00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 28-year-old female patient presents to her GP with concerns about the appearance...

    Incorrect

    • A 28-year-old female patient presents to her GP with concerns about the appearance of lumps in her lower abdomen. She has been diagnosed with type 1 diabetes and has been using insulin for more than a decade. The lumps have developed in the areas where she administers her insulin injections.

      What is the probable cause of the lumps?

      Your Answer: Insulin deposits

      Correct Answer: Lipodystrophy

      Explanation:

      Small subcutaneous lumps at injection sites, known as lipodystrophy, can be caused by insulin.

      The type and location of the lump suggest that lipodystrophy is the most probable cause.

      Deposits of insulin and glucose are not responsible for the formation of these lumps.

      While a lipoma could also cause similar lumps, it is less likely than lipodystrophy, which is a known complication of insulin injections, especially at the injection site. These lumps can occur in multiple locations.

      Insulin therapy can have side-effects that patients should be aware of. One of the most common side-effects is hypoglycaemia, which can cause sweating, anxiety, blurred vision, confusion, and aggression. Patients should be taught to recognize these symptoms and take 10-20g of a short-acting carbohydrate, such as a glass of Lucozade or non-diet drink, three or more glucose tablets, or glucose gel. It is also important for every person treated with insulin to have a glucagon kit for emergencies where the patient is not able to orally ingest a short-acting carbohydrate. Patients who have frequent hypoglycaemic episodes may develop reduced awareness, and beta-blockers can further reduce hypoglycaemic awareness.

      Another potential side-effect of insulin therapy is lipodystrophy, which typically presents as atrophy or lumps of subcutaneous fat. This can be prevented by rotating the injection site, as using the same site repeatedly can cause erratic insulin absorption. It is important for patients to be aware of these potential side-effects and to discuss any concerns with their healthcare provider. By monitoring their blood sugar levels and following their treatment plan, patients can manage the risks associated with insulin therapy and maintain good health.

    • This question is part of the following fields:

      • Endocrine System
      14.4
      Seconds
  • Question 2 - A 25-year-old woman has a total thyroidectomy to treat papillary carcinoma of the...

    Incorrect

    • A 25-year-old woman has a total thyroidectomy to treat papillary carcinoma of the thyroid. During examination of histological sections of the thyroid gland, the pathologist discovers the presence of psammoma bodies. What is the primary composition of these bodies?

      Your Answer: Clusters of oxalate crystals

      Correct Answer: Clusters of calcification

      Explanation:

      Clusters of microcalcification, known as psammoma bodies, are frequently observed in papillary carcinomas.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      15.8
      Seconds
  • Question 3 - A 42-year-old woman has been admitted to the renal ward with acute kidney...

    Correct

    • A 42-year-old woman has been admitted to the renal ward with acute kidney injury. Her blood test shows that her potassium levels are above normal limits. While renal failure is a known cause of hyperkalaemia, the patient mentions having an endocrine disorder in the past but cannot recall its name. This information is crucial as certain endocrine disorders can also cause potassium disturbances. Which of the following endocrine disorders is commonly associated with hyperkalaemia?

      Your Answer: Addison's disease

      Explanation:

      The correct answer is Addison’s disease, which is a condition of primary adrenal insufficiency. One of the hormones that is deficient in this disease is aldosterone, which plays a crucial role in maintaining the balance of potassium in the body. Aldosterone activates Na+/K+ ATPase pumps on the cell wall, causing the movement of potassium into the cell and increasing renal potassium secretion. Therefore, a lack of aldosterone leads to hyperkalaemia.

      Phaeochromocytomas are tumours that produce catecholamines and typically arise in the adrenal medulla. They are associated with hypertension and hyperglycaemia, but not disturbances in potassium balance.

      Hyperthyroidism is a condition of excess thyroid hormone and does not affect potassium balance.

      Conn’s syndrome, on the other hand, is a type of primary hyperaldosteronism where there is excess aldosterone production. Aldosterone activates the Na+/K+ pump on the cell wall, causing the movement of potassium into the cell, which can lead to hypokalaemia.

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      26.7
      Seconds
  • Question 4 - These results were obtained on a 30-year-old male who has presented with tiredness:
    Free...

    Incorrect

    • These results were obtained on a 30-year-old male who has presented with tiredness:
      Free T4 9.3 pmol/L (9.8-23.1)
      TSH 49.31 mU/L (0.35-5.50)
      What signs might be expected in this case?

      Your Answer: Bruit over goitre

      Correct Answer: Slow relaxation of biceps reflex

      Explanation:

      Diagnosis and Symptoms of Hypothyroidism

      Hypothyroidism is diagnosed through blood tests that show low levels of T4 and elevated levels of TSH. Physical examination may reveal slow relaxation of tendon jerks, bradycardia, and goitre. A bruit over a goitre is associated with Graves’ thyrotoxicosis, while palmar erythema and fine tremor occur in thyrotoxicosis. In addition to these common symptoms, hypothyroidism may also present with rarer features such as cerebellar features, compression neuropathies, hypothermia, and macrocytic anaemia. It is important to diagnose and treat hypothyroidism promptly to prevent further complications.

    • This question is part of the following fields:

      • Endocrine System
      25.6
      Seconds
  • Question 5 - A 35-year-old woman comes in with symptoms of renal colic. Upon conducting tests,...

    Correct

    • A 35-year-old woman comes in with symptoms of renal colic. Upon conducting tests, the following results are obtained:
      Corrected Calcium 3.84 mmol/l
      PTH 88 pg/ml (increased)
      Her serum urea and electrolytes are within normal range.
      What is the probable diagnosis?

      Your Answer: Primary hyperparathyroidism

      Explanation:

      The most probable diagnosis in this scenario is primary hyperparathyroidism, as serum urea and electrolytes are normal, making tertiary hyperparathyroidism less likely.

      Primary Hyperparathyroidism: Causes, Symptoms, and Treatment

      Primary hyperparathyroidism is a condition that is commonly seen in elderly females and is characterized by an unquenchable thirst and an inappropriately normal or raised parathyroid hormone level. It is usually caused by a solitary adenoma, hyperplasia, multiple adenoma, or carcinoma. While around 80% of patients are asymptomatic, the symptomatic features of primary hyperparathyroidism may include polydipsia, polyuria, depression, anorexia, nausea, constipation, peptic ulceration, pancreatitis, bone pain/fracture, renal stones, and hypertension.

      Primary hyperparathyroidism is associated with hypertension and multiple endocrine neoplasia, such as MEN I and II. To diagnose this condition, doctors may perform a technetium-MIBI subtraction scan or look for a characteristic X-ray finding of hyperparathyroidism called the pepperpot skull.

      The definitive management for primary hyperparathyroidism is total parathyroidectomy. However, conservative management may be offered if the calcium level is less than 0.25 mmol/L above the upper limit of normal, the patient is over 50 years old, and there is no evidence of end-organ damage. Patients who are not suitable for surgery may be treated with cinacalcet, a calcimimetic that mimics the action of calcium on tissues by allosteric activation of the calcium-sensing receptor.

      In summary, primary hyperparathyroidism is a condition that can cause various symptoms and is commonly seen in elderly females. It can be diagnosed through various tests and managed through surgery or medication.

    • This question is part of the following fields:

      • Endocrine System
      145.7
      Seconds
  • Question 6 - A 14-year-old arrives at the Emergency Department complaining of abdominal pains, nausea, and...

    Correct

    • A 14-year-old arrives at the Emergency Department complaining of abdominal pains, nausea, and vomiting. Upon conducting blood tests, the following results are obtained:

      - Glucose: 24 mmol/L (4.0-11.0)
      - Ketones: 4.6 mmol/L (<0.6)
      - Na+: 138 mmol/L (135 - 145)
      - K+: 4.7 mmol/L (3.5 - 5.0)

      Based on these findings, the patient is started on a fixed insulin regimen and given intravenous fluids. After repeating the blood tests, it is observed that the K+ level has dropped to 3.3 mmol/L (3.5 - 5.0). What mechanism is responsible for this effect caused by insulin?

      Your Answer: Stimulation of the Na+/K+ ATPase pump

      Explanation:

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      48.1
      Seconds
  • Question 7 - A 23-year-old male comes to his doctor with a 5-month history of headaches,...

    Correct

    • A 23-year-old male comes to his doctor with a 5-month history of headaches, palpitations, and excessive sweating. He also mentions unintentional weight loss. Upon examination, the patient is found to be tachycardic and sweating profusely. The doctor suspects that the man may have a tumor affecting the tissue responsible for producing adrenaline.

      What is the probable location of the tumor?

      Your Answer: Adrenal medulla

      Explanation:

      The secretion of adrenaline is primarily carried out by the adrenal medulla. A patient with a phaeochromocytoma, a type of cancer that affects the adrenal medulla, may experience symptoms such as tachycardia, headaches, and sweating due to excess adrenaline production.

      The adrenal cortex, which surrounds the adrenal medulla, is not involved in adrenaline synthesis. It is responsible for producing mineralocorticoids, glucocorticoids, and androgens.

      The medulla oblongata, located in the brainstem, regulates essential bodily functions but is not responsible for adrenaline secretion.

      The parathyroid gland, which produces parathyroid hormone to regulate calcium metabolism, is not related to adrenaline secretion.

      The Function of Adrenal Medulla

      The adrenal medulla is responsible for producing almost all of the adrenaline in the body, along with small amounts of noradrenaline. Essentially, it is a specialized and enlarged sympathetic ganglion. This gland plays a crucial role in the body’s response to stress and danger, as adrenaline is a hormone that prepares the body for the fight or flight response. When the body perceives a threat, the adrenal medulla releases adrenaline into the bloodstream, which increases heart rate, blood pressure, and respiration, while also dilating the pupils and increasing blood flow to the muscles. This response helps the body to react quickly and effectively to danger. Overall, the adrenal medulla is an important component of the body’s stress response system.

    • This question is part of the following fields:

      • Endocrine System
      32.2
      Seconds
  • Question 8 - Mr. Smith is a 54-year-old man who visits your GP clinic for his...

    Correct

    • Mr. Smith is a 54-year-old man who visits your GP clinic for his annual review of his type 2 diabetes. He informs you that he has been managing it through diet for a few years, but lately, he has gained some weight. His latest HbA1C reading is 9.8% (normal range 3.7-5.0%). You suggest continuous dietary advice and prescribe metformin to regulate his blood glucose levels. Which of the following statements about metformin is accurate?

      Your Answer: It decreases hepatic gluconeogenesis

      Explanation:

      While some diabetic treatments such as insulin and sulfonylureas can lead to weight gain, metformin is not associated with this side effect. Metformin functions by enhancing insulin sensitivity and reducing hepatic gluconeogenesis, without directly impacting insulin secretion from pancreatic beta cells, thus it does not cause significant hypoglycemia. Ghrelin, a hormone that controls appetite, is not influenced by any diabetic medications.

      Understanding Diabetes Mellitus: A Basic Overview

      Diabetes mellitus is a chronic condition characterized by abnormally raised levels of blood glucose. It is one of the most common conditions encountered in clinical practice and represents a significant burden on the health systems of the developed world. The management of diabetes mellitus is crucial as untreated type 1 diabetes would usually result in death. Poorly treated type 1 diabetes mellitus can still result in significant morbidity and mortality. The main focus of diabetes management now is reducing the incidence of macrovascular and microvascular complications.

      There are different types of diabetes mellitus, including type 1 diabetes mellitus, type 2 diabetes mellitus, prediabetes, gestational diabetes, maturity onset diabetes of the young, latent autoimmune diabetes of adults, and other types. The presentation of diabetes mellitus depends on the type, with type 1 diabetes mellitus often presenting with weight loss, polydipsia, polyuria, and diabetic ketoacidosis. On the other hand, type 2 diabetes mellitus is often picked up incidentally on routine blood tests and presents with polydipsia and polyuria.

      There are four main ways to check blood glucose, including a finger-prick bedside glucose monitor, a one-off blood glucose, a HbA1c, and a glucose tolerance test. The diagnostic criteria are determined by WHO, with a fasting glucose greater than or equal to 7.0 mmol/l and random glucose greater than or equal to 11.1 mmol/l being diagnostic of diabetes mellitus. Management of diabetes mellitus involves drug therapy to normalize blood glucose levels, monitoring for and treating any complications related to diabetes, and modifying any other risk factors for other conditions such as cardiovascular disease. The first-line drug for the vast majority of patients with type 2 diabetes mellitus is metformin, with second-line drugs including sulfonylureas, gliptins, and pioglitazone. Insulin is used if oral medication is not controlling the blood glucose to a sufficient degree.

    • This question is part of the following fields:

      • Endocrine System
      59
      Seconds
  • Question 9 - A 23-year-old female patient visits her GP clinic due to her struggle with...

    Correct

    • A 23-year-old female patient visits her GP clinic due to her struggle with weight loss. Her BMI is almost 40 kg/m², which is severely impacting her mental and physical well-being. Despite following a strict diet and exercise routine, she has not seen any significant improvement. The GP decides to prescribe orlistat as an anti-obesity medication.

      What is the mechanism of action of orlistat in promoting weight loss?

      Your Answer: Reduces fat digestion by inhibiting lipase

      Explanation:

      Orlistat functions by inhibiting gastric and pancreatic lipase, which reduces the digestion of fat.

      2,4-Dinitrophenol (DNP) induces mitochondrial uncoupling and can result in weight loss without calorie reduction. However, it is hazardous when used improperly and is not prescribed outside of the US.

      Weight gain can be caused by increased insulin secretion.

      Orlistat reduces fat digestion by inhibiting lipase, which decreases the amount of fat that can be absorbed. This can result in light-colored, floating stools due to the high fat content.

      Liraglutide is a medication that slows gastric emptying to increase satiety and is primarily prescribed as an adjunct in type 2 diabetics.

      Serotonin reuptake inhibitors are not utilized for weight loss.

      Obesity can be managed through a step-wise approach that includes conservative, medical, and surgical options. The first step is usually conservative, which involves implementing changes in diet and exercise. If this is not effective, medical options such as Orlistat may be considered. Orlistat is a pancreatic lipase inhibitor that is used to treat obesity. However, it can cause adverse effects such as faecal urgency/incontinence and flatulence. A lower dose version of Orlistat is now available without prescription, known as ‘Alli’. The National Institute for Health and Care Excellence (NICE) has defined criteria for the use of Orlistat. It should only be prescribed as part of an overall plan for managing obesity in adults who have a BMI of 28 kg/m^2 or more with associated risk factors, or a BMI of 30 kg/m^2 or more, and continued weight loss of at least 5% at 3 months. Orlistat is typically used for less than one year.

    • This question is part of the following fields:

      • Endocrine System
      22.9
      Seconds
  • Question 10 - A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type...

    Incorrect

    • A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type 1 and has been on an oral anti-diabetic agent for the past year. What is the mechanism of action of the drug he is most likely taking?

      Your Answer: Activation of peroxisome proliferator-activated receptor-gamma

      Correct Answer: Binding to ATP-dependent K+ channel on the pancreatic beta cell membrane

      Explanation:

      The patient is likely taking a sulfonylurea medication, which works by binding to the ATP-dependent K+ channel on the pancreatic beta-cell membrane to promote endogenous insulin secretion. This is the recommended first-line treatment for patients with MODY type 1, as their genetic defect results in reduced insulin secretion. Thiazolidinediones (glitazones) activate peroxisome proliferator-activated receptor-gamma (PPARγ) and are not typically used in this population. Metformin (biguanide class) inhibits hepatic glucose production and increases peripheral uptake, but is less effective than sulfonylureas in MODY type 1. Acarbose inhibits intestinal alpha-glucosidase and is not used in MODY patients. Dipeptidyl peptidase-4 inhibitors (gliptins) are commonly used in type 2 diabetes but are not first-line treatment for MODY.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      35.6
      Seconds
  • Question 11 - A father is concerned about his 14-month-old child who has been having up...

    Incorrect

    • A father is concerned about his 14-month-old child who has been having up to 10 wet nappies a day. He recalls that his cousin had a kidney condition and wonders if it could be affecting his child. After being referred to a paediatrician, the doctor mentions the possibility of Bartter's syndrome.

      What is the root cause of Bartter's syndrome?

      Your Answer: Mutated ADH receptors in the collecting duct

      Correct Answer: Mutated NKCC2 channel in the ascending loop of Henle

      Explanation:

      The cause of Bartter’s syndrome is a faulty NKCC2 channel located in the ascending loop of Henle.

      Polydipsia, polyuria, and dehydration are common symptoms of Bartter’s syndrome, which is an inherited disorder resulting from mutated NKCC2 channels.

      Gitelman syndrome is a related condition caused by a mutated NCl symporter.

      Nephrogenic and central diabetes insipidus are characterized by mutated ADH receptors and a lack of ADH production, respectively.

      Bartter’s syndrome is a genetic disorder that causes severe hypokalaemia due to a defect in the absorption of chloride at the Na+ K+ 2Cl- cotransporter in the ascending loop of Henle. This disorder is usually inherited in an autosomal recessive manner. Unlike other endocrine causes of hypokalaemia, such as Conn’s, Cushing’s, and Liddle’s syndrome, Bartter’s syndrome is associated with normotension. Loop diuretics work by inhibiting NKCC2, which is similar to the effects of Bartter’s syndrome. The symptoms of Bartter’s syndrome usually appear in childhood and include failure to thrive, polyuria, polydipsia, hypokalaemia, normotension, and weakness.

    • This question is part of the following fields:

      • Endocrine System
      17.2
      Seconds
  • Question 12 - A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal...

    Correct

    • A 45-year-old patient comes in with symptoms of weight loss, nausea, vomiting, abdominal pain, and hyperpigmentation of the skin. The doctor orders a urea & electrolyte test and a short Synacthen test which comes back abnormal and diagnoses the patient with Addison's disease.

      What electrolyte abnormality is most likely to be observed in this patient?

      Your Answer: Hyperkalaemia & hyponatraemia

      Explanation:

      In Addison’s disease, there is a deficiency in the production of both aldosterone and cortisol.

      Aldosterone plays a crucial role in the reabsorption of sodium and the excretion of potassium.

      Therefore, the absence of aldosterone leads to an imbalance in the levels of sodium and potassium in the body, resulting in hyperkalemia (high potassium levels) and hyponatremia (low sodium levels).

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      32.4
      Seconds
  • Question 13 - Which one of the following does not trigger insulin secretion? ...

    Incorrect

    • Which one of the following does not trigger insulin secretion?

      Your Answer: Protein

      Correct Answer: Atenolol

      Explanation:

      The release of insulin is prevented by beta blockers.

      Factors that trigger insulin release include glucose, amino acids, vagal cholinergic stimulation, secretin/gastrin/CCK, fatty acids, and beta adrenergic drugs.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      10
      Seconds
  • Question 14 - Which of the following hinders the production of insulin secretion? ...

    Correct

    • Which of the following hinders the production of insulin secretion?

      Your Answer: Adrenaline

      Explanation:

      The release of insulin can be inhibited by alpha adrenergic drugs, beta blockers, and sympathetic nerves.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      6.9
      Seconds
  • Question 15 - A 65-year-old man with a history of type 2 diabetes is being seen...

    Correct

    • A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.

      He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.

      His most recent HbA1c result is:

      HbA1c 58 mmol/L (<42)

      After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.

      What is the mechanism of action for this new medication?

      Your Answer: Binding to KATP channels on pancreatic beta cell membrane

      Explanation:

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      61.4
      Seconds
  • Question 16 - A 57-year-old woman presents to the physician with a recurring blistering rash on...

    Correct

    • A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.

      During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.

      What is the most likely diagnosis for this patient?

      Your Answer: Glucagonoma

      Explanation:

      The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.

      Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.

      Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.

      VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.

      Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.

      Glucagonoma: A Rare Pancreatic Tumor

      Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      75.4
      Seconds
  • Question 17 - A 30-year-old male visits his GP complaining of chronic thirst, polyuria, and nocturia...

    Correct

    • A 30-year-old male visits his GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 4 months. He has a medical history of OCD, which was diagnosed 2 years ago. After a series of tests, the patient is diagnosed with primary polydipsia.

      What would be the probable outcome of this patient's water deprivation test?

      Your Answer: High urine osmolality after both fluid deprivation and desmopressin

      Explanation:

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      23.6
      Seconds
  • Question 18 - A 14-year-old boy is brought to the clinic by his mother due to...

    Correct

    • A 14-year-old boy is brought to the clinic by his mother due to concerns about his height compared to other boys his age. The boy also shares that he often receives comments about his appearance, with some likening him to a toy doll. What can be inferred about the pattern of hormone release that he may be lacking?

      Your Answer: It is released in a pulsatile manner

      Explanation:

      The doll-like appearance of the boy in his presentation suggests that he may be suffering from growth hormone deficiency, which can cause short stature, forehead prominence, and maxillary hypoplasia. The hypothalamus controls the release of growth hormone through the pulsatile release of growth hormone releasing hormone. Therefore, measuring GHRH levels is not a useful method for investigating growth hormone deficiency.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      30.2
      Seconds
  • Question 19 - A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her...

    Correct

    • A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her thyroid function test outcomes. The results are as follows:

      - Elevated TSH
      - Decreased FT4
      - Decreased FT3
      - Positive Anti-TPO

      What is the association of her condition with any of the following options?

      Your Answer: MALT lymphoma

      Explanation:

      The development of Hashimoto’s thyroiditis is linked to

      Understanding Hashimoto’s Thyroiditis

      Hashimoto’s thyroiditis is a chronic autoimmune disorder that affects the thyroid gland. It is more common in women and is typically associated with hypothyroidism, although there may be a temporary period of thyrotoxicosis during the acute phase. The condition is characterized by a firm, non-tender goitre and the presence of anti-thyroid peroxidase (TPO) and anti-thyroglobulin (Tg) antibodies.

      Hashimoto’s thyroiditis is often associated with other autoimmune conditions such as coeliac disease, type 1 diabetes mellitus, and vitiligo. Additionally, there is an increased risk of developing MALT lymphoma with this condition. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, as shown in the Venn diagram. Understanding the features and associations of Hashimoto’s thyroiditis can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Endocrine System
      62.2
      Seconds
  • Question 20 - A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool,...

    Correct

    • A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool, and muscle weakness. Her lab results show:

      Free T4 6 pmol/l (9-18 pmol/l)
      TSH 7.2 mu/l (0.5-5.5 mu/l)

      Based on the probable diagnosis, which of the following tests is most likely to be positive in this patient?

      Your Answer: Anti-thyroid peroxidase (anti-TPO) antibodies

      Explanation:

      Rheumatoid factor is not the most suitable answer for a patient with hypothyroidism, despite its presence in various rheumatological conditions and healthy individuals.

      Understanding Thyroid Autoantibodies

      Thyroid autoantibodies are antibodies that attack the thyroid gland, causing various thyroid disorders. There are three main types of anti-thyroid autoantibodies: anti-thyroid peroxidase (anti-TPO) antibodies, TSH receptor antibodies, and thyroglobulin antibodies. Anti-TPO antibodies are present in 90% of Hashimoto’s thyroiditis cases and 75% of Graves’ disease cases. TSH receptor antibodies are found in 90-100% of Graves’ disease cases. Thyroglobulin antibodies are present in 70% of Hashimoto’s thyroiditis cases, 30% of Graves’ disease cases, and a small proportion of thyroid cancer cases.

      Understanding the different types of thyroid autoantibodies is important in diagnosing and treating thyroid disorders. Hashimoto’s thyroiditis and Graves’ disease are the most common autoimmune thyroid disorders, and the presence of specific autoantibodies can help differentiate between the two. Additionally, monitoring the levels of these antibodies can help track the progression of the disease and the effectiveness of treatment. Overall, understanding thyroid autoantibodies is crucial in managing thyroid health.

    • This question is part of the following fields:

      • Endocrine System
      21.9
      Seconds
  • Question 21 - A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for...

    Incorrect

    • A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for evaluation. He is currently on maximum doses of metformin and glibenclamide, but his HbA1c levels have increased from 58 mmol/mol to 67 mmol/mol over the past six months. The consultant recommends adding sitagliptin as a third antidiabetic medication. What is the mechanism of action of this new medication?

      Your Answer: Decrease blood glucose by inhibiting renal glucose re-uptake via sodium-glucose co-transporter 2( SGLT2)

      Correct Answer: Inhibit the peripheral breakdown of incretins, enhancing their ability to stimulate insulin release

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      24.6
      Seconds
  • Question 22 - The medical team at a pediatric unit faces difficulty in determining the sex...

    Correct

    • The medical team at a pediatric unit faces difficulty in determining the sex of a newborn baby as the external genitalia appear ambiguous. The suspected condition is linked to an excess of androgen and a deficiency of mineralocorticoid. Can you explain the underlying pathophysiology?

      Your Answer: Deficiency of 21-alphahydroxylase

      Explanation:

      The clinical scenario described in the question is indicative of congenital adrenal hyperplasia, which is caused by a deficiency of the enzyme 21-alphahydroxylase. This leads to an increase in androgen production, resulting in virilization of genitalia in XX females, making them appear as males at birth.

      On the other hand, a deficiency of 5-alpha reductase causes the opposite situation, where genetically XY males have external female genitalia.

      Type 1 diabetes mellitus may be associated with the presence of autoantibodies against glutamic acid decarboxylase.

      A defect in the AIRE gene can lead to APECED, which is characterized by hypoparathyroidism, adrenal failure, and candidiasis.

      Similarly, a defect in the FOXP3 gene can cause IPEX, which presents with immune dysregulation, polyendocrinopathy, and enteropathy.

      Congenital adrenal hyperplasia is a genetic condition that affects the adrenal glands and can result in various symptoms depending on the specific enzyme deficiency. One common form is 21-hydroxylase deficiency, which can cause virilization of female genitalia, precocious puberty in males, and a salt-losing crisis in 60-70% of patients during the first few weeks of life. Another form is 11-beta hydroxylase deficiency, which can also cause virilization and precocious puberty, as well as hypertension and hypokalemia. A third form is 17-hydroxylase deficiency, which typically does not cause virilization in females but can result in intersex characteristics in boys and hypertension.

      Overall, congenital adrenal hyperplasia can have significant impacts on a person’s physical development and health, and early diagnosis and treatment are important for managing symptoms and preventing complications.

    • This question is part of the following fields:

      • Endocrine System
      27.4
      Seconds
  • Question 23 - A 29-year-old woman presents to her GP complaining of a tingling sensation around...

    Correct

    • A 29-year-old woman presents to her GP complaining of a tingling sensation around her mouth and intermittent cramps in her legs. Trousseau's sign is positive. Blood results are shown below.

      Urea 4.0 mmol/L (2.0 - 7.0)
      Creatinine 80 µmol/L (55 - 120)
      Calcium 1.95 mmol/L (2.1-2.6)
      Phosphate 1.2 mmol/L (0.8-1.4)
      Vitamin D 150 nmol/L (50-250)
      Parathyroid hormone (PTH) 1.7 pmol/L (1.6-8.5)

      Derangement of what substance may be responsible for this patient's presentation?

      Your Answer: Magnesium

      Explanation:

      The correct answer is magnesium. Adequate levels of magnesium are necessary for the proper functioning of parathyroid hormone, which can lead to hypocalcemia if magnesium levels are low. Magnesium is also essential for PTH secretion and sensitivity. Amylase, chloride, and potassium are not associated with hypocalcemia. While severe pancreatitis may cause hypocalcemia, it is typically accompanied by other symptoms such as vomiting and epigastric pain. Chloride is not linked to hypocalcemia, and hypomagnesemia can cause hypokalemia, which can lead to muscle weakness, tremors, and arrhythmias, as well as ECG changes such as flattened T waves, prolonged PR and QT intervals, and U waves.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      44
      Seconds
  • Question 24 - A 14-year-old girl is referred to the endocrine clinic by her GP due...

    Correct

    • A 14-year-old girl is referred to the endocrine clinic by her GP due to bed wetting episodes. She experiences constant thirst and frequent urination. A dipstick test reveals diluted urine with low osmolality, and her blood tests show hypernatremia with high serum osmolality. Her family has a history of diabetes insipidus. What is the most suitable follow-up examination?

      Your Answer: Water deprivation test

      Explanation:

      A water deprivation test is the most appropriate method for diagnosing diabetes insipidus. This test involves withholding water from the patient for a period of time to stimulate the release of antidiuretic hormone (ADH) and monitor changes in serum and urine osmolality. Other methods such as urinary sodium or bladder ultrasound scan are not as effective in diagnosing this condition.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      41.5
      Seconds
  • Question 25 - Which of the following will increase the volume of pancreatic exocrine secretions? ...

    Incorrect

    • Which of the following will increase the volume of pancreatic exocrine secretions?

      Your Answer: None of the above

      Correct Answer: Cholecystokinin

      Explanation:

      The volume of pancreatic secretions is often increased by cholecystokinin.

      Pancreatic Secretions and their Regulation

      Pancreatic secretions are composed of enzymes and aqueous substances, with a pH of 8 and a volume of 1000-1500ml per day. The acinar cells secrete enzymes such as trypsinogen, procarboxylase, amylase, and elastase, while the ductal and centroacinar cells secrete sodium, bicarbonate, water, potassium, and chloride. The regulation of pancreatic secretions is mainly stimulated by CCK and ACh, which are released in response to digested material in the small bowel. Secretin, released by the S cells of the duodenum, also stimulates ductal cells and increases bicarbonate secretion.

      Trypsinogen is converted to active trypsin in the duodenum via enterokinase, and trypsin then activates the other inactive enzymes. The cephalic and gastric phases have less of an impact on regulating pancreatic secretions. Understanding the composition and regulation of pancreatic secretions is important in the diagnosis and treatment of pancreatic disorders.

    • This question is part of the following fields:

      • Endocrine System
      18.3
      Seconds
  • Question 26 - Which one of the following is not associated with excessive glucocorticoids? ...

    Incorrect

    • Which one of the following is not associated with excessive glucocorticoids?

      Your Answer: Osteoporosis

      Correct Answer: Hyponatraemia

      Explanation:

      Excessive levels of glucocorticoids can lead to various negative consequences such as skin thinning, osteonecrosis, and osteoporosis. Steroids can cause the body to retain sodium and water, while also resulting in potassium loss and potentially leading to hypokalaemic alkalosis.

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      18.8
      Seconds
  • Question 27 - A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary...

    Correct

    • A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?

      Your Answer: Zona fasciculata

      Explanation:

      The adrenal gland comprises two primary parts: the cortex and medulla.

      The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.

      The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      16.4
      Seconds
  • Question 28 - A 59-year-old man with a known history of type-2 diabetes comes for a...

    Correct

    • A 59-year-old man with a known history of type-2 diabetes comes for a check-up. He is currently on metformin only for his diabetes and reports compliance with the prescribed regimen.

      His HbA1c is 63 mmol/mol (target = 53mmol/mol) and the patient and clinician agree to initiate a sulfonylurea along with his metformin.

      What is the primary mode of action of the new treatment?

      Your Answer: Increases stimulation of insulin secretion by pancreatic B-cells and decreases hepatic clearance of insulin

      Explanation:

      Sulfonylureas are a type of oral hypoglycemic agent that stimulate insulin secretion by pancreatic B-cells and reduce the clearance of insulin by the liver. They are known as insulin secretagogues.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      49.3
      Seconds
  • Question 29 - These thyroid function tests were obtained on a 55-year-old female who has recently...

    Correct

    • These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
      Free T4 28.5 pmol/L (9.8-23.1)
      TSH <0.02 mU/L (0.35-5.5)
      Free T3 10.8 pmol/L (3.5-6.5)
      She now presents with typical symptoms of hyperthyroidism.
      Which medication is likely to have caused this?

      Your Answer: Amiodarone

      Explanation:

      Amiodarone and its Effects on Thyroid Function

      Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.

      There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      28.8
      Seconds
  • Question 30 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Correct

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      34.9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (21/30) 70%
Passmed