-
Question 1
Correct
-
A 10-year-old boy has been diagnosed with Duchenne muscular dystrophy due to a significantly elevated level of creatine kinase in his blood. What is the role of creatine kinase in the body?
Your Answer: To regenerate ATP for muscle contraction
Explanation:Creatine Kinase: An Enzyme for Muscle Contraction
Creatine kinase (CK), also known as creatine phosphokinase (CPK), is an enzyme that plays a crucial role in muscle tissue. Its main function is to catalyze the regeneration of adenosine triphosphate (ATP) from adenosine diphosphate (ADP) and creatine phosphate after muscle contraction. This process allows for further muscle contraction and supports sustained exertion. CK is present in many tissues, but it is most active in striated and cardiac muscle. Other tissues with CK activity include the brain, gastrointestinal tract, and bladder.
The body’s tissues contain a dimeric form of CK, which is made up of two subunits. Each subunit of CK can be made from a genetic area on chromosome 14 (CK-B) or chromosome 19 (CK-M). There are three dimeric forms (isoforms) of CK: CK-MM, CK-MB, and CK-BB. CK-MM is abundant in striated muscle tissue, while CK-MB is abundant in cardiac muscle tissue. CK-BB is abundant in the brain, gastrointestinal tract, and bladder.
In patients with muscle diseases such as Duchenne muscular dystrophy, CK-MM is released and will be the main form of CK measured. CK-MB has been widely used in the past as an aid in the diagnosis of myocardial infarction and other diseases affecting the heart muscle.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 2
Correct
-
A man in his 50s is diagnosed with pernicious anaemia. What is the probable cause for this condition?
Your Answer: Autoimmune antibodies to parietal cells
Explanation:The destruction of gastric parietal cells, often due to autoimmune factors, is a primary cause of pernicious anaemia. In some cases, mixed patterns may be present and further diagnostic assessment may be necessary, particularly in instances of bacterial overgrowth.
Pernicious anaemia is a condition that results in a deficiency of vitamin B12 due to an autoimmune disorder affecting the gastric mucosa. The term pernicious refers to the gradual and subtle harm caused by the condition, which often leads to delayed diagnosis. While pernicious anaemia is the most common cause of vitamin B12 deficiency, other causes include atrophic gastritis, gastrectomy, and malnutrition. The condition is characterized by the presence of antibodies to intrinsic factor and/or gastric parietal cells, which can lead to reduced vitamin B12 absorption and subsequent megaloblastic anaemia and neuropathy.
Pernicious anaemia is more common in middle to old age females and is associated with other autoimmune disorders such as thyroid disease, type 1 diabetes mellitus, Addison’s, rheumatoid, and vitiligo. Symptoms of the condition include anaemia, lethargy, pallor, dyspnoea, peripheral neuropathy, subacute combined degeneration of the spinal cord, neuropsychiatric features, mild jaundice, and glossitis. Diagnosis is made through a full blood count, vitamin B12 and folate levels, and the presence of antibodies.
Management of pernicious anaemia involves vitamin B12 replacement, usually given intramuscularly. Patients with neurological features may require more frequent doses. Folic acid supplementation may also be necessary. Complications of the condition include an increased risk of gastric cancer.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 3
Incorrect
-
A 60-year-old man undergoes an ultrasound screening for abdominal aortic aneurysms and is found to have a large aneurysm. He is referred to a vascular surgeon and scheduled for endovascular surgery. During this procedure, a graft is inserted through the femoral artery and into the aorta. Can you identify the level at which the aorta passes through the diaphragm?
Your Answer: T10
Correct Answer: T12
Explanation:Anatomical Planes and Levels in the Human Body
The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.
In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.
-
This question is part of the following fields:
- Neurological System
-
-
Question 4
Incorrect
-
A 20-year-old man presents with a 4-day history of fever, headache, and myalgia. He recently returned from a trip to India where he did not take any prophylaxis or use protective clothing or repellent against insects.
During the clinical examination, a non-tender maculopapular rash with islands of sparing is observed on his trunk. His blood pressure is 120/105 mmHg, temperature is 38.7ºC, and heart rate is 80 beats per minute.
Thick and thin smear did not reveal any abnormalities, but his dengue NS1 antigen is positive while dengue IgM and IgG are both negative. Stool microscopy did not reveal any ova or parasites.
What could have been the vector for the causative organism?Your Answer: Anopheles mosquito
Correct Answer: Aedes aegypti mosquito
Explanation:The Aedes aegypti mosquito is responsible for transmitting dengue, as evidenced by the patient’s history of insect exposure and symptoms such as fever, headache, myalgia, and a characteristic rash. The diagnosis can be confirmed through a positive dengue NS1 antigen test, although it may be too early for dengue IgM and IgG to be detectable. While other species in the Aedes genus may also transmit dengue, this is not typically covered at the undergraduate level.
Malaria is primarily transmitted by the Anopheles mosquito.
Murine typhus, caused by Rickettsia typhi, is mainly spread by rat fleas (specifically Xenopsylla cheopis).
Rocky mountain spotted fever, caused by Rickettsia rickettsii, is primarily transmitted by the American dog tick (Dermacentor variabilis).
Understanding Dengue Fever
Dengue fever is a viral infection that can lead to viral haemorrhagic fever, which includes diseases like yellow fever, Lassa fever, and Ebola. The dengue virus is an RNA virus that belongs to the Flavivirus genus and is transmitted by the Aedes aegypti mosquito. The incubation period for dengue fever is seven days.
Patients with dengue fever can be classified into three categories: those without warning signs, those with warning signs, and those with severe dengue (dengue haemorrhagic fever). Symptoms of dengue fever include fever, headache (often retro-orbital), myalgia, bone pain, arthralgia (also known as ‘break-bone fever’), pleuritic pain, facial flushing, maculopapular rash, and haemorrhagic manifestations such as a positive tourniquet test, petechiae, purpura/ecchymosis, and epistaxis. Warning signs include abdominal pain, hepatomegaly, persistent vomiting, and clinical fluid accumulation (ascites, pleural effusion). Severe dengue (dengue haemorrhagic fever) is a form of disseminated intravascular coagulation (DIC) that results in thrombocytopenia and spontaneous bleeding. Around 20-30% of these patients go on to develop dengue shock syndrome (DSS).
Typically, blood tests are used to diagnose dengue fever, which may show leukopenia, thrombocytopenia, and raised aminotransferases. Diagnostic tests such as serology, nucleic acid amplification tests for viral RNA, and NS1 antigen tests may also be used. Treatment for dengue fever is entirely symptomatic, including fluid resuscitation and blood transfusions. Currently, there are no antivirals available for the treatment of dengue fever.
-
This question is part of the following fields:
- General Principles
-
-
Question 5
Correct
-
A 4-year-old girl with a known diagnosis of cystic fibrosis presents to her pediatrician with a 2-day history of left-ear pain. Her mother reports that she has been frequently tugging at her left ear and had a fever this morning. Apart from this, she has been healthy. On examination, a red, bulging eardrum is observed. The pediatrician suspects bacterial otitis media. What is the probable causative organism responsible for this patient's symptoms?
Your Answer: Haemophilus influenzae
Explanation:Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis are common bacterial organisms that can cause bacterial otitis media. Pseudomonas aeruginosa can also be a common cause in patients with cystic fibrosis.
The patient’s symptoms are typical of acute otitis media (AOM), which can cause ear pain, fever, and temporary hearing loss. AOM is more common in children due to their short, horizontal eustachian tubes that allow for easier movement of organisms from the upper respiratory tract to the middle ear.
AOM can be caused by either bacteria or viruses, and it can be difficult to distinguish between the two. However, features that may suggest a bacterial cause include the absence of upper respiratory tract infection symptoms and conditions that predispose to bacterial infections. In some cases, viral AOM can increase the risk of bacterial superinfection. Antibiotics may be prescribed for prolonged cases of AOM that do not appear to be resolving within a few days or in patients with immunosuppression.
Escherichia coli and Enterococcus faecalis are not the correct answers as they are not commonly associated with AOM. Haemophilus influenzae is more likely due to the proximity of the middle ear to the upper respiratory tract. Staphylococcus aureus is also an unlikely cause of bacterial AOM.
Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
Sophie, a 5-year-old girl, visits her doctor with her mother, complaining of a lump in her groin that appears and disappears. The lump is easily reducible.
The doctor suspects an indirect inguinal hernia, although it is difficult to differentiate between femoral, direct inguinal, and indirect inguinal hernias in such a young patient.
Sophie's mother is curious about the cause of her daughter's hernia. What is the pathology of an indirect inguinal hernia?Your Answer:
Correct Answer: Protrusion through the failure of the processus vaginalis to regress
Explanation:Indirect inguinal hernias are caused by the failure of the processus vaginalis to regress, resulting in a protrusion through the deep inguinal ring and into the inguinal canal. In males, it may progress into the scrotum, while in females, it may enter the labia. This type of hernia is located lateral to the epigastric vessels.
On the other hand, direct inguinal hernias are usually caused by weakening in the abdominal musculature, which occurs with age. The protrusion enters the inguinal canal through the posterior wall, which is medial to the epigastric vessels. It may exit through the superficial inguinal ring.
The tunica vaginalis is a layer that surrounds the testes and contains a small amount of serous fluid, reducing friction between the scrotum and the testes. Meanwhile, the tunica albuginea is a layer of connective tissue that covers the ovaries, testicles, and corpora cavernosa of the penis.
Understanding Inguinal Hernias
Inguinal hernias are the most common type of abdominal wall hernias, with 75% of cases falling under this category. They are more prevalent in men, with a 25% lifetime risk of developing one. The main symptom is a lump in the groin area, which disappears when pressure is applied or when the patient lies down. Discomfort and aching are also common, especially during physical activity. However, severe pain is rare, and strangulation is even rarer.
The traditional classification of inguinal hernias into indirect and direct types is no longer relevant in clinical management. Instead, the current consensus is to treat medically fit patients, even if they are asymptomatic. A hernia truss may be an option for those who are not fit for surgery, but it has limited use in other patients. Mesh repair is the preferred method, as it has the lowest recurrence rate. Unilateral hernias are usually repaired through an open approach, while bilateral and recurrent hernias are repaired laparoscopically.
After surgery, patients are advised to return to non-manual work after 2-3 weeks for open repair and 1-2 weeks for laparoscopic repair. Complications may include early bruising and wound infection, as well as late chronic pain and recurrence. It is important to seek medical attention if any of these symptoms occur.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 7
Incorrect
-
A 72-year-old man visits his GP complaining of hesitancy, frequency, poor flow, and incomplete emptying for the past 8 months. During the examination, the GP discovers a hard, craggy, and enlarged prostate on one side. The GP urgently refers the patient to a urologist within 2 weeks and orders a prostate-specific antigen (PSA) test.
Upon seeing the urologist, the patient is informed that his PSA level is 22ng/ml. The urologist repeats the digital rectal examination and requests a multiparametric MRI to confirm the diagnosis. The urologist prescribes medication to the patient, explaining that it will initially cause a flare of tumor growth before shrinking.
What type of medication is the urologist describing that will cause this initial flare of tumor growth?Your Answer:
Correct Answer: Gonadotropin-releasing hormone agonists
Explanation:Prostate cancer management involves inhibiting or down-regulating hormones involved in the hypothalamic-pituitary-gonadal axis at different stages to prevent tumour growth. Testosterone, converted to dihydrotestosterone (DHT) in the prostate, causes growth and proliferation of prostate cells.
Gonadotropin-releasing hormone (GnRH) agonists like goserelin suppress both GnRH and LH production, causing downregulation of GnRH and LH after an initial stimulatory effect that can cause a flare in tumour growth. GnRH agonists outmatch the body’s natural production rhythm, leading to reduced LH and GnRH production.
GnRH antagonists like abarelix suppress LH production by the anterior pituitary, preventing stimulation of testosterone production in the testes and reducing DHT production. This can cause the prostate to shrink instead of growing.
Anti-androgens like bicalutamide directly block the actions of testosterone and DHT within the cells of the prostate, preventing growth. They are often prescribed alongside GnRH agonists to prevent the flare in tumour growth.
5-a-reductase inhibitors, also known as DHT-blockers, shrink the prostate by stopping the conversion of testosterone to DHT. This prevents tumour growth and overall shrinkage of the prostate, but does not cause initial tumour growth.
Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.
In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.
-
This question is part of the following fields:
- Renal System
-
-
Question 8
Incorrect
-
A 29-year-old man is diagnosed with pleomorphic adenoma and requires surgical resection. During the procedure, which of the following structures is least likely to be encountered in the resection of the parotid gland?
Your Answer:
Correct Answer: Mandibular nerve
Explanation:The parotid gland is traversed by several important structures, including the facial nerve and its branches, the external carotid artery and its branches (such as the maxillary and superficial temporal arteries), the retromandibular vein, and the auriculotemporal nerve. However, the mandibular nerve is located at a safe distance from the gland. The maxillary vein joins with the superficial temporal vein to form the retromandibular vein, which passes through the parotid gland. Damage to the auriculotemporal nerve during a parotidectomy can result in regrowth that attaches to sweat glands, leading to gustatory sweating (Freys Syndrome). The marginal mandibular branch of the facial nerve is also associated with the parotid gland.
The parotid gland is located in front of and below the ear, overlying the mandibular ramus. Its salivary duct crosses the masseter muscle, pierces the buccinator muscle, and drains adjacent to the second upper molar tooth. The gland is traversed by several structures, including the facial nerve, external carotid artery, retromandibular vein, and auriculotemporal nerve. The gland is related to the masseter muscle, medial pterygoid muscle, superficial temporal and maxillary artery, facial nerve, stylomandibular ligament, posterior belly of the digastric muscle, sternocleidomastoid muscle, stylohyoid muscle, internal carotid artery, mastoid process, and styloid process. The gland is supplied by branches of the external carotid artery and drained by the retromandibular vein. Its lymphatic drainage is to the deep cervical nodes. The gland is innervated by the parasympathetic-secretomotor, sympathetic-superior cervical ganglion, and sensory-greater auricular nerve. Parasympathetic stimulation produces a water-rich, serous saliva, while sympathetic stimulation leads to the production of a low volume, enzyme-rich saliva.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 9
Incorrect
-
A 67-year-old male is referred to a neurologist for a complete evaluation of a 6-month history of anosmia. The patient denies any other symptoms except for anosmia and occasional headaches. An MRI scan reveals a small brain tumor, which is suspected to be the underlying cause of the symptoms.
What is the most probable location of this lesion?Your Answer:
Correct Answer: Frontal lobe
Explanation:Anosmia, or loss of smell, can be caused by lesions in the frontal lobe of the brain. In addition to anosmia, frontal lobe lesions may also cause Broca’s aphasia, personality changes, and loss of motor function. Cerebellar lesions, on the other hand, may present with the DANISH symptoms, which include dysdiadochokinesia, ataxia, intention tremor, nystagmus, and hypotonia. Lesions in the occipital lobe can cause visual loss, while lesions in the parietal lobe may cause sensory problems, body awareness issues, and language development weakening. Finally, lesions in the temporal lobe may cause Wernicke’s aphasia, memory loss, emotional changes, and a superior quadrantanopia.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 20-year-old man has a tonsillectomy due to recurrent acute tonsillitis. During recovery, he experiences a postoperative bleeding. Which vessel is the most probable cause of the bleeding?
Your Answer:
Correct Answer: External palatine vein
Explanation:If the external palatine vein is harmed during tonsillectomy, it can result in reactionary bleeding and is located adjacent to the tonsil.
Tonsil Anatomy and Tonsillitis
The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has been admitted and treated for infective exacerbations of COPD three times in the past year. Despite his respiratory issues, he continues to smoke. He is currently receiving only short-acting beta2-agonist therapy. During his COPD patient review with the nurse practitioner at his local general practice, spirometry results reveal a drop in his FEV1 from 65% to 58%.
What is the most effective approach to manage his condition and prevent further decline in his FEV1?Your Answer:
Correct Answer: Smoking cessation
Explanation:The most effective intervention to slow the decrease in FEV1 experienced by patients with COPD is to stop smoking. If the patient has no asthmatic/steroid-responsive features, the next step in management would be to add a long-acting beta2-agonist (LABA) and a long-acting muscarinic antagonist. If the patient has asthmatic/steroid-responsive features, the next step would be to add a LABA and an inhaled corticosteroid. Oral theophylline is only considered if inhaled therapy is not possible, and oral prednisolone is only used during acute infective exacerbations of COPD to help with inflammation and is not a long-term solution to slow the reduction of FEV1.
The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.
Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.
If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.
NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.
Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 16-year-old girl has been brought to the emergency department by her guardians after confessing to taking three boxes of ibuprofen an hour ago.
What is the appropriate course of action for her treatment?Your Answer:
Correct Answer: Activated charcoal and N-acetylcysteine
Explanation:If a paracetamol overdose occurs, activated charcoal should be administered within 1 hour for it to be effective. However, if the time has passed, N-acetylcysteine would be the preferred treatment. It is important to note that activated charcoal should not be used as the sole treatment as it does not address the paracetamol that has already been absorbed.
Paracetamol overdose management guidelines were reviewed by the Commission on Human Medicines in 2012. The new guidelines removed the ‘high-risk’ treatment line on the nomogram, meaning that all patients are treated the same regardless of risk factors for hepatotoxicity. However, the National Poisons Information Service/TOXBASE should be consulted for situations outside of the normal parameters. Activated charcoal may be given to patients who present within 1 hour to reduce drug absorption. Acetylcysteine should be given if the plasma paracetamol concentration is on or above a single treatment line, there is a staggered overdose, or patients present 8-24 hours after ingestion of an acute overdose of more than 150 mg/kg of paracetamol. Acetylcysteine should also be continued if the paracetamol concentration or ALT remains elevated while seeking specialist advice. The infusion time for acetylcysteine has been increased to 1 hour to reduce adverse effects. Anaphylactoid reactions to IV acetylcysteine are generally treated by stopping the infusion and restarting at a slower rate. The King’s College Hospital criteria for liver transplantation in paracetamol liver failure include arterial pH < 7.3, prothrombin time > 100 seconds, creatinine > 300 µmol/l, and grade III or IV encephalopathy.
-
This question is part of the following fields:
- General Principles
-
-
Question 13
Incorrect
-
A 5-year-old child is presented by their mother with complaints of sticky eyes and constant rubbing. Upon examination, you observe crusty flakes around the eyelashes and stickiness in both eyes. You prescribe chloramphenicol 5% eye drops to be used four times a day until symptoms subside and provide a leaflet on bacterial conjunctivitis. What is the correct mechanism of action of this medication?
Your Answer:
Correct Answer: Inhibits protein synthesis by acting on 50S ribosomal subunit
Explanation:Chloramphenicol hinders the process of protein synthesis by targeting the 50S ribosomal subunit.
Amphotericin creates a transmembrane protein that causes the leakage of monovalent ions.
Penicillin functions by preventing the cross-linking of peptidoglycan cell walls, which disrupts the structural integrity of bacterial cells.
Rifampicin inhibits DNA-dependent RNA polymerase, leading to the suppression of RNA synthesis and eventual cell death.
Terbinafine blocks the biosynthesis of ergosterol, a crucial component of fungal cell membranes, by inhibiting squalene epoxidase.
Antibiotics work in different ways to kill or inhibit the growth of bacteria. The commonly used antibiotics can be classified based on their gross mechanism of action. The first group inhibits cell wall formation by either preventing peptidoglycan cross-linking (penicillins, cephalosporins, carbapenems) or peptidoglycan synthesis (glycopeptides like vancomycin). The second group inhibits protein synthesis by acting on either the 50S subunit (macrolides, chloramphenicol, clindamycin, linezolid, streptogrammins) or the 30S subunit (aminoglycosides, tetracyclines) of the bacterial ribosome. The third group inhibits DNA synthesis (quinolones like ciprofloxacin) or damages DNA (metronidazole). The fourth group inhibits folic acid formation (sulphonamides and trimethoprim), while the fifth group inhibits RNA synthesis (rifampicin). Understanding the mechanism of action of antibiotics is important in selecting the appropriate drug for a particular bacterial infection.
-
This question is part of the following fields:
- General Principles
-
-
Question 14
Incorrect
-
What is the primary factor that increases the risk of thiamine (vitamin B1) deficiency?
Your Answer:
Correct Answer: Chronic alcohol excess
Explanation:Thiamine: Its Roles, Sources, Deficiency States, and Manifestations
Thiamine is a vital nutrient that plays several roles in the body. It acts as a cofactor to enzymes involved in energy production, metabolism of branched chain amino acids, and regulation of nerve and muscle action potentials. It is found in many foods, including wheat, oats, and yeast-containing products. However, deficiency states can occur in chronic alcohol dependence, renal dialysis, and cultures that mainly consume white rice. The deficiency can manifest as ‘dry’ beriberi, which causes peripheral neuropathy, muscle weakness, fatigue, and reduced concentration, or ‘wet’ beriberi, which also involves heart failure and edema. In severe cases, Wernicke-Korsakoff syndrome can develop, which is an emergency requiring urgent IV replacement of thiamine. If left untreated, it can lead to irreversible amnesia, confabulation, and dementia. Therefore, all patients with alcohol-related admissions should be considered for Pabrinex, a B vitamin infusion.
-
This question is part of the following fields:
- Basic Sciences
-
-
Question 15
Incorrect
-
Which one of the following structures does not pass anterior to the lateral malleolus?
Your Answer:
Correct Answer: Peroneus brevis
Explanation:The lateral malleolus is located posterior to the path of the peroneus brevis.
Anatomy of the Lateral Malleolus
The lateral malleolus is a bony prominence on the outer side of the ankle joint. Posterior to the lateral malleolus and superficial to the superior peroneal retinaculum are the sural nerve and short saphenous vein. These structures are important for sensation and blood flow to the lower leg and foot.
On the other hand, posterior to the lateral malleolus and deep to the superior peroneal retinaculum are the peroneus longus and peroneus brevis tendons. These tendons are responsible for ankle stability and movement.
Additionally, the calcaneofibular ligament is attached at the lateral malleolus. This ligament is important for maintaining the stability of the ankle joint and preventing excessive lateral movement.
Understanding the anatomy of the lateral malleolus is crucial for diagnosing and treating ankle injuries and conditions. Proper care and management of these structures can help prevent long-term complications and improve overall ankle function.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 16
Incorrect
-
A 23 years old male presents to the hospital with a complaint of reduced ability to flex his left elbow. The doctor observes a significant weakness in the flexion of his left elbow and supination of his forearm. Additionally, the patient reports experiencing a tingling sensation on his left lateral forearm.
Which nerve is most likely to be damaged in this case?Your Answer:
Correct Answer: Musculocutaneous nerve
Explanation:The musculocutaneous nerve originates from the lateral cord of the brachial plexus and provides innervation to the bicep brachii, brachialis, and coracobrachialis muscles in the upper arm. It then continues into the forearm as the lateral cutaneous nerve of the forearm. Damage to this nerve can result in the aforementioned symptoms.
The median nerve is responsible for innervating the anterior compartment of the forearm, but does not provide innervation to any muscles in the arm.
The ulnar nerve provides innervation to the flexor carpi ulnaris and medial half of the flexor digitorum profundus muscles in the forearm, as well as the intrinsic muscles of the hand (excluding the thenar muscles and two lateral lumbricals). It is commonly injured due to a fracture of the medial epicondyle.
The radial nerve innervates the tricep brachii and extensor muscles in the forearm, and provides sensory innervation to the majority of the posterior forearm and dorsal surface of the lateral three and a half digits. It is typically injured due to a midshaft humeral fracture.
The Musculocutaneous Nerve: Function and Pathway
The musculocutaneous nerve is a nerve branch that originates from the lateral cord of the brachial plexus. Its pathway involves penetrating the coracobrachialis muscle and passing obliquely between the biceps brachii and the brachialis to the lateral side of the arm. Above the elbow, it pierces the deep fascia lateral to the tendon of the biceps brachii and continues into the forearm as the lateral cutaneous nerve of the forearm.
The musculocutaneous nerve innervates the coracobrachialis, biceps brachii, and brachialis muscles. Injury to this nerve can cause weakness in flexion at the shoulder and elbow. Understanding the function and pathway of the musculocutaneous nerve is important in diagnosing and treating injuries or conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 17
Incorrect
-
A 23-year-old woman comes to your clinic with a complaint of ear pain and difficulty hearing on one side. During the examination, you observe that she has a fever and a bulging tympanic membrane. What nerve transmits pain from the middle ear?
Your Answer:
Correct Answer: Glossopharyngeal nerve
Explanation:The correct answer is the glossopharyngeal nerve, which is responsible for carrying sensation from the middle ear.
The ninth cranial nerve, or glossopharyngeal nerve, carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas such as the pharyngeal wall, tonsils, pharyngotympanic tube, middle ear, tympanic membrane, external auditory canal, and auricle. It also provides motor fibers to the stylopharyngeus and parasympathetic fibers to the parotid gland. Additionally, it carries information from the baroreceptors and chemoreceptors of the carotid sinus.
On the other hand, the seventh cranial nerve, or facial nerve, innervates the muscles of facial expression, stylohyoid, stapedius, and the posterior belly of digastric. It carries sensation from part of the external acoustic meatus, auricle, and behind the auricle, and taste from the anterior two-thirds of the tongue. It also provides parasympathetic fibers to the submandibular, sublingual, nasal, and lacrimal glands.
The eighth cranial nerve, or vestibulocochlear nerve, has a vestibular component that carries balance information from the labyrinths of the inner ear and a cochlear component that carries hearing information from the cochlea of the inner ear.
The twelfth cranial nerve, or hypoglossal nerve, supplies motor innervation to all of the intrinsic muscles of the tongue and all of the extrinsic muscles of the tongue except for palatoglossus.
Lastly, the maxillary nerve is the second division of the trigeminal nerve, the fifth cranial nerve, which carries sensation from the upper teeth and gingivae, the nasal cavity, and skin across the lower eyelids and cheeks.
Based on the patient’s symptoms of ear pain, the most likely diagnosis is otitis media, as indicated by her fever and the presence of a bulging tympanic membrane on otoscopy.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Incorrect
-
A 27-year-old man is brought to the emergency department after being found unconscious at home. He is a known intravenous drug user.
Upon examination, he has a fever of 38.5oC and a new murmur is heard loudest in the tricuspid region. An echocardiogram reveals a vegetation on the tricuspid valve.
A blood culture is taken to identify the organism causing the infection. What is the most likely organism growing on the valve?Your Answer:
Correct Answer: Staphylococcus aureus
Explanation:Understanding Staphylococci: Common Bacteria with Different Types
Staphylococci are a type of bacteria that are commonly found in the human body. They are gram-positive cocci and are facultative anaerobes that produce catalase. While they are usually harmless, they can also cause invasive diseases. There are two main types of Staphylococci that are important to know: Staphylococcus aureus and Staphylococcus epidermidis.
Staphylococcus aureus is coagulase-positive and is known to cause skin infections such as cellulitis, abscesses, osteomyelitis, and toxic shock syndrome. On the other hand, Staphylococcus epidermidis is coagulase-negative and is often the cause of central line infections and infective endocarditis.
It is important to understand the different types of Staphylococci and their potential to cause disease in order to properly diagnose and treat infections. By identifying the type of Staphylococci present, healthcare professionals can determine the appropriate course of treatment and prevent the spread of infection.
-
This question is part of the following fields:
- General Principles
-
-
Question 19
Incorrect
-
A study examines whether a new medication for elderly patients with heart failure can reduce hospitalizations. How should statistical significance be determined when analyzing the data?
Your Answer:
Correct Answer:
Explanation:Significance tests are used to determine the likelihood of a null hypothesis being true. The null hypothesis states that two treatments are equally effective, while the alternative hypothesis suggests that there is a difference between the two treatments. The p value is the probability of obtaining a result by chance that is at least as extreme as the observed result, assuming the null hypothesis is true. Two types of errors can occur during significance testing: type I, where the null hypothesis is rejected when it is true, and type II, where the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
-
This question is part of the following fields:
- General Principles
-
-
Question 20
Incorrect
-
A 78-year-old woman with a history of neurosarcoidosis treated with steroids visits her GP complaining of intense facial pain. The pain lasts only a few seconds but is unbearable and worsens with exposure to cold air and touch.
Upon examination, there are no focal neurological signs. However, a few minutes after the examination, she experiences severe pain on her right cheek, which she describes as always being over her right zygoma.
Through which opening in the skull does the affected cranial nerve pass?Your Answer:
Correct Answer: Foramen rotundum
Explanation:The correct answer is Foramen rotundum, as the maxillary nerve passes through this foramen to exit the skull. This nerve is responsible for the sensory innervation of the upper teeth, gums, and palate. The patient’s trigeminal neuralgia is caused by irritation of the right-sided maxillary nerve.
Cribriform plate is not the correct answer, as this area of the skull is where the olfactory nerve passes through to enable the sense of smell.
Foramen ovale is also not the correct answer, as this foramen is where the mandibular nerve exits the skull to provide sensation to the lower face.
Jugular foramen is not the correct answer, as this foramen is where the accessory nerve passes through to innervate the sternocleidomastoid and trapezius muscles.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 28-year-old female is prescribed a medication by her physician. Upon reviewing the drug's properties, you observe that the rate of excretion remains constant despite an increase in its concentration.
Which medication exhibits this unique pharmacokinetic characteristic?Your Answer:
Correct Answer: Aspirin
Explanation:When drugs are excreted by zero-order kinetics, the rate at which they are eliminated from the body remains constant regardless of their concentration in the body. This is different from first-order kinetics, where the elimination rate is proportional to the drug’s plasma concentration. Some examples of drugs that follow zero-order kinetics include aspirin, phenytoin, ethanol, and fluoxetine, while drugs like amitriptyline, ampicillin, apixaban, and atenolol follow first-order kinetics.
Pharmacokinetics of Excretion
Pharmacokinetics refers to the study of how drugs are absorbed, distributed, metabolized, and eliminated by the body. One important aspect of pharmacokinetics is excretion, which is the process by which drugs are removed from the body. The rate of drug elimination is typically proportional to drug concentration, a phenomenon known as first-order elimination kinetics. However, some drugs exhibit zero-order kinetics, where the rate of excretion remains constant regardless of changes in plasma concentration. This occurs when the metabolic process responsible for drug elimination becomes saturated. Examples of drugs that exhibit zero-order kinetics include phenytoin and salicylates. Understanding the pharmacokinetics of excretion is important for determining appropriate dosing regimens and avoiding toxicity.
-
This question is part of the following fields:
- General Principles
-
-
Question 22
Incorrect
-
A 50-year-old man with type 2 diabetes mellitus visits his GP for his annual health check-up. His HbA1c level is 86mmol/L and the GP is contemplating the addition of empagliflozin to his diabetes management plan.
What is the mechanism of action of empagliflozin?Your Answer:
Correct Answer: Inhibition of the sodium-glucose transporter in the kidney
Explanation:SGLT-2 inhibitors work by blocking the action of sodium-glucose co-transporter 2 (SGLT-2) in the renal proximal convoluted tubule, which leads to a decrease in glucose re-absorption into the circulation. Empagliflozin is an example of an SGLT-2 inhibitor.
Sulphonylureas increase insulin secretion from β islet cells in the pancreas by blocking potassium channels, which causes islet cell depolarisation and release of insulin.
DPP-4 inhibitors, such as sitagliptin, prevent the breakdown of GLP-1 (glucagon-like peptide) by inhibiting the enzyme DPP-4. This leads to suppression of glucagon release and an increase in insulin release.
Acarbose inhibits α glucosidase and other enzymes in the small intestine, which prevents the breakdown of complex carbohydrates into glucose. This results in less glucose being available for absorption into the bloodstream.
Thiazolidinediones reduce insulin resistance in peripheral tissues and decrease gluconeogenesis in the liver by stimulating PPAR-γ (peroxisome proliferator-activated receptor-gamma), which modulates the transcription of genes involved in glucose metabolism.
Understanding SGLT-2 Inhibitors
SGLT-2 inhibitors are medications that work by blocking the reabsorption of glucose in the kidneys, leading to increased excretion of glucose in the urine. This mechanism of action helps to lower blood sugar levels in patients with type 2 diabetes mellitus. Examples of SGLT-2 inhibitors include canagliflozin, dapagliflozin, and empagliflozin.
However, it is important to note that SGLT-2 inhibitors can also have adverse effects. Patients taking these medications may be at increased risk for urinary and genital infections due to the increased glucose in the urine. Fournier’s gangrene, a rare but serious bacterial infection of the genital area, has also been reported. Additionally, there is a risk of normoglycemic ketoacidosis, a condition where the body produces high levels of ketones even when blood sugar levels are normal. Finally, patients taking SGLT-2 inhibitors may be at increased risk for lower-limb amputations, so it is important to closely monitor the feet.
Despite these potential risks, SGLT-2 inhibitors can also have benefits. Patients taking these medications often experience weight loss, which can be beneficial for those with type 2 diabetes mellitus. Overall, it is important for patients to discuss the potential risks and benefits of SGLT-2 inhibitors with their healthcare provider before starting treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
A 75-year-old man is experiencing symptoms of mesenteric ischemia. During his diagnostic evaluation, a radiologist is attempting to cannulate the coeliac axis from the aorta. Typically, at which vertebral level does this artery originate?
Your Answer:
Correct Answer: T12
Explanation:The coeliac trunk is a major artery that arises from the aorta and gives off three branches on the left-hand side: the left gastric, hepatic, and splenic arteries.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 25-year-old male is admitted with non-severe community acquired pneumonia. You prescribe oral amoxicillin for two days. Despite treatment, the patient's condition worsens. Serology confirms Mycoplasma pneumoniae infection.
What could be the possible reason for this deterioration?Your Answer:
Correct Answer: The strain of the likely causative agent is intrinsically resistant to the antibiotic
Explanation:Intrinsic resistance is observed in Mycoplasma pneumoniae, which is responsible for atypical pneumonia, as it lacks a cell wall and is not susceptible to beta-lactam antibiotics such as amoxicillin.
Comparison of Legionella and Mycoplasma pneumonia
Legionella and Mycoplasma pneumonia are both causes of atypical pneumonia, but they have some differences. Legionella is associated with outbreaks in buildings with contaminated water systems, while Mycoplasma pneumonia is more common in younger patients and is associated with epidemics every 4 years. Both diseases have flu-like symptoms, but Mycoplasma pneumonia has a more gradual onset and a dry cough. On x-ray, both diseases show bilateral consolidation. However, it is important to recognize Mycoplasma pneumonia as it may not respond to penicillins or cephalosporins due to it lacking a peptidoglycan cell wall.
Complications of Mycoplasma pneumonia include cold autoimmune haemolytic anaemia, erythema multiforme, meningoencephalitis, and other immune-mediated neurological diseases. In contrast, Legionella can cause Legionnaires’ disease, which is a severe form of pneumonia that can lead to respiratory failure and death.
Diagnosis of Legionella is generally by urinary antigen testing, while diagnosis of Mycoplasma pneumonia is generally by serology. Treatment for Legionella includes fluoroquinolones or macrolides, while treatment for Mycoplasma pneumonia includes doxycycline or a macrolide. Overall, while both diseases are causes of atypical pneumonia, they have some distinct differences in their epidemiology, symptoms, and complications.
-
This question is part of the following fields:
- General Principles
-
-
Question 25
Incorrect
-
A 55-year-old woman is involved in a car accident and is admitted to a neuro-rehabilitation ward for her recovery. During her cranial nerve examination, it is found that she has left-sided homonymous inferior quadrantanopia and difficulty reading. Her family reports that she can no longer read the newspaper or do sudokus, which she used to enjoy before the accident. Based on these symptoms, which area of the brain is likely to be damaged?
Your Answer:
Correct Answer: Parietal lobe
Explanation:Alexia may be caused by lesions in the parietal lobe.
This is because damage to the parietal lobe can result in various symptoms, including alexia, agraphia, acalculia, hemi-spatial neglect, and homonymous inferior quadrantanopia. Other possible symptoms may include loss of sensation, apraxias, or astereognosis.
The cerebellum is not the correct answer, as damage to this region can cause symptoms such as dysdiadochokinesia, ataxia, nystagmus, intention tremor, scanning dysarthria, and positive heel-shin test.
Similarly, the frontal lobe is not the correct answer, as damage to this region can result in anosmia, Broca’s dysphasia, changes in personality, and motor deficits.
The occipital lobe is also not the correct answer, as damage to this region can cause visual disturbances.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 26
Incorrect
-
A 10-month-old girl arrives at the emergency department with cough and nasal congestion. The triage nurse records a temperature of 38.2ºC. Which area of the brain is accountable for the observed physiological anomaly in this infant?
Your Answer:
Correct Answer: Hypothalamus
Explanation:The hypothalamus is responsible for regulating body temperature, as it controls thermoregulation. It responds to pyrogens produced during infections, which induce the synthesis of prostaglandins that bind to receptors in the hypothalamus and raise body temperature. The cerebellum, limbic system, and pineal gland are not involved in temperature control.
The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.
-
This question is part of the following fields:
- Neurological System
-
-
Question 27
Incorrect
-
You are evaluating an 80-year-old woman who was admitted last night with symptoms suggestive of a stroke. She is suspected to have lateral medullary syndrome.
During the examination, you observe that she has lost her sense of taste in the posterior third of her tongue and has an absent gag reflex.
Through which structure does the affected cranial nerve most likely pass?Your Answer:
Correct Answer: Jugular foramen
Explanation:The jugular foramen is the pathway through which the glossopharyngeal nerve travels.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 µmol/L (60-110). On examination, he has a temperature of 39°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?
Your Answer:
Correct Answer: Sepsis
Explanation:The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.
While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.
Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.
-
This question is part of the following fields:
- Renal System
-
-
Question 29
Incorrect
-
Which of the following most accurately explains how glucocorticoids work?
Your Answer:
Correct Answer: Binding of intracellular receptors that migrate to the nucleus to then affect gene transcription
Explanation:The effects of glucocorticoids are mediated by intracellular receptors that bind to them and are subsequently transported to the nucleus, where they modulate gene transcription.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
A 65-year-old man with a history of type 2 diabetes is being seen by his primary care physician.
He is currently taking metformin 1g twice daily and lisinopril for his high blood pressure.
His most recent HbA1c result is:
HbA1c 58 mmol/L (<42)
After further discussion, he has agreed to add a second medication for his diabetes. He has been informed that potential side effects may include weight gain, hypoglycemia, and gastrointestinal issues.
What is the mechanism of action for this new medication?Your Answer:
Correct Answer: Binding to KATP channels on pancreatic beta cell membrane
Explanation:Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Mins)