-
Question 1
Correct
-
A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with new-onset double vision. She reports that in the last week, she has noticed double vision when trying to focus on objects on the left side of her visual field. She reports no double vision when looking to the right.
During examination, asking the patient to track the examiner's finger and look to the left (i.e. left horizontal conjugate gaze) elicits double vision, with the patient reporting that images appear 'side by side.' Additionally, there is a failure of the right eye to adduct past the midline, and nystagmus is noted in the left eye. Asking the patient to look to the right elicits no symptoms or abnormal findings. Asking the patient to converge her eyes on a nearby, midline object elicits no abnormalities, and the patient can abduct both eyes.
Which part of the nervous system is most likely responsible for this patient's symptoms?Your Answer: Paramedian area of midbrain and pons
Explanation:The medial longitudinal fasciculus is a pathway located in the paramedian area of the midbrain and pons that coordinates horizontal conjugate gaze by connecting the abducens nerve nucleus (CN VI) with the contralateral oculomotor nerve nucleus (CN III). Lesions in the MLF can result in internuclear ophthalmoplegia (INO), which is commonly caused by demyelinating disorders like multiple sclerosis. Bilateral INO is often associated with multiple sclerosis.
The other options listed in the vignette can also cause visual disturbances, but they are not the cause of the patient’s INO. Lesions in the occipital lobe can cause contralateral homonymous, macular-sparing quadrantanopia or hemianopia. Lateral medullary lesions (Wallenberg syndrome) can cause an ipsilateral Horner’s syndrome marked by ptosis, miosis, and anhidrosis. Optic neuritis, which is common in multiple sclerosis, can cause blurred vision, colour desaturation, and eye pain, but it would not result in binocular diplopia that improves on covering the unaffected eye. Lesions affecting the oculomotor nerve nucleus would also affect the ipsilateral eye’s ability to abduct on horizontal conjugate gaze, but the test of convergence can help distinguish this from an MLF lesion.
Understanding Internuclear Ophthalmoplegia
Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.
The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
As per conventional methods, which of the following is deemed to be the most superior level of evidence?
Your Answer: Cross sectional surveys
Correct Answer: RCTs with non-definitive results
Explanation:Levels and Grades of Evidence in Evidence-Based Medicine
In order to evaluate the quality of evidence in evidence-based medicine, levels or grades are often used to organize the evidence. Traditional hierarchies placed systematic reviews or randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system which separates the type of study questions and gives a hierarchy for each. On the other hand, the GRADE system is a grading approach that classifies the quality of evidence as high, moderate, low, or very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical or important, and the evidence is gathered and criteria are used to grade the evidence. Evidence can be promoted or downgraded based on certain circumstances. The use of levels and grades of evidence helps to evaluate the quality of evidence and make informed decisions in evidence-based medicine.
-
This question is part of the following fields:
- General Principles
-
-
Question 3
Correct
-
Which one of the following is not produced by the parietal cells?
Your Answer: Mucus
Explanation:The chief cells responsible for producing Pepsi cola are not to be confused with the chief cells found in the stomach. In the stomach, chief cells secrete pepsinogen, while parietal cells secrete HCl, Ca, Na, Mg, and intrinsic factor. Additionally, surface mucosal cells secrete mucus and bicarbonate.
Understanding Gastric Secretions for Surgical Procedures
A basic understanding of gastric secretions is crucial for surgeons, especially when dealing with patients who have undergone acid-lowering procedures or are prescribed anti-secretory drugs. Gastric acid, produced by the parietal cells in the stomach, has a pH of around 2 and is maintained by the H+/K+ ATPase pump. Sodium and chloride ions are actively secreted from the parietal cell into the canaliculus, creating a negative potential across the membrane. Carbonic anhydrase forms carbonic acid, which dissociates, and the hydrogen ions formed by dissociation leave the cell via the H+/K+ antiporter pump. This leaves hydrogen and chloride ions in the canaliculus, which mix and are secreted into the lumen of the oxyntic gland.
There are three phases of gastric secretion: the cephalic phase, gastric phase, and intestinal phase. The cephalic phase is stimulated by the smell or taste of food and causes 30% of acid production. The gastric phase, which is caused by stomach distension, low H+, or peptides, causes 60% of acid production. The intestinal phase, which is caused by high acidity, distension, or hypertonic solutions in the duodenum, inhibits gastric acid secretion via enterogastrones and neural reflexes.
The regulation of gastric acid production involves various factors that increase or decrease production. Factors that increase production include vagal nerve stimulation, gastrin release, and histamine release. Factors that decrease production include somatostatin, cholecystokinin, and secretin. Understanding these factors and their associated pharmacology is essential for surgeons.
In summary, a working knowledge of gastric secretions is crucial for surgical procedures, especially when dealing with patients who have undergone acid-lowering procedures or are prescribed anti-secretory drugs. Understanding the phases of gastric secretion and the regulation of gastric acid production is essential for successful surgical outcomes.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 4
Incorrect
-
A 62-year-old man comes to the emergency department with recent involuntary movements. During the examination, it is observed that he has unmanageable thrashing movements of his left arm and leg, which cannot be diverted. A CT scan reveals a fresh acute infarct.
What part of the brain has been impacted by this infarct, causing these symptoms?Your Answer: Substantia nigra
Correct Answer: Subthalamic nucleus
Explanation:Lesions of the subthalamic nucleus (STN) within the basal ganglia can result in a hemiballismus, characterized by uncontrollable thrashing movements. The STN plays a role in unconscious motor control by providing excitatory input to the globus pallidus internus (GPi), which then acts in an inhibitory way on motor outflow from the cortex. When the STN is damaged, there is less activity within the GPi and relative hyperactivity of the motor cortex, leading to excessive movements.
In contrast, lesions of the caudate nucleus within the basal ganglia can cause behavioral changes and agitation. The caudate processes motor information from the cortex and provides an excitatory input to the globus pallidus externus (GPe), which then has an excitatory input to the STN. Lesions of the caudate result in motor hyperactivity, but this manifests as a restless state rather than uncontrolled movements. The caudate also plays a role in the neural circuits underlying goal-directed behaviors, and lesions can result in personality and behavioral changes.
Lesions of the medial pons can cause hemiplegia and hemisensory loss or locked-in syndrome, depending on the level of disruption to the motor and sensory pathways. Lesions above the level of the trigeminal and facial motor nuclei can result in a full locked-in syndrome, while lesions below these nuclei result in hemiplegia and hemisensory loss but with preservation of facial sensation and movement.
Lesions of the substantia nigra result in Parkinsonism, as the dopaminergic neurons of the substantia nigra have an inhibitory effect on the outflow of the striatum. This prevents motor information from leaving the cortex, resulting in the bradykinesia characteristic of Parkinsonism.
Thalamic lesions most commonly cause hemisensory loss, as the thalamus acts as a sensory gateway that allows processing of sensory information before relaying it to the relevant primary cortex. Lesions disrupt this pathway and prevent information from reaching the cortex.
Brain lesions can be localized based on the neurological disorders or features that are present. The gross anatomy of the brain can provide clues to the location of the lesion. For example, lesions in the parietal lobe can result in sensory inattention, apraxias, astereognosis, inferior homonymous quadrantanopia, and Gerstmann’s syndrome. Lesions in the occipital lobe can cause homonymous hemianopia, cortical blindness, and visual agnosia. Temporal lobe lesions can result in Wernicke’s aphasia, superior homonymous quadrantanopia, auditory agnosia, and prosopagnosia. Lesions in the frontal lobes can cause expressive aphasia, disinhibition, perseveration, anosmia, and an inability to generate a list. Lesions in the cerebellum can result in gait and truncal ataxia, intention tremor, past pointing, dysdiadokinesis, and nystagmus.
In addition to the gross anatomy, specific areas of the brain can also provide clues to the location of a lesion. For example, lesions in the medial thalamus and mammillary bodies of the hypothalamus can result in Wernicke and Korsakoff syndrome. Lesions in the subthalamic nucleus of the basal ganglia can cause hemiballism, while lesions in the striatum (caudate nucleus) can result in Huntington chorea. Parkinson’s disease is associated with lesions in the substantia nigra of the basal ganglia, while lesions in the amygdala can cause Kluver-Bucy syndrome, which is characterized by hypersexuality, hyperorality, hyperphagia, and visual agnosia. By identifying these specific conditions, doctors can better localize brain lesions and provide appropriate treatment.
-
This question is part of the following fields:
- Neurological System
-
-
Question 5
Incorrect
-
Which one of the following is not part of the rectus sheath?
Your Answer: Pyramidalis
Correct Answer: Internal iliac artery
Explanation:The rectus sheath includes the inferior epigastric artery and the superior epigastric vein.
Muscles and Layers of the Abdominal Wall
The abdominal wall is composed of various muscles and layers that provide support and protection to the organs within the abdominal cavity. The two main muscles of the abdominal wall are the rectus abdominis and the quadratus lumborum. The rectus abdominis is located anteriorly, while the quadratus lumborum is located posteriorly.
The remaining abdominal wall is made up of three muscular layers, each passing from the lateral aspect of the quadratus lumborum to the lateral margin of the rectus sheath. These layers are muscular posterolaterally and aponeurotic anteriorly. The external oblique muscle lies most superficially and originates from the 5th to 12th ribs, inserting into the anterior half of the outer aspect of the iliac crest, linea alba, and pubic tubercle. The internal oblique arises from the thoracolumbar fascia, the anterior 2/3 of the iliac crest, and the lateral 2/3 of the inguinal ligament, while the transversus abdominis is the innermost muscle, arising from the inner aspect of the costal cartilages of the lower 6 ribs, the anterior 2/3 of the iliac crest, and the lateral 1/3 of the inguinal ligament.
During abdominal surgery, it is often necessary to divide either the muscles or their aponeuroses. It is desirable to divide the aponeurosis during a midline laparotomy, leaving the rectus sheath intact above the arcuate line and the muscles intact below it. Straying off the midline can lead to damage to the rectus muscles, particularly below the arcuate line where they may be in close proximity to each other. The nerve supply for these muscles is the anterior primary rami of T7-12.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 6
Incorrect
-
A 48-year-old woman arrives at the emergency department with symptoms of feeling unwell. She reports having a headache and a stiff, painful neck. She is sensitive to light, feels nauseated, and has vomited twice. She experiences alternating sensations of hot and cold and is sweating. During the examination, her temperature is elevated, and Kernig's sign is positive. You decide to perform a lumbar puncture to obtain a sample of cerebrospinal fluid (CSF). In which ventricle is the choroid plexus, the structure responsible for producing the majority of CSF?
Your Answer: Both lateral ventricles
Correct Answer: All four of the ventricles
Explanation:The choroid plexus is a branching structure resembling sea coral, consisting of specialized ependymal cells that produce and release cerebrospinal fluid (CSF). It is present in all four ventricles of the brain, with the largest portion located in the lateral ventricles. The choroid plexus is also involved in removing waste products from the CSF.
The patient described in the previous question displays symptoms and signs indicative of meningitis, including a positive Kernig’s sign. This test involves flexing the thigh and hip to 90 degrees, followed by extending the knee to elicit pain. Analysis of the CSF obtained through lumbar puncture can help identify the cause of meningitis and guide appropriate treatment.
Cerebrospinal Fluid: Circulation and Composition
Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.
The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.
The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
Which muscles are responsible for flexing the hip joint?
Your Answer: Psoas
Explanation:Muscles and their Functions in Joint Movement
The hip joint has three main flexors, namely the iliacus, psoas, and rectus femoris muscles. These muscles are responsible for flexing the hip joint, which is the movement of bringing the thigh towards the abdomen. On the other hand, the gluteus maximus and medius muscles are involved in hip extension, which is the movement of bringing the thigh backward.
Moving on to the elbow joint, the bicep femoris muscle is one of the primary flexors. This muscle is responsible for bending the elbow, which is the movement of bringing the forearm towards the upper arm. Lastly, the adductor brevis muscle is responsible for adducting the leg at the hip joint, which is the movement of bringing the leg towards the midline of the body.
In summary, muscles play a crucial role in joint movement. the functions of these muscles can help in identifying and addressing issues related to joint movement and mobility.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 8
Incorrect
-
An elderly man in his late 60s is admitted to the cardiology ward due to worsening shortness of breath. He has a medical history of hypertension and ischaemic heart disease. During examination, bibasal crackles and pitting oedema to the knees bilaterally are observed. Blood tests are conducted, and the results show a brain natriuretic peptide level of 4990 pg/mL (< 400). What is the most probable physiological change that occurs in response to this finding?
Your Answer: Water retention
Correct Answer: Decreased afterload
Explanation:BNP has several actions, including vasodilation which can decrease cardiac afterload, diuretic and natriuretic effects, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. In the case of heart failure, BNP is primarily secreted by the ventricular myocardium to compensate for symptoms by promoting diuresis, natriuresis, vasodilation, and suppression of sympathetic tone and renin-angiotensin-aldosterone activity. Vasodilation of the peripheral vascular system leads to a decrease in afterload, reducing the force that the left ventricle has to contract against and lowering the risk of left ventricular failure progression. BNP also suppresses sympathetic tone and the RAAS, which would exacerbate heart failure symptoms, and contributes to natriuresis, aiding diuresis and improving dyspnea.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A patient in his mid-50s visits his physician with complaints of difficulty in chewing and tongue movement, leading to eating problems. The patient also reports severe headaches, and the symptoms have been worsening gradually. The doctor decides to conduct an MRI scan to diagnose the condition.
What is the likely location of the lesion within the skull that the doctor will look for?Your Answer: Jugular foramen
Correct Answer: Hypoglossal canal
Explanation:The hypoglossal nerve travels through the hypoglossal canal, which is why damage to this nerve can cause symptoms related to tongue movement and reflexes such as chewing, sucking, and swallowing. The superior orbital fissure is not the correct answer as the nerves that pass through it do not provide motor innervation to the tongue, and the patient in the question does not present with any eye-related symptoms. The jugular foramen and foramen ovale are also incorrect as they do not exclusively house the hypoglossal nerve, and the nerves that pass through them do not provide motor innervation to the tongue. The foramen rotundum is also not the correct answer as only the maxillary branch of the trigeminal nerve passes through it, which does not innervate the tongue.
Cranial nerves are a set of 12 nerves that emerge from the brain and control various functions of the head and neck. Each nerve has a specific function, such as smell, sight, eye movement, facial sensation, and tongue movement. Some nerves are sensory, some are motor, and some are both. A useful mnemonic to remember the order of the nerves is Some Say Marry Money But My Brother Says Big Brains Matter Most, with S representing sensory, M representing motor, and B representing both.
In addition to their specific functions, cranial nerves also play a role in various reflexes. These reflexes involve an afferent limb, which carries sensory information to the brain, and an efferent limb, which carries motor information from the brain to the muscles. Examples of cranial nerve reflexes include the corneal reflex, jaw jerk, gag reflex, carotid sinus reflex, pupillary light reflex, and lacrimation reflex. Understanding the functions and reflexes of the cranial nerves is important in diagnosing and treating neurological disorders.
-
This question is part of the following fields:
- Neurological System
-
-
Question 10
Incorrect
-
A 26-year-old man has been experiencing a chronic cough and wheeze since starting a new job. He has noticed that his peak flow measurements are significantly reduced while at work but improve on the weekends. What substance is commonly linked to this type of asthma?
Your Answer: Cement dust
Correct Answer: Isocyanates
Explanation:Occupational Asthma: Causes and Symptoms
Occupational asthma is a type of asthma that is caused by exposure to certain chemicals in the workplace. Patients may experience worsening asthma symptoms while at work or notice an improvement in symptoms when away from work. The most common cause of occupational asthma is exposure to isocyanates, which are found in spray painting and foam moulding using adhesives. Other chemicals associated with occupational asthma include platinum salts, soldering flux resin, glutaraldehyde, flour, epoxy resins, and proteolytic enzymes.
To diagnose occupational asthma, it is recommended to measure peak expiratory flow at work and away from work. If there is a significant difference in peak expiratory flow, referral to a respiratory specialist is necessary. Treatment may include avoiding exposure to the triggering chemicals and using medications to manage asthma symptoms. It is important for employers to provide a safe working environment and for employees to report any concerns about potential exposure to harmful chemicals.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)