce its own niacin from tryptophan, an amino acid found in protein-rich foods. With its numerous functions, niacin is an essential nutrient for maintaining optimal health.

    • This question is part of the following fields:

      • Clinical Sciences
      23.9
      Seconds
  • Question 12 - A 55-year-old man with a BMI of 32 kg/m2 has been experiencing indigestion...

    Correct

    • A 55-year-old man with a BMI of 32 kg/m2 has been experiencing indigestion for a long time. He recently had an endoscopy, during which biopsy samples of his oesophagus were taken. The pathology report revealed abnormal columnar epithelium in the distal samples. Can you identify the best answer that describes this adaptive cellular response to injury?

      Your Answer: Metaplasia

      Explanation:

      There are four adaptive cellular responses to injury: atrophy, hypertrophy, hyperplasia, and metaplasia. Metaplasia is the reversible change of one fully differentiated cell type to another, usually in response to irritation. Examples include Barrett’s esophagus, bronchoalveolar epithelium undergoing squamous metaplasia due to cigarette smoke, and urinary bladder transitional epithelium undergoing squamous metaplasia due to a urinary calculi. Atrophy refers to a loss of cells, hypertrophy refers to an increase in cell size, and hyperplasia refers to an increase in cell number. Apoptosis is a specialized form of programmed cell death.

    • This question is part of the following fields:

      • Clinical Sciences
      13.5
      Seconds
  • Question 13 - A 50-year-old female patient presents with a lump in her groin that appears...

    Incorrect

    • A 50-year-old female patient presents with a lump in her groin that appears and disappears. Upon consultation, it is determined that the hernia is protruding between the pectineal (Cooper's) ligament, lacunar ligament, and femoral vein. What type of hernia is being described by the consultant?

      Your Answer: Inguinal

      Correct Answer: Femoral

      Explanation:

      Types of Hernias and their Borders

      Hernias are a medical condition where an organ or tissue protrudes through a weak spot in the surrounding muscle or tissue. One type of hernia is the Femoral hernia, which protrudes through the femoral canal. This type of hernia is more common in women due to their pelvic structure and childbirth. The femoral ring is narrow, making it more likely for these hernias to become strangulated.

      Another type of hernia is the inguinal hernia, which protrudes through the inguinal canal. Petit’s hernia protrudes through the inferior lumbar triangle, Grynfeltt’s through the superior lumbar triangle, and obturator hernias through the obturator foramen. Each type of hernia has its own unique borders and characteristics.

    • This question is part of the following fields:

      • Clinical Sciences
      32.4
      Seconds
  • Question 14 - In which part of the gastrointestinal system is water mainly taken up? ...

    Incorrect

    • In which part of the gastrointestinal system is water mainly taken up?

      Your Answer: Transverse colon

      Correct Answer: Small intestine

      Explanation:

      The Function of the Large Intestine

      Although many people believe that the primary function of the large intestine is to absorb water, this is not entirely accurate. In fact, the majority of water and fluids that are ingested or secreted are actually reabsorbed in the small intestine, which is located before the large intestine in the digestive tract. While the large intestine does play a role in absorbing some water and electrolytes, its primary function is to store and eliminate waste products from the body. This is achieved through the formation of feces, which are then eliminated through the rectum and anus. Overall, while the large intestine is an important part of the digestive system, its function is more complex than simply absorbing water.

    • This question is part of the following fields:

      • Clinical Sciences
      17.8
      Seconds
  • Question 15 - A 2-year-old child is brought back to the hospital following a seizure. The...

    Correct

    • A 2-year-old child is brought back to the hospital following a seizure. The medical team suspects that the child may have an enzyme deficiency affecting fructose-1,6 bisphosphatase, an essential enzyme for gluconeogenesis. What are the possible symptoms that may result from this enzyme defect?

      Your Answer: Hypoglycaemia

      Explanation:

      Gluconeogenesis and its Differences from Glycolysis

      Gluconeogenesis is a process that is similar to glycolysis, but it occurs in reverse. While most of the reactions in glycolysis are reversible, there are some that are essentially irreversible. During gluconeogenesis, these reactions are bypassed by using different enzymes. For example, hexokinase in glycolysis is reversed by glucose 6 phosphatase during gluconeogenesis. Phosphofructokinase in glycolysis is reversed by fructose 1,6 bisphosphatase during gluconeogenesis. Pyruvate kinase in glycolysis is reversed by pyruvate carboxylase and phosphoenolpyruvate (PEP) carboxykinase during gluconeogenesis.

      If there is an enzyme defect or deficiency affecting fructose 1,6 bisphosphatase, it can have a profound effect on the body’s ability to perform gluconeogenesis. This means that in times of fasting, blood sugar levels cannot be maintained by gluconeogenesis, leading to hypoglycaemia, lactic acidosis, hepatomegaly, and ketone production. Children with this condition often present in infancy, when there is a relatively low tolerance for fasting for even a few hours. While individual episodes can be treated fairly easily with glucose infusion, recurrent or severe episodes can cause an increased risk of cognitive dysfunction.

    • This question is part of the following fields:

      • Clinical Sciences
      24.4
      Seconds
  • Question 16 - What structure is located posterior to the femoral artery that you use to...

    Incorrect

    • What structure is located posterior to the femoral artery that you use to compress the artery during examination of the leg?

      Your Answer: Iliac bone

      Correct Answer: Psoas tendon

      Explanation:

      The Femoral Artery and its Relations

      The femoral artery is a major blood vessel that can be felt at the mid inguinal point, which is located halfway between the anterior superior iliac spine and the pubic symphysis. It is the continuation of the external iliac artery and passes through the femoral triangle, where it gives off the deep femoral artery before entering the adductor canal. The femoral artery is located laterally to the femoral nerve and medially to the femoral vein, with the psoas tendon being its posterior relation.

      As the femoral artery continues down the leg, it enters the popliteal fossa and becomes the popliteal artery. This artery is responsible for supplying blood to the lower leg and foot. the location and relations of the femoral artery is important for medical professionals, as it is a common site for arterial catheterization and other procedures. By knowing the anatomy of this artery, healthcare providers can ensure safe and effective treatment for their patients.

    • This question is part of the following fields:

      • Clinical Sciences
      11.1
      Seconds
  • Question 17 - A 42-year-old male is currently undergoing investigation for thoracic outlet syndrome at the...

    Incorrect

    • A 42-year-old male is currently undergoing investigation for thoracic outlet syndrome at the vascular clinic.

      Can you identify the crucial structure that passes in front of the scalene tubercle on the first rib?

      Your Answer: Superior intercostal artery

      Correct Answer: Subclavian vein

      Explanation:

      Anatomy of the Subclavian Vein, Artery, and Brachial Plexus

      The subclavian vein, artery, and brachial plexus are important structures in the upper extremity. The subclavian vein passes over the first rib anterior to the scalene tubercle, while the subclavian artery and lowest trunk of the brachial plexus pass posteriorly. The middle scalene muscle, known as the scalenus medius, spreads toward the cervical vertebrae. The subclavian artery arises from the arch of the aorta laterally to the common carotids. The superior intercostal artery passes inferiorly and posteriorly between the first and second ribs. Finally, the sympathetic trunk is lateral to the vertebral bodies and runs the entire length of the vertebral column.

      In summary, the subclavian vein, artery, and brachial plexus are located in close proximity to each other in the upper extremity. their anatomy is important for medical professionals who may need to access or treat these structures. The subclavian vein passes anteriorly over the first rib, while the subclavian artery and brachial plexus pass posteriorly. The scalenus medius muscle is located in the middle of the scalene muscles and spreads toward the cervical vertebrae. The subclavian artery arises from the arch of the aorta laterally to the common carotids, and the superior intercostal artery passes between the first and second ribs. Finally, the sympathetic trunk runs the entire length of the vertebral column and is located lateral to the vertebral bodies.

    • This question is part of the following fields:

      • Clinical Sciences
      38.5
      Seconds
  • Question 18 - An 80-year-old woman complains of altered bowel movements and a sigmoidoscopy reveals an...

    Incorrect

    • An 80-year-old woman complains of altered bowel movements and a sigmoidoscopy reveals an abnormal, ulcerated mass in the sigmoid colon. She undergoes anterior resection. Upon pathological examination, it is found that the tumor has invaded the muscularis propria but not the underlying tissues. Out of 36 lymph nodes, two are positive. What is the Dukes stage of this tumor?

      Your Answer: B

      Correct Answer: C

      Explanation:

      Staging Colorectal Cancer: Dukes System

      Colorectal cancer can be staged using either the TNM classification system or the simpler Dukes system. Both methods are used to determine the appropriate treatment and prognosis for the patient. The Dukes system categorizes the cancer into four stages based on the extent of its spread.

      Stage A refers to cancer that is confined to the mucosa or submucosa only, with a 93% 5-year survival rate. Stage B indicates that the cancer has invaded into the muscularis propria but has not spread beyond it, with a 77% 5-year survival rate. Stage C is characterized by the presence of local lymph node metastases, regardless of the depth of invasion, and has a 48% 5-year survival rate. Finally, Stage D indicates the presence of distant metastases, with a 6% 5-year survival rate. However, if the metastases are isolated to the liver, a 25-40% 5-year survival rate is possible.

      In summary, the Dukes system provides a simple and effective way to stage colorectal cancer based on the extent of its spread. This information is crucial in determining the appropriate treatment and predicting the patient’s prognosis.

    • This question is part of the following fields:

      • Clinical Sciences
      13.7
      Seconds
  • Question 19 - A 75-year-old amateur cricketer complains of a painful and stiff right shoulder following...

    Correct

    • A 75-year-old amateur cricketer complains of a painful and stiff right shoulder following a match. Upon examination, there is tenderness around the shoulder joint. The patient experiences significant difficulty in abducting the joint initially, but can lift it fully with the assistance of his left hand. Which rotator cuff muscle is the most likely culprit?

      Your Answer: Supraspinatus

      Explanation:

      The Role of Rotator Cuff Muscles in Shoulder Abduction

      The rotator cuff muscles, including subscapularis, infraspinatus, teres minor, and supraspinatus, play a crucial role in shoulder joint movements. However, teres major is not one of the rotator cuff muscles. Specifically, supraspinatus assists in the initial abduction of the shoulder, originating from the supraspinous fossa and inserting in the greater tubercle of the humerus, passing under the acromion.

      As the shoulder is abducted beyond 30 degrees, the deltoid muscle takes over most of the movement. Therefore, if there is a tear in the supraspinatus muscle, initial movement may be difficult, but abduction can be achieved more easily once the limb is abducted to 30 degrees. These types of tears are more common in the elderly and in sports that require rapid overhead throwing movements, such as cricket or baseball.

    • This question is part of the following fields:

      • Clinical Sciences
      32.3
      Seconds
  • Question 20 - A 58-year-old patient presents to the clinic with a chief complaint of reduced...

    Correct

    • A 58-year-old patient presents to the clinic with a chief complaint of reduced night vision. Upon further examination, it is discovered that the patient has a medical history of pancreatic insufficiency, chronic diarrhea, and malabsorption. Can you identify which vitamin deficiency is commonly linked to issues with night vision?

      Your Answer: Vitamin A

      Explanation:

      The Role of Vitamin A in Night Vision

      Vitamin A is essential for the production of rhodopsin, a protein found in the retina that is responsible for converting light into energy. This process involves the conversion of vitamin A into 11-cis retinal or all-trans retinol, which is stored in the pigment layer of the retina. Isomerase is an enzyme that plays a crucial role in the production of 11-cis retinal, which is then used to produce rhodopsin.

      A deficiency in vitamin A can lead to a problem with night vision, as the body is unable to produce enough rhodopsin to respond to changes in light. This can result in difficulty seeing in low light conditions, such as when driving at night or in dimly lit environments. It is important to ensure that the body receives an adequate amount of vitamin A through a balanced diet or supplements to maintain healthy vision.

    • This question is part of the following fields:

      • Clinical Sciences
      9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Clinical Sciences (12/20) 60%
Passmed