00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 49-year-old male has sustained a facial burn at work. During the morning...

    Correct

    • A 49-year-old male has sustained a facial burn at work. During the morning ward round, it is observed in the surgeon's notes that the facial artery has good arterial blood supply, leading to hope for satisfactory healing. What is the name of the major artery that the facial artery branches off from?

      Your Answer: External carotid artery

      Explanation:

      The facial artery is the primary source of blood supply to the face, originating from the external carotid artery after the lingual artery. It follows a winding path and terminates as the angular artery at the inner corner of the eye.

      The internal carotid artery provides blood to the front and middle parts of the brain, while the vertebral artery, a branch of the subclavian artery, supplies the spinal cord, cerebellum, and back part of the brain. The brachiocephalic artery supplies the right side of the head and arm, giving rise to the subclavian and common carotid arteries on the right side.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      78.2
      Seconds
  • Question 2 - A 26-year-old man collapses during a game of cricket. He has previously experienced...

    Incorrect

    • A 26-year-old man collapses during a game of cricket. He has previously experienced chest pain and shortness of breath while running, which subsides on rest. Upon examination, he is found to have an ejection systolic murmur that intensifies with Valsalva maneuvers and diminishes with squatting. His echocardiogram reveals mitral regurgitation, asymmetric hypertrophy, and systolic anterior motion of the anterior mitral valve leaflet. What is the expected inheritance pattern for this diagnosis?

      Your Answer: X-linked recessive

      Correct Answer: Autosomal dominant

      Explanation:

      The inheritance pattern of HOCM is autosomal dominant, which means that it can be passed down from generation to generation. Symptoms of HOCM may include exertional dyspnoea, angina, syncope, and an ejection systolic murmur. It is important to note that there may be a family history of similar cardiac problems or sudden death due to ventricular arrhythmias. Autosomal recessive, mitochondrial inheritance, and X-linked dominant inheritance are not applicable to HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      65
      Seconds
  • Question 3 - A mother brings her 8-year-old son to the GP with a history of...

    Correct

    • A mother brings her 8-year-old son to the GP with a history of intermittent fevers, severe joint pain and feeling fatigued. Other than a recent absence from school for a sore throat, he has been well with no other past medical history of note.

      On examination, there is a pansystolic murmur heard over the left 5th intercostal space.

      Which organism is the most probable cause for the aforementioned symptoms?

      Your Answer: Streptococcus pyogenes

      Explanation:

      An immunological reaction is responsible for the development of rheumatic fever.

      Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.

      To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.

      Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.

    • This question is part of the following fields:

      • Cardiovascular System
      65.2
      Seconds
  • Question 4 - A 45-year-old woman presents to the emergency department with a severe headache that...

    Correct

    • A 45-year-old woman presents to the emergency department with a severe headache that started suddenly during exercise. She reports vomiting and recurrent vertigo sensations. On examination, she has an ataxic gait, left-sided horizontal nystagmus, and an intention tremor during the 'finger-to-nose' test. An urgent CT scan is ordered. Which arteries provide blood supply to the affected area of the brain?

      Your Answer: Basilar and the vertebral arteries

      Explanation:

      The correct answer is the basilar and vertebral arteries, which form branches that supply the cerebellum. The patient’s sudden onset headache, vomiting, and vertigo suggest a pathology focused on the brain, with ataxia, nystagmus, and intention tremor indicating cerebellar syndrome. A CT scan is necessary to rule out a cerebellar haemorrhage or stroke, as the basilar and vertebral arteries are the main arterial supply to the cerebellum.

      The incorrect answer is the anterior and middle cerebral arteries, which supply the cerebral cortex and would present with different symptoms. The anterior and posterior spinal arteries are also incorrect, as they supply the spine and would present with different symptoms. The ophthalmic and central retinal artery is also incorrect, as it would only present with visual symptoms and not the other symptoms seen in this patient.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      39
      Seconds
  • Question 5 - Abnormal conduction in the heart can result in arrhythmias, which may be caused...

    Correct

    • Abnormal conduction in the heart can result in arrhythmias, which may be caused by reduced blood flow in the coronary arteries leading to hypoxia. This can slow depolarisation in phase 0, resulting in slower conduction speeds.

      What ion movement is responsible for the rapid depolarisation observed in the cardiac action potential?

      Your Answer: Sodium influx

      Explanation:

      Rapid depolarization is caused by a rapid influx of sodium.

      During phase 2, the plateau period, calcium influx is responsible.

      To maintain the electrical gradient, there is potassium influx in phase 4, which is facilitated by inward rectifying K+ channels and the Na+/K+ ion exchange pump.

      Potassium efflux mainly occurs during phases 1 and 3.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      31.3
      Seconds
  • Question 6 - Which one of the following statements relating to the posterior cerebral artery is...

    Incorrect

    • Which one of the following statements relating to the posterior cerebral artery is false?

      Your Answer: It is closely related to the 3rd cranial nerve

      Correct Answer: It is connected to the circle of Willis via the superior cerebellar artery

      Explanation:

      The bifurcation of the basilar artery gives rise to the posterior cerebral arteries, which are linked to the circle of Willis through the posterior communicating artery.

      These arteries provide blood supply to the occipital lobe and a portion of the temporal lobe.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      23.5
      Seconds
  • Question 7 - Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After...

    Correct

    • Sarah is a 60-year-old female who has been recently diagnosed with hypertension. After a 3-month trial of improving diet and increasing exercise, her blood pressure is still elevated at 160/100 mmHg. Her doctor decides to start her on enalapril, an ACE inhibitor, to treat her hypertension.

      At what location in the body is enalapril activated to its pharmacologically active compound?

      Your Answer: Under phase 1 metabolism in the liver

      Explanation:

      ACE inhibitors are prodrugs that require activation through phase 1 metabolism in the liver, except for captopril and lisinopril which are administered as active drugs. The hepatic esterolysis process converts ACE inhibitors into their active metabolite, allowing them to function as subtype 1B prodrugs. It is important to note that ACE inhibitors are not activated at the site of therapeutic action, and belong to subtype 1A and 2C prodrugs that are activated intracellularly or extracellularly at the therapeutic site, respectively. Answer 3 is a distractor, as ACE inhibitors do not activate ACE in the lung, but rather inhibit its activity. Answer 5 is also incorrect, as most ACE inhibitors require activation through metabolism.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      94.5
      Seconds
  • Question 8 - A 50-year-old male is diagnosed with hypertension with a blood pressure reading of...

    Correct

    • A 50-year-old male is diagnosed with hypertension with a blood pressure reading of 180/100 mmHg during ambulatory blood pressure monitoring. The physician prescribes Ramipril, an ACE inhibitor. What is the most frequent adverse effect associated with this medication?

      Your Answer: A dry cough

      Explanation:

      Hypotension, particularly on the first dose, and deterioration of renal function are common side effects of ACE inhibitors in patients. Although angioedema is a rare side effect of ACE inhibitors, oedema is typically associated with calcium channel blockers. Diuretics may cause excessive urine output, while shortness of breath and headaches are uncommon.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      25.6
      Seconds
  • Question 9 - A 75-year-old male presents to the GP clinic complaining of increased shortness of...

    Incorrect

    • A 75-year-old male presents to the GP clinic complaining of increased shortness of breath during physical activity and swelling in both ankles. The GP schedules an echocardiogram for him as an outpatient. During the echocardiogram, the patient's heart rate was 72 bpm and blood pressure was 136/88 mmHg. The results of the echocardiogram show an end-diastolic volume of 105ml and an end-systolic volume of 65ml. What is the left ventricular ejection fraction (LVEF) of this patient?

      Your Answer: 60%

      Correct Answer: 40%

      Explanation:

      Cardiovascular physiology involves the study of the functions and processes of the heart and blood vessels. One important measure of heart function is the left ventricular ejection fraction, which is calculated by dividing the stroke volume (the amount of blood pumped out of the left ventricle with each heartbeat) by the end diastolic LV volume (the amount of blood in the left ventricle at the end of diastole) and multiplying by 100%. Another key measure is cardiac output, which is the amount of blood pumped by the heart per minute and is calculated by multiplying stroke volume by heart rate.

      Pulse pressure is another important measure of cardiovascular function, which is the difference between systolic pressure (the highest pressure in the arteries during a heartbeat) and diastolic pressure (the lowest pressure in the arteries between heartbeats). Factors that can increase pulse pressure include a less compliant aorta (which can occur with age) and increased stroke volume.

      Finally, systemic vascular resistance is a measure of the resistance to blood flow in the systemic circulation and is calculated by dividing mean arterial pressure (the average pressure in the arteries during a heartbeat) by cardiac output. Understanding these measures of cardiovascular function is important for diagnosing and treating cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      100.5
      Seconds
  • Question 10 - A 75-year-old diabetic man comes in with a heart attack and undergoes a...

    Incorrect

    • A 75-year-old diabetic man comes in with a heart attack and undergoes a coronary angiogram. What coronary artery/arteries provide blood supply to the anterior septum of the heart?

      Your Answer: Marginal branches

      Correct Answer: Left Anterior Descending

      Explanation:

      The heart receives blood supply from the coronary arteries, which originate from the left side of the heart at the root of the aorta as it exits the left ventricle.

      The left coronary artery (LCA) provides blood to the left atrium and ventricle, as well as the interventricular septum. The circumflex artery, a branch of the LCA, supplies the lateral aspect of the left heart by following the coronary sulcus to the left. The left anterior descending artery (LAD), another major branch of the LCA, supplies the anteroseptal part of the heart by following the anterior interventricular sulcus around the pulmonary trunk.

      The right coronary artery (RCA) follows the coronary sulcus and supplies blood to the right atrium, portions of both ventricles, and the inferior aspect of the heart. The marginal arteries, which arise from the RCA, provide blood to the superficial portions of the right ventricle. The posterior descending artery, which branches off the RCA on the posterior surface of the heart, runs along the posterior portion of the interventricular sulcus toward the apex of the heart and supplies the interventricular septum and portions of both ventricles.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      61.9
      Seconds
  • Question 11 - A 35-year-old man arrives at the emergency department with bradycardia. Is it possible...

    Correct

    • A 35-year-old man arrives at the emergency department with bradycardia. Is it possible for cardiac muscle to stay in phase 4 of the cardiac action potential for an extended period of time?

      What happens during phase 4 of the cardiac action potential?

      Your Answer: Na+/K+ ATPase acts

      Explanation:

      The Na+/K+ ATPase restores the resting potential.

      The cardiac action potential does not involve slow sodium influx.

      Phase 3 of repolarisation involves rapid potassium influx.

      Phase 2 involves slow calcium influx.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      41.1
      Seconds
  • Question 12 - A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency...

    Correct

    • A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?

      Your Answer: Uraemia

      Explanation:

      There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.

      ECG results do not indicate a recent heart attack.

      The patient’s age decreases the likelihood of malignancy.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      55.5
      Seconds
  • Question 13 - A 57-year-old man is diagnosed with angina and prescribed medications for symptom control...

    Incorrect

    • A 57-year-old man is diagnosed with angina and prescribed medications for symptom control and secondary prevention. The doctor advises him to make dietary changes to address excess fat in the blood that can lead to angina. During the explanation, the doctor asks which apolipoprotein macrophages recognize to uptake lipids under normal circumstances?

      Your Answer: ApoF

      Correct Answer: ApoB100

      Explanation:

      Understanding Atherosclerosis and its Complications

      Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.

      Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.

    • This question is part of the following fields:

      • Cardiovascular System
      37.7
      Seconds
  • Question 14 - Where is the site of action of bendroflumethiazide in elderly patients? ...

    Incorrect

    • Where is the site of action of bendroflumethiazide in elderly patients?

      Your Answer: Distal part of the distal convoluted tubules

      Correct Answer: Proximal part of the distal convoluted tubules

      Explanation:

      Thiazides and thiazide-like medications, such as indapamide, work by blocking the Na+-Cl− symporter at the start of the distal convoluted tubule, which inhibits the reabsorption of sodium.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      31.3
      Seconds
  • Question 15 - During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary...

    Incorrect

    • During a tricuspid valve repair, the right atrium is opened after establishing cardiopulmonary bypass. Which of the following structures is not located within the right atrium?

      Your Answer: Tricuspid valve

      Correct Answer: Trabeculae carnae

      Explanation:

      The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.

    • This question is part of the following fields:

      • Cardiovascular System
      94.5
      Seconds
  • Question 16 - An eager young medical student inquires about ECGs. Despite your limited knowledge on...

    Correct

    • An eager young medical student inquires about ECGs. Despite your limited knowledge on the subject, you valiantly attempt to respond to her queries! One of her questions is: which part of the ECG denotes ventricular repolarization?

      Your Answer: T wave

      Explanation:

      The final stage of cardiac contraction, ventricular repolarization, is symbolized by the T wave. This can be easily remembered by recognizing that it occurs after the QRS complex, which represents earlier phases of contraction.

      Understanding the Normal ECG

      The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.

      The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.

      Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      45.8
      Seconds
  • Question 17 - A newborn with Down's syndrome presents with a murmur at birth. Upon performing...

    Correct

    • A newborn with Down's syndrome presents with a murmur at birth. Upon performing an echocardiogram, what is the most probable congenital cardiac abnormality that will be detected?

      Your Answer: Atrio-ventricular septal defect

      Explanation:

      Congenital Cardiac Anomalies in Down Syndrome

      Down syndrome is a genetic disorder that is characterized by a range of congenital abnormalities. One of the most common abnormalities associated with Down syndrome is duodenal atresia. However, Down syndrome is also frequently associated with congenital cardiac anomalies. The most common cardiac anomaly in Down syndrome is an atrioventricular septal defect (AVSD), followed by ventricular septal defect (VSD), patent ductus arteriosus (PDA), tetralogy of Fallot, and atrial septal defect (ASD). These anomalies can cause a range of symptoms and complications, including heart failure, pulmonary hypertension, and developmental delays. It is important for individuals with Down syndrome to receive regular cardiac evaluations and appropriate medical care to manage these conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      8.2
      Seconds
  • Question 18 - A newborn male delivered at 38 weeks gestation presents with severe cyanosis within...

    Correct

    • A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.

      During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.

      A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.

      What is the most likely embryological pathology underlying this neonate's congenital heart defect?

      Your Answer: Failure of the aorticopulmonary septum to spiral

      Explanation:

      Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      152.4
      Seconds
  • Question 19 - An 80-year-old man arrives at the emergency department with intense crushing chest pain....

    Correct

    • An 80-year-old man arrives at the emergency department with intense crushing chest pain. His ECG reveals ST-segment elevation in leads V1, V2, V3, and V4, and troponin levels are positive, indicating a provisional diagnosis of STEMI.

      The following morning, nursing staff discovers that the patient has passed away.

      Based on the timeline of his hospitalization, what is the probable cause of his death?

      Your Answer: Ventricular fibrillation (VF)

      Explanation:

      The most likely cause of sudden death within the first 24 hours following a STEMI is ventricular fibrillation (VF). Histology findings during this time period include early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. Patients with these findings are at high risk of developing ventricular arrhythmia, heart failure, and cardiogenic shock. Acute mitral regurgitation, left ventricular free wall rupture, and pericardial effusion secondary to Dressler’s syndrome are less likely causes of sudden death in this time frame.

      Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.

    • This question is part of the following fields:

      • Cardiovascular System
      45.9
      Seconds
  • Question 20 - What is the most suitable pathological explanation for the initial processes that occur...

    Incorrect

    • What is the most suitable pathological explanation for the initial processes that occur in an abdominal aortic aneurysm in a 67-year-old male with hypertension who is otherwise healthy?

      Your Answer: Loss of collagen from the adventitia

      Correct Answer: Loss of elastic fibres from the media

      Explanation:

      Aneurysmal disease is characterized by the expansion of all layers of the arterial wall and the depletion of both elastin and collagen. The initial occurrence involves the breakdown of elastic fibers, which leads to the deterioration of collagen fibers.

      Understanding the Pathology of Abdominal Aortic Aneurysm

      Abdominal aortic aneurysms occur when the elastic proteins within the extracellular matrix fail, resulting in the dilation of all layers of the arterial wall. This degenerative disease is primarily caused by the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration. Aneurysms are typically considered aneurysmal when the diameter of the infrarenal aorta is 3 cm or greater, which is significantly larger than the normal diameter of 1.5cm in females and 1.7cm in males after the age of 50 years.

      Smoking and hypertension are major risk factors for the development of aneurysms, while rare but important causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. Understanding the pathology of abdominal aortic aneurysm is crucial in identifying and managing the risk factors associated with this condition. By addressing these risk factors, individuals can reduce their likelihood of developing an aneurysm and improve their overall health.

    • This question is part of the following fields:

      • Cardiovascular System
      47
      Seconds
  • Question 21 - A 55-year-old man is scheduled for CABG surgery and your consultant has tasked...

    Correct

    • A 55-year-old man is scheduled for CABG surgery and your consultant has tasked you, a foundation doctor on the surgical ward, with explaining the procedure to him. You are aware that the bypass will involve using the left internal thoracic artery to supply the affected coronary vessel. Can you identify the artery from which the left internal thoracic artery arises?

      Your Answer: Left subclavian artery

      Explanation:

      The left internal thoracic artery originates from the left subclavian artery near its source and runs down the chest wall beneath the ribs to supply blood to the front of the chest and breasts. During coronary artery bypass grafting (CABG), the proximal portion of the ITA is preserved while the distal end is grafted beyond the atherosclerotic segment of the affected coronary vessel to restore blood flow to the heart.

      The left axillary artery is a continuation of the left subclavian artery and is referred to as the axillary artery beyond the lateral border of the first rib. It becomes the brachial artery after passing the lower border of the teres major muscle.

      The left common carotid artery emerges from the aortic arch and divides into the internal and external carotid arteries at the fourth cervical vertebrae.

      The aortic arch is a continuation of the ascending aorta and branches off into the right brachiocephalic trunk, the left common carotid artery, and the left subclavian artery before continuing as the descending aorta.

      The thyrocervical trunk, which arises from the subclavian artery, is a brief vessel that gives rise to four branches: the inferior thyroid artery, suprascapular artery, ascending cervical artery, and transverse cervical artery.

      Coronary Artery Bypass Grafting (CABG)

      Coronary artery bypass grafting (CABG) is a surgical procedure commonly used to treat coronary artery disease. The procedure involves using multiple grafts, with the internal mammary artery being increasingly used instead of the saphenous vein due to its lower likelihood of narrowing. The surgery requires the use of a heart-lung bypass machine and systemic anticoagulation. Suitability for the procedure is determined by cardiac catheterisation or angiography. The surgery is carried out under general anaesthesia, and patients typically stay in the hospital for 7-10 days, with a return to work within 3 months.

      Complications of CABG include atrial fibrillation (30-40% of cases, usually self-limiting) and stroke (2%). However, the prognosis for the procedure is generally positive, with 90% of operations being successful. Further revascularisation may be needed in 5-10% of cases after 5 years, but the mortality rate is low, at 1-2% at 30 days.

    • This question is part of the following fields:

      • Cardiovascular System
      99.4
      Seconds
  • Question 22 - A 3-week old girl is presented to the GP by her mother who...

    Correct

    • A 3-week old girl is presented to the GP by her mother who has noticed yellowish discharge from her umbilicus on a daily basis. The baby was born without any complications and is healthy otherwise.

      Which embryological structure is most likely responsible for this issue?

      Your Answer: Allantois

      Explanation:

      If the allantois persists, it can result in a patent urachus, which may manifest as urine leakage from the belly button.

      A patent urachus is a remnant of the allantois from embryonic development that links the bladder to the umbilicus, enabling urine to flow through and exit from the abdominal area.

      When the vitelline duct fails to close, it can lead to the formation of a Meckel’s diverticulum.

      The ductus venosus acts as a bypass for umbilical blood to avoid the liver in the fetus.

      The umbilical vessels serve as a conduit for blood to and from the fetus during gestation. They are not connected to the bladder and would not cause daily leakage.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      29
      Seconds
  • Question 23 - A 68-year-old female complains of fatigue and occasional palpitations. During one of these...

    Incorrect

    • A 68-year-old female complains of fatigue and occasional palpitations. During one of these episodes, an ECG shows atrial fibrillation that resolves within half an hour. What would be the most suitable subsequent investigation for this patient?

      Your Answer: 24 hour ECG monitoring

      Correct Answer: Thyroid function tests

      Explanation:

      Diagnosis and Potential Causes of Paroxysmal Atrial Fibrillation

      Paroxysmal atrial fibrillation (AF) can have various underlying causes, including thyrotoxicosis, mitral stenosis, ischaemic heart disease, and alcohol consumption. Therefore, it is crucial to conduct thyroid function tests to aid in the diagnosis of AF, as it can be challenging to identify based solely on clinical symptoms. Additionally, an echocardiogram should be requested to evaluate the function of the left ventricle and valves, which would typically be performed by a cardiologist. However, coronary angiography is unlikely to be necessary.

      Conversely, a full blood count, calcium, erythrocyte sedimentation rate (ESR), or lipid profile would not be useful in determining the nature of AF or its potential treatment. It is essential to consider the various causes of AF to determine the most effective course of treatment. The sources cited in this article provide further information on the diagnosis and management of AF.

    • This question is part of the following fields:

      • Cardiovascular System
      24.6
      Seconds
  • Question 24 - After a myocardial infarction (MI), a 65-year-old patient is initiated on a regimen...

    Incorrect

    • After a myocardial infarction (MI), a 65-year-old patient is initiated on a regimen of medications for secondary prevention. The regimen includes aspirin, clopidogrel, perindopril, bisoprolol, and simvastatin. However, the patient experiences poor tolerance to clopidogrel, leading to a prescription of ticagrelor instead.

      Your Answer: Directly inhibits clotting factor Xa

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      Ticagrelor and clopidogrel have a similar mechanism of action in that they both inhibit ADP binding to platelet receptors, thereby preventing platelet aggregation. However, ticagrelor specifically targets the glycoprotein GPIIb/IIIa complex, while clopidogrel inhibits the P2Y12 receptor.

      Aspirin, on the other hand, irreversibly binds to cyclooxygenase (COX), an enzyme that plays a key role in the production of thromboxane A2, a potent vasoconstrictor and platelet aggregator.

      Direct oral anticoagulants (DOACs) like rivaroxaban work by directly inhibiting clotting factor Xa, which is necessary for the formation of thrombin and subsequent clotting. Unlike warfarin, DOACs require less monitoring.

      Warfarin, on the other hand, inhibits the production of vitamin K-dependent clotting factors, including factors II, VII, IX, and X. It also inhibits some pro-thrombotic molecules, which initially increases the risk of thrombosis.

      Dabigatran, another form of DOAC, is a thrombin inhibitor and currently the only one with a reversal agent available.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      69.1
      Seconds
  • Question 25 - A 56-year-old woman comes to you complaining of severe body aches and pains...

    Incorrect

    • A 56-year-old woman comes to you complaining of severe body aches and pains that have been ongoing for the past 2 weeks. She has been taking atorvastatin for the last 5 years and is aware of its potential side effects, but insists that she has never experienced anything like this before.

      Upon examination, her CK levels are found to be above 3000 U/L. Reviewing her medical records, it is noted that she had a medication review with her cardiologist just 2 weeks ago.

      What could be the possible cause of her current symptoms?

      Your Answer: The cardiologist stopped her furosemide

      Correct Answer: The cardiologist started her on amiodarone

      Explanation:

      The patient’s symptoms and elevated CK levels suggest that she may have rhabdomyolysis, which is a known risk associated with taking statins while also taking amiodarone. It is likely that her cardiologist prescribed amiodarone. To reduce her risk of statin-induced rhabdomyolysis, her atorvastatin dosage should be lowered.

      It is important to note that digoxin and beta-blockers do not increase the risk of statin-induced rhabdomyolysis, and there is no association between laxatives and this condition.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      55.3
      Seconds
  • Question 26 - A 67-year-old male arrives at the emergency department complaining of crushing chest pain,...

    Correct

    • A 67-year-old male arrives at the emergency department complaining of crushing chest pain, sweating, and palpitations. Upon examination, an ECG reveals ST elevation in leads V1-V4, indicating a myocardial infarction. Which coronary artery is most likely blocked?

      Your Answer: Anterior descending artery

      Explanation:

      Anteroseptal myocardial infarction is typically caused by blockage of the left anterior descending artery. This is supported by the patient’s symptoms and ST segment elevation in leads V1-V4, which correspond to the territory supplied by this artery. Other potential occlusions, such as the left circumflex artery, left marginal artery, posterior descending artery, or right coronary artery, would cause different changes in specific leads.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      60.2
      Seconds
  • Question 27 - A 57-year-old man comes to see his doctor with concerns about his sexual...

    Incorrect

    • A 57-year-old man comes to see his doctor with concerns about his sexual relationship with his new wife. Upon further inquiry, he discloses that he is experiencing difficulty in achieving physical arousal and is experiencing delayed orgasms. He did not report any such issues during his medication review six weeks ago and believes that the recent change in medication may be responsible for this.

      The patient's medical history includes asthma, hypertension, migraine, bilateral hip replacement, and gout.

      Which medication is the most likely cause of his recent prescription change?

      Your Answer: Losartan

      Correct Answer: Indapamide

      Explanation:

      Thiazide-like diuretics, including indapamide, can cause sexual dysfunction, which is evident in this patient’s history. Before attempting to manage the issue, it is important to rule out any iatrogenic causes. Ramipril, an ACE-inhibitor, is not associated with sexual dysfunction, while losartan, an angiotensin II receptor blocker, and amlodipine, a dihydropyridine calcium channel blocker, are also not known to cause sexual dysfunction and are used in the management of hypertension.

      Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.

      Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.

      It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.

    • This question is part of the following fields:

      • Cardiovascular System
      88
      Seconds
  • Question 28 - A baby is born prematurely at 28 weeks, increasing the likelihood of delayed...

    Incorrect

    • A baby is born prematurely at 28 weeks, increasing the likelihood of delayed closure of the ductus venosus. What are the structures that the ductus venosus connects in the fetus?

      Your Answer: IVC and umbilical artery

      Correct Answer: IVC and umbilical vein

      Explanation:

      During fetal development, the ductus venosus redirects blood flow from the left umbilical vein directly to the inferior vena cava, enabling oxygenated blood from the placenta to bypass the fetal liver. Typically, the ductus closes and becomes the ligamentum venosum between day 3 and 7. However, premature infants are more susceptible to delayed closure.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      1465.5
      Seconds
  • Question 29 - A 26-year-old male smoker presents to the vascular clinic with complaints of pain...

    Incorrect

    • A 26-year-old male smoker presents to the vascular clinic with complaints of pain and claudication in both legs. Upon examination, the patient exhibits poor pedal pulses, loss of leg hair, and a necrotic ulcer at the base of his 5th toe. An angiogram reveals corkscrew vessels in the vasa vasorum, which are responsible for supplying blood to the larger blood vessels in the legs.

      Where in the wall of the blood vessel are these corkscrew vessels typically located?

      Your Answer: Tunica media

      Correct Answer: Tunica adventitia

      Explanation:

      Vasa vasorum are vessels found in the outermost layer of the blood vessel wall known as the tunica adventitia. They are the hallmark of Buerger’s disease, which presents with corkscrew vessels and can lead to amputation. The other answers do not contain the vasa vasorum.

      Artery Histology: Layers of Blood Vessel Walls

      The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      34.8
      Seconds
  • Question 30 - An 80-year-old man is seen in the stroke clinic for a history of...

    Correct

    • An 80-year-old man is seen in the stroke clinic for a history of transient paralysis and paresthesia in his left arm that resolved after 2 hours. The stroke clinicians suspect a transient ischaemic attack and plan to initiate secondary prevention treatment as per national guidelines.

      What is the mode of action of the prescribed medication?

      Your Answer: ADP receptor inhibitor

      Explanation:

      Clopidogrel works by inhibiting the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelet activation and is therefore classified as an ADP receptor inhibitor. This drug is recommended as secondary prevention for patients who have experienced symptoms of a transient ischaemic attack (TIA). Other examples of ADP receptor inhibitors include ticagrelor and prasugrel. Aspirin, on the other hand, is a cyclooxygenase (COX) inhibitor that is used for pain control and management of ischaemic heart disease. Glycoprotein IIB/IIA inhibitors such as tirofiban and abciximab prevent platelet aggregation and thrombus formation by inhibiting the glycoprotein IIB/IIIA receptors. Picotamide is a thromboxane synthase inhibitor that is indicated for the management of acute coronary syndrome, as it inhibits the synthesis of thromboxane, a potent vasoconstrictor and facilitator of platelet aggregation.

      Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease

      Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.

      Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.

    • This question is part of the following fields:

      • Cardiovascular System
      90.5
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (16/30) 53%
Passmed