00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 14-year-old boy presents to the general practitioner with complaints of deteriorating balance...

    Incorrect

    • A 14-year-old boy presents to the general practitioner with complaints of deteriorating balance and vision. His mother accompanies him to the appointment. Upon examination, the boy has a high arched palate and absent ankle tendon reflexes. The general practitioner refers the boy to a specialist who conducts genomic studies. The results reveal a trinucleotide repeat of GAA on chromosome 9.

      What is the probable diagnosis?

      Your Answer: Marfan syndrome

      Correct Answer: Friedreich's ataxia

      Explanation:

      Friedreich’s ataxia is caused by a GAA trinucleotide repeat resulting from a mutation in the FXN gene located on chromosome 9.

      Understanding Friedreich’s Ataxia

      Friedreich’s ataxia is a common hereditary ataxia that usually affects individuals at an early age. It is caused by a trinucleotide repeat disorder that affects the X25 gene on chromosome 9. Unlike other trinucleotide repeat disorders, Friedreich’s ataxia does not show the phenomenon of anticipation. The condition is characterised by gait ataxia and kyphoscoliosis, which are the most common presenting features. Other neurological features include absent ankle jerks/extensor plantars, optic atrophy, and spinocerebellar tract degeneration. In addition, hypertrophic obstructive cardiomyopathy is the most common cause of death in individuals with Friedreich’s ataxia, while diabetes mellitus affects 10-20% of patients. A high-arched palate is also a common feature.

      Overall, understanding Friedreich’s ataxia is important for early diagnosis and management of the condition. With proper care and support, individuals with Friedreich’s ataxia can lead fulfilling lives despite the challenges posed by the condition.

    • This question is part of the following fields:

      • Neurological System
      32.4
      Seconds
  • Question 2 - A 39-year-old male patient is presented to the neurology outpatient department by his...

    Correct

    • A 39-year-old male patient is presented to the neurology outpatient department by his GP due to recurring episodes of déjà vu. Apart from this, he has no significant medical history.

      During the examination, the patient suddenly starts smacking his lips for about a minute. After the event, he experiences temporary difficulty in expressing himself fluently, which resolves on its own.

      Based on the symptoms, which area of the brain is likely to be affected?

      Your Answer: Temporal lobe

      Explanation:

      Temporal lobe seizures can be identified by the presence of lip smacking and postictal dysphasia. These symptoms, along with a recurrent sense of déjà vu, suggest that the seizure is localized in the temporal lobe. Seizures in other parts of the brain, such as the frontal, occipital, or parietal lobes, typically present with different symptoms. Generalized seizures affecting the entire brain result in loss of consciousness and generalized tonic-clonic seizures.

      Localising Features of Focal Seizures in Epilepsy

      Focal seizures in epilepsy can be localised based on the specific location of the brain where they occur. Temporal lobe seizures are common and may occur with or without impairment of consciousness or awareness. Most patients experience an aura, which is typically a rising epigastric sensation, along with psychic or experiential phenomena such as déjà vu or jamais vu. Less commonly, hallucinations may occur, such as auditory, gustatory, or olfactory hallucinations. These seizures typically last around one minute and are often accompanied by automatisms, such as lip smacking, grabbing, or plucking.

      On the other hand, frontal lobe seizures are characterised by motor symptoms such as head or leg movements, posturing, postictal weakness, and Jacksonian march. Parietal lobe seizures, on the other hand, are sensory in nature and may cause paraesthesia. Finally, occipital lobe seizures may cause visual symptoms such as floaters or flashes. By identifying the specific location and type of seizure, doctors can better diagnose and treat epilepsy in patients.

    • This question is part of the following fields:

      • Neurological System
      43.5
      Seconds
  • Question 3 - At which of the following vertebral body levels does the common carotid artery...

    Correct

    • At which of the following vertebral body levels does the common carotid artery usually divide into the external and internal carotid arteries?

      Your Answer: C4

      Explanation:

      It ends at the top edge of the thyroid cartilage, typically situated at the fourth cervical vertebrae (C4).

      The common carotid artery is a major blood vessel that supplies the head and neck with oxygenated blood. It has two branches, the left and right common carotid arteries, which arise from different locations. The left common carotid artery originates from the arch of the aorta, while the right common carotid artery arises from the brachiocephalic trunk. Both arteries terminate at the upper border of the thyroid cartilage by dividing into the internal and external carotid arteries.

      The left common carotid artery runs superolaterally to the sternoclavicular joint and is in contact with various structures in the thorax, including the trachea, left recurrent laryngeal nerve, and left margin of the esophagus. In the neck, it passes deep to the sternocleidomastoid muscle and enters the carotid sheath with the vagus nerve and internal jugular vein. The right common carotid artery has a similar path to the cervical portion of the left common carotid artery, but with fewer closely related structures.

      Overall, the common carotid artery is an important blood vessel with complex anatomical relationships in both the thorax and neck. Understanding its path and relations is crucial for medical professionals to diagnose and treat various conditions related to this artery.

    • This question is part of the following fields:

      • Neurological System
      16.6
      Seconds
  • Question 4 - A person becomes deficient in a certain hormone and as a result, develops...

    Incorrect

    • A person becomes deficient in a certain hormone and as a result, develops cranial diabetes insipidus.

      Where in the hypothalamus is this hormone typically produced?

      Your Answer: Anterior nucleus

      Correct Answer: Supraoptic nucleus

      Explanation:

      The production of antidiuretic hormone (ADH) is attributed to the supraoptic nucleus located in the hypothalamus. ADH plays a crucial role in retaining water in the distal nephron, and its deficiency can lead to diabetes insipidus.

      Other functions of the hypothalamus include regulating circadian rhythms and the sleep-wake cycle through the suprachiasmatic nucleus, controlling satiety and hunger through the ventromedial and lateral nuclei respectively, and regulating body temperature through the anterior nucleus, which stimulates the parasympathetic nervous system to initiate cooling.

      The hypothalamus is a part of the brain that plays a crucial role in maintaining the body’s internal balance, or homeostasis. It is located in the diencephalon and is responsible for regulating various bodily functions. The hypothalamus is composed of several nuclei, each with its own specific function. The anterior nucleus, for example, is involved in cooling the body by stimulating the parasympathetic nervous system. The lateral nucleus, on the other hand, is responsible for stimulating appetite, while lesions in this area can lead to anorexia. The posterior nucleus is involved in heating the body and stimulating the sympathetic nervous system, and damage to this area can result in poikilothermia. Other nuclei include the septal nucleus, which regulates sexual desire, the suprachiasmatic nucleus, which regulates circadian rhythm, and the ventromedial nucleus, which is responsible for satiety. Lesions in the paraventricular nucleus can lead to diabetes insipidus, while lesions in the dorsomedial nucleus can result in savage behavior.

    • This question is part of the following fields:

      • Neurological System
      29.8
      Seconds
  • Question 5 - A 47-year-old motorcyclist suffers a tibial fracture and experiences numbness in the web...

    Incorrect

    • A 47-year-old motorcyclist suffers a tibial fracture and experiences numbness in the web space between their first and second toes. Which nerve is most likely affected?

      Your Answer: Tibial nerve

      Correct Answer: Deep peroneal nerve

      Explanation:

      The lower leg’s anterior muscular compartment houses the deep peroneal nerve, which can be affected by compartment syndrome in that region. This nerve supplies sensory information to the first web space. On the other hand, the superficial peroneal nerve offers cutaneous innervation that is more lateral.

      The Deep Peroneal Nerve: Origin, Course, and Actions

      The deep peroneal nerve is a branch of the common peroneal nerve that originates at the lateral aspect of the fibula, deep to the peroneus longus muscle. It is composed of nerve root values L4, L5, S1, and S2. The nerve pierces the anterior intermuscular septum to enter the anterior compartment of the lower leg and passes anteriorly down to the ankle joint, midway between the two malleoli. It terminates in the dorsum of the foot.

      The deep peroneal nerve innervates several muscles, including the tibialis anterior, extensor hallucis longus, extensor digitorum longus, peroneus tertius, and extensor digitorum brevis. It also provides cutaneous innervation to the web space of the first and second toes. The nerve’s actions include dorsiflexion of the ankle joint, extension of all toes (extensor hallucis longus and extensor digitorum longus), and inversion of the foot.

      After its bifurcation past the ankle joint, the lateral branch of the deep peroneal nerve innervates the extensor digitorum brevis and the extensor hallucis brevis, while the medial branch supplies the web space between the first and second digits. Understanding the origin, course, and actions of the deep peroneal nerve is essential for diagnosing and treating conditions that affect this nerve, such as foot drop and nerve entrapment syndromes.

    • This question is part of the following fields:

      • Neurological System
      24.2
      Seconds
  • Question 6 - A 50-year-old man with T2DM goes for his yearly diabetic retinopathy screening and...

    Incorrect

    • A 50-year-old man with T2DM goes for his yearly diabetic retinopathy screening and is diagnosed with proliferative diabetic retinopathy. What retinal characteristics are indicative of this condition?

      Your Answer: 'Dot-blot' haemorrhages

      Correct Answer: neovascularization

      Explanation:

      Diabetic retinopathy is a progressive disease that affects the retina and is a complication of diabetes mellitus (DM). The condition is caused by persistent high blood sugar levels, which can damage the retinal vessels and potentially lead to vision loss. The damage is caused by retinal ischaemia, which occurs when the retinal vasculature becomes blocked.

      There are various retinal findings that indicate the presence of diabetic retinopathy, which can be classified into two categories: non-proliferative and proliferative. Non-proliferative diabetic retinopathy is indicated by the presence of microaneurysms, ‘cotton-wool’ spots, ‘dot-blot’ haemorrhages, and venous beading at different stages. However, neovascularization, or the formation of new blood vessels, is the finding associated with more advanced, proliferative retinopathy.

      Understanding Diabetic Retinopathy

      Diabetic retinopathy is a leading cause of blindness in adults aged 35-65 years-old. The condition is caused by hyperglycaemia, which leads to abnormal metabolism in the retinal vessel walls, causing damage to endothelial cells and pericytes. This damage leads to increased vascular permeability, which causes exudates seen on fundoscopy. Pericyte dysfunction predisposes to the formation of microaneurysms, while neovascularization is caused by the production of growth factors in response to retinal ischaemia.

      Patients with diabetic retinopathy are typically classified into those with non-proliferative diabetic retinopathy (NPDR), proliferative retinopathy (PDR), and maculopathy. NPDR is further classified into mild, moderate, and severe, depending on the presence of microaneurysms, blot haemorrhages, hard exudates, cotton wool spots, venous beading/looping, and intraretinal microvascular abnormalities. PDR is characterized by retinal neovascularization, which may lead to vitreous haemorrhage, and fibrous tissue forming anterior to the retinal disc. Maculopathy is based on location rather than severity and is more common in Type II DM.

      Management of diabetic retinopathy involves optimizing glycaemic control, blood pressure, and hyperlipidemia, as well as regular review by ophthalmology. For maculopathy, intravitreal vascular endothelial growth factor (VEGF) inhibitors are used if there is a change in visual acuity. Non-proliferative retinopathy is managed through regular observation, while severe/very severe cases may require panretinal laser photocoagulation. Proliferative retinopathy is treated with panretinal laser photocoagulation, intravitreal VEGF inhibitors, and vitreoretinal surgery in severe or vitreous haemorrhage cases. Examples of VEGF inhibitors include ranibizumab, which has a strong evidence base for slowing the progression of proliferative diabetic retinopathy and improving visual acuity.

    • This question is part of the following fields:

      • Neurological System
      117.7
      Seconds
  • Question 7 - A 55-year-old woman is recuperating after a challenging mastectomy and axillary lymph node...

    Correct

    • A 55-year-old woman is recuperating after a challenging mastectomy and axillary lymph node dissection for breast cancer. She reports experiencing shoulder discomfort, and upon examination, her scapula is visibly winged. Which of the following is the most probable root cause of the loss of innervation?

      Your Answer: Serratus anterior

      Explanation:

      Winging of the scapula is usually caused by long thoracic nerve injury, which may occur during axillary dissection. Rhomboid damage is a rare cause.

      The Long Thoracic Nerve and its Role in Scapular Winging

      The long thoracic nerve is derived from the ventral rami of C5, C6, and C7, which are located close to their emergence from intervertebral foramina. It runs downward and passes either anterior or posterior to the middle scalene muscle before reaching the upper tip of the serratus anterior muscle. From there, it descends on the outer surface of this muscle, giving branches into it.

      One of the most common symptoms of long thoracic nerve injury is scapular winging, which occurs when the serratus anterior muscle is weakened or paralyzed. This can happen due to a variety of reasons, including trauma, surgery, or nerve damage. In addition to long thoracic nerve injury, scapular winging can also be caused by spinal accessory nerve injury (which denervates the trapezius) or a dorsal scapular nerve injury.

      Overall, the long thoracic nerve plays an important role in the function of the serratus anterior muscle and the stability of the scapula. Understanding its anatomy and function can help healthcare professionals diagnose and treat conditions that affect the nerve and its associated muscles.

    • This question is part of the following fields:

      • Neurological System
      21.5
      Seconds
  • Question 8 - A 75-year-old man with Alzheimer's disease visits his doctor for a medication review,...

    Correct

    • A 75-year-old man with Alzheimer's disease visits his doctor for a medication review, accompanied by his son. The son reports that his father is struggling to perform daily tasks and requests an increase in his care package.

      During the examination, the patient appears disoriented to time and place. A mini-mental state examination is conducted, revealing a score of 14/30, indicating moderate dementia.

      Which histological finding would be the most specific for this patient's diagnosis?

      Your Answer: Extraneuronal amyloid plaques, intraneuronal neurofibrillary tangles

      Explanation:

      In Alzheimer’s disease, the pathology involves extraneuronal amyloid plaques and intraneuronal neurofibrillary tangles. Amyloid plaques are clumps of beta-amyloid that are found in the extracellular matrix, while neurofibrillary tangles are made up of hyperphosphorylated tau and are located within the neurons. The exact role of beta-amyloid and tau in the development of Alzheimer’s disease is still not fully understood.

      Alzheimer’s disease is a type of dementia that gradually worsens over time and is caused by the degeneration of the brain. There are several risk factors associated with Alzheimer’s disease, including increasing age, family history, and certain genetic mutations. The disease is also more common in individuals of Caucasian ethnicity and those with Down’s syndrome.

      The pathological changes associated with Alzheimer’s disease include widespread cerebral atrophy, particularly in the cortex and hippocampus. Microscopically, there are cortical plaques caused by the deposition of type A-Beta-amyloid protein and intraneuronal neurofibrillary tangles caused by abnormal aggregation of the tau protein. The hyperphosphorylation of the tau protein has been linked to Alzheimer’s disease. Additionally, there is a deficit of acetylcholine due to damage to an ascending forebrain projection.

      Neurofibrillary tangles are a hallmark of Alzheimer’s disease and are partly made from a protein called tau. Tau is a protein that interacts with tubulin to stabilize microtubules and promote tubulin assembly into microtubules. In Alzheimer’s disease, tau proteins are excessively phosphorylated, impairing their function.

    • This question is part of the following fields:

      • Neurological System
      55.1
      Seconds
  • Question 9 - A 65-year-old male comes to the head and neck clinic for his postoperative...

    Correct

    • A 65-year-old male comes to the head and neck clinic for his postoperative check-up following the removal of a tumour from his mouth. He reports experiencing numbness and tingling in the floor of his mouth after the surgery. It is suspected that the sensory nerve to the floor of his mouth may have been affected.

      What is the most probable nerve that has been damaged?

      Your Answer: Lingual nerve

      Explanation:

      The lingual nerve provides sensation to the floor of the mouth, a portion of the tongue, and the gingivae of the mandibular lingual. The mandibular nerve transmits sensory fibers to the submandibular glands, while the greater auricular nerve is responsible for sensation in the parotid gland. The hypoglossal nerve, the twelfth cranial nerve, controls tongue movement, and the facial nerve, the seventh cranial nerve, is responsible for salivation, lacrimation, facial movement, and taste in the anterior two-thirds of the tongue.

      Lingual Nerve: Sensory Nerve to the Tongue and Mouth

      The lingual nerve is a sensory nerve that provides sensation to the mucosa of the presulcal part of the tongue, floor of the mouth, and mandibular lingual gingivae. It arises from the posterior trunk of the mandibular nerve and runs past the tensor veli palatini and lateral pterygoid muscles. At this point, it is joined by the chorda tympani branch of the facial nerve.

      After emerging from the cover of the lateral pterygoid, the lingual nerve proceeds antero-inferiorly, lying on the surface of the medial pterygoid and close to the medial aspect of the mandibular ramus. At the junction of the vertical and horizontal rami of the mandible, it is anterior to the inferior alveolar nerve. The lingual nerve then passes below the mandibular attachment of the superior pharyngeal constrictor and lies on the periosteum of the root of the third molar tooth.

      Finally, the lingual nerve passes medial to the mandibular origin of mylohyoid and then passes forwards on the inferior surface of this muscle. Overall, the lingual nerve plays an important role in providing sensory information to the tongue and mouth.

    • This question is part of the following fields:

      • Neurological System
      80.9
      Seconds
  • Question 10 - A 75-year-old male is referred to the memory clinic due to a gradual...

    Correct

    • A 75-year-old male is referred to the memory clinic due to a gradual decline in his memory. Over the past five months, he has been struggling to recall the names of his loved ones and has been found disoriented and confused on multiple occasions. After an evaluation, the patient is prescribed medication to slow down the advancement of the illness.

      What is the primary enzyme inhibited by the initial medication for the suspected condition?

      Your Answer: Cholinesterase

      Explanation:

      Patients with Alzheimer’s dementia, which is the most prevalent type, experience a decrease in cholinergic neurons. To address this, acetylcholine inhibitors (AChEI) are prescribed to increase the amount of AChEI in the synaptic cleft, resulting in amplified effects at the postsynaptic receptor. Donepezil, galantamine, and rivastigmine are examples of AChEI inhibitors.

      Donepezil is the primary recommendation for treating Alzheimer’s disease, while memantine, an NMDA receptor antagonist, is the secondary recommendation.

      Management of Alzheimer’s Disease

      Alzheimer’s disease is a type of dementia that progressively affects the brain and is the most common form of dementia in the UK. There are both non-pharmacological and pharmacological management options available for patients with Alzheimer’s disease.

      Non-pharmacological management involves offering activities that promote wellbeing and are tailored to the patient’s preferences. Group cognitive stimulation therapy, group reminiscence therapy, and cognitive rehabilitation are some of the options that can be considered.

      Pharmacological management options include acetylcholinesterase inhibitors such as donepezil, galantamine, and rivastigmine for managing mild to moderate Alzheimer’s disease. Memantine, an NMDA receptor antagonist, is a second-line treatment option that can be used for patients with moderate Alzheimer’s who are intolerant of or have a contraindication to acetylcholinesterase inhibitors. It can also be used as an add-on drug to acetylcholinesterase inhibitors for patients with moderate or severe Alzheimer’s or as monotherapy in severe Alzheimer’s.

      When managing non-cognitive symptoms, NICE does not recommend the use of antidepressants for mild to moderate depression in patients with dementia. Antipsychotics should only be used for patients at risk of harming themselves or others or when the agitation, hallucinations, or delusions are causing them severe distress.

      It is important to note that donepezil is relatively contraindicated in patients with bradycardia, and adverse effects may include insomnia. Proper management of Alzheimer’s disease can improve the quality of life for patients and their caregivers.

    • This question is part of the following fields:

      • Neurological System
      90.8
      Seconds
  • Question 11 - A 50-year-old male visits the doctor with concerns about altered sensation in his...

    Correct

    • A 50-year-old male visits the doctor with concerns about altered sensation in his legs. Upon examination, the doctor observes diminished vibration sensation in his legs, brisk knee reflexes, and absent ankle jerks. The doctor suspects that the patient may be suffering from subacute combined degeneration of the spinal cord.

      What vitamin deficiency is commonly associated with this condition?

      Your Answer: Vitamin B12

      Explanation:

      Subacute combined degeneration of the spinal cord, which typically presents with upper motor neuron signs in the legs, is caused by a deficiency in vitamin B12. Meanwhile, a deficiency in vitamin B1 (thiamine) leads to Wernicke’s encephalopathy, characterized by nystagmus, ophthalmoplegia, and ataxia. Peripheral neuropathy is a common result of vitamin B6 (pyridoxine) deficiency, while angular cheilitis is associated with a lack of vitamin B2 (riboflavin).

      Subacute Combined Degeneration of Spinal Cord

      Subacute combined degeneration of spinal cord is a condition that occurs due to a deficiency of vitamin B12. The dorsal columns and lateral corticospinal tracts are affected, leading to the loss of joint position and vibration sense. The first symptoms are usually distal paraesthesia, followed by the development of upper motor neuron signs in the legs, such as extensor plantars, brisk knee reflexes, and absent ankle jerks. If left untreated, stiffness and weakness may persist.

      This condition is a serious concern and requires prompt medical attention. It is important to maintain a healthy diet that includes sufficient amounts of vitamin B12 to prevent the development of subacute combined degeneration of spinal cord.

    • This question is part of the following fields:

      • Neurological System
      71.6
      Seconds
  • Question 12 - A 27-year-old male is brought in after collapsing. According to the paramedics, he...

    Correct

    • A 27-year-old male is brought in after collapsing. According to the paramedics, he was found unconscious at a bar and no one knows what happened. Upon examination, his eyes remain closed and do not respond to commands, but he mumbles incomprehensibly when pressure is applied to his nailbed. He also opens his eyes and uses his other hand to push away the painful stimulus. His temperature is 37°C, his oxygen saturation is 95% on air, and his pulse is 100 bpm with a blood pressure of 106/76 mmHg. What is his Glasgow coma scale score?

      Your Answer: 9

      Explanation:

      The Glasgow Coma Scale is used because it is simple, has high interobserver reliability, and correlates well with outcome following severe brain injury. It consists of three components: Eye Opening, Verbal Response, and Motor Response. The score is the sum of the scores as well as the individual elements. For example, a score of 10 might be expressed as GCS10 = E3V4M3.

      Best eye response:
      1- No eye opening
      2- Eye opening to pain
      3- Eye opening to sound
      4- Eyes open spontaneously

      Best verbal response:
      1- No verbal response
      2- Incomprehensible sounds
      3- Inappropriate words
      4- Confused
      5- Orientated

      Best motor response:
      1- No motor response.
      2- Abnormal extension to pain
      3- Abnormal flexion to pain
      4- Withdrawal from pain
      5- Localizing pain
      6- Obeys commands

    • This question is part of the following fields:

      • Neurological System
      25.3
      Seconds
  • Question 13 - Which nerve provides sensation to the skin on the palm side of the...

    Correct

    • Which nerve provides sensation to the skin on the palm side of the thumb?

      Your Answer: Median

      Explanation:

      This region receives cutaneous sensation from the median nerve.

      Anatomy and Function of the Median Nerve

      The median nerve is a nerve that originates from the lateral and medial cords of the brachial plexus. It descends lateral to the brachial artery and passes deep to the bicipital aponeurosis and the median cubital vein at the elbow. The nerve then passes between the two heads of the pronator teres muscle and runs on the deep surface of flexor digitorum superficialis. Near the wrist, it becomes superficial between the tendons of flexor digitorum superficialis and flexor carpi radialis, passing deep to the flexor retinaculum to enter the palm.

      The median nerve has several branches that supply the upper arm, forearm, and hand. These branches include the pronator teres, flexor carpi radialis, palmaris longus, flexor digitorum superficialis, flexor pollicis longus, and palmar cutaneous branch. The nerve also provides motor supply to the lateral two lumbricals, opponens pollicis, abductor pollicis brevis, and flexor pollicis brevis muscles, as well as sensory supply to the palmar aspect of the lateral 2 ½ fingers.

      Damage to the median nerve can occur at the wrist or elbow, resulting in various symptoms such as paralysis and wasting of thenar eminence muscles, weakness of wrist flexion, and sensory loss to the palmar aspect of the fingers. Additionally, damage to the anterior interosseous nerve, a branch of the median nerve, can result in loss of pronation of the forearm and weakness of long flexors of the thumb and index finger. Understanding the anatomy and function of the median nerve is important in diagnosing and treating conditions that affect this nerve.

    • This question is part of the following fields:

      • Neurological System
      7.2
      Seconds
  • Question 14 - A 21-year-old female is admitted with suspected meningitis. The House Officer is about...

    Correct

    • A 21-year-old female is admitted with suspected meningitis. The House Officer is about to perform a lumbar puncture. What is the initial structure that the needle is likely to encounter upon insertion?

      Your Answer: Supraspinous ligament

      Explanation:

      Lumbar Puncture Procedure

      Lumbar puncture is a medical procedure that involves obtaining cerebrospinal fluid. In adults, the procedure is typically performed at the L3/L4 or L4/5 interspace, which is located below the spinal cord’s termination at L1.

      During the procedure, the needle passes through several layers. First, it penetrates the supraspinous ligament, which connects the tips of spinous processes. Then, it passes through the interspinous ligaments between adjacent borders of spinous processes. Next, the needle penetrates the ligamentum flavum, which may cause a give. Finally, the needle passes through the dura mater into the subarachnoid space, which is marked by a second give. At this point, clear cerebrospinal fluid should be obtained.

      Overall, the lumbar puncture procedure is a complex process that requires careful attention to detail. By following the proper steps and guidelines, medical professionals can obtain cerebrospinal fluid safely and effectively.

    • This question is part of the following fields:

      • Neurological System
      126.7
      Seconds
  • Question 15 - Eve, a 67-year-old female, is undergoing endovascular surgery to repair an abdominal aortic...

    Incorrect

    • Eve, a 67-year-old female, is undergoing endovascular surgery to repair an abdominal aortic aneurysm. The surgeon places the stent in the aorta and common iliac arteries, as the aneurysm is located just above the aortic bifurcation. What is the level of the bifurcation?

      Your Answer: L2

      Correct Answer: L4

      Explanation:

      The point at which the aorta divides into the common iliac arteries is located at the level of the fourth lumbar vertebrae (L4). The renal arteries originate at the level of the second lumbar vertebrae (L2), while the inferior mesenteric artery originates at the level of the third lumbar vertebrae (L3). The posterior superior iliac spines are located at the level of the second sacral vertebrae (S2).

      Anatomical Planes and Levels in the Human Body

      The human body can be divided into different planes and levels to aid in anatomical study and medical procedures. One such plane is the transpyloric plane, which runs horizontally through the body of L1 and intersects with various organs such as the pylorus of the stomach, left kidney hilum, and duodenojejunal flexure. Another way to identify planes is by using common level landmarks, such as the inferior mesenteric artery at L3 or the formation of the IVC at L5.

      In addition to planes and levels, there are also diaphragm apertures located at specific levels in the body. These include the vena cava at T8, the esophagus at T10, and the aortic hiatus at T12. By understanding these planes, levels, and apertures, medical professionals can better navigate the human body during procedures and accurately diagnose and treat various conditions.

    • This question is part of the following fields:

      • Neurological System
      41
      Seconds
  • Question 16 - A 16-year-old male comes to the clinic after experiencing a seizure. During the...

    Incorrect

    • A 16-year-old male comes to the clinic after experiencing a seizure. During the history-taking, he reports that he first noticed shaking in his hand about an hour ago. The shaking continued for a few seconds before he lost consciousness and bit his tongue. He also experienced urinary incontinence. How would you describe this presentation?

      Your Answer: Myoclonic seizure

      Correct Answer: Partial seizure with secondary generalisation

      Explanation:

      Epilepsy is a neurological condition that causes recurrent seizures. In the UK, around 500,000 people have epilepsy, and two-thirds of them can control their seizures with antiepileptic medication. While epilepsy usually occurs in isolation, certain conditions like cerebral palsy, tuberous sclerosis, and mitochondrial diseases have an association with epilepsy. It’s important to note that seizures can also occur due to other reasons like infection, trauma, or metabolic disturbance.

      Seizures can be classified into focal seizures, which start in a specific area of the brain, and generalised seizures, which involve networks on both sides of the brain. Patients who have had generalised seizures may experience biting their tongue or incontinence of urine. Following a seizure, patients typically have a postictal phase where they feel drowsy and tired for around 15 minutes.

      Patients who have had their first seizure generally undergo an electroencephalogram (EEG) and neuroimaging (usually a MRI). Most neurologists start antiepileptics following a second epileptic seizure. Antiepileptics are one of the few drugs where it is recommended that we prescribe by brand, rather than generically, due to the risk of slightly different bioavailability resulting in a lowered seizure threshold.

      Patients who drive, take other medications, wish to get pregnant, or take contraception need to consider the possible interactions of the antiepileptic medication. Some commonly used antiepileptics include sodium valproate, carbamazepine, lamotrigine, and phenytoin. In case of a seizure that doesn’t terminate after 5-10 minutes, medication like benzodiazepines may be administered to terminate the seizure. If a patient continues to fit despite such measures, they are said to have status epilepticus, which is a medical emergency requiring hospital treatment.

    • This question is part of the following fields:

      • Neurological System
      10.9
      Seconds
  • Question 17 - A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia,...

    Incorrect

    • A 30-year-old male visits the ophthalmology outpatient department with symptoms of redness, photophobia, and lacrimation. His pupils constrict in response to light.

      What is the neurotransmitter responsible for this pupillary response?

      Your Answer: Norepinephrine

      Correct Answer: Acetylcholine

      Explanation:

      The primary neurotransmitter used by the parasympathetic nervous system is acetylcholine (ACh). This pathway is responsible for activities such as lacrimation and pupil constriction, which are also mediated by ACh.

      On the other hand, the sympathetic pathway uses epinephrine as its neurotransmitter, which is involved in pupil dilation. Norepinephrine is also a neurotransmitter of the sympathetic pathway.

      In the brain, gamma-aminobutyric acid acts as an inhibitory neurotransmitter.

      Understanding the Autonomic Nervous System

      The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.

      The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.

    • This question is part of the following fields:

      • Neurological System
      58.3
      Seconds
  • Question 18 - A 72-year-old male with Parkinson's disease is experiencing non-motor symptoms. Which of the...

    Correct

    • A 72-year-old male with Parkinson's disease is experiencing non-motor symptoms. Which of the following symptoms is most likely associated with Parkinson's disease?

      Your Answer: REM sleep disturbance

      Explanation:

      Dr. James Parkinson first identified Parkinson’s disease as a condition characterized by tremors and reduced muscle strength in inactive body parts, often accompanied by a tendency to lean forward and switch from walking to running. Early symptoms of Parkinson’s typically include issues with smell, sleep, and bowel movements. In addition to motor problems, non-motor symptoms may include depression, memory loss, pain, anxiety, sleep disturbances, and balance issues.

      Parkinson’s disease is a progressive neurodegenerative disorder that occurs due to the degeneration of dopaminergic neurons in the substantia nigra. This leads to a classic triad of symptoms, including bradykinesia, tremor, and rigidity, which are typically asymmetrical. The disease is more common in men and is usually diagnosed around the age of 65. Bradykinesia is characterized by a poverty of movement, shuffling steps, and difficulty initiating movement. Tremors are most noticeable at rest and typically occur in the thumb and index finger. Rigidity can be either lead pipe or cogwheel, and other features include mask-like facies, flexed posture, and drooling of saliva. Psychiatric features such as depression, dementia, and sleep disturbances may also occur. Diagnosis is usually clinical, but if there is difficulty differentiating between essential tremor and Parkinson’s disease, 123I‑FP‑CIT single photon emission computed tomography (SPECT) may be considered.

    • This question is part of the following fields:

      • Neurological System
      11.5
      Seconds
  • Question 19 - The initial root of the brachial plexus typically emerges at what level? ...

    Correct

    • The initial root of the brachial plexus typically emerges at what level?

      Your Answer: C5

      Explanation:

      The nerve plexus originates from the level of C5 and consists of 5 primary nerve roots. It ultimately gives rise to a total of 15 nerves, including the major nerves that innervate the upper limb such as the axillary, radial, ulnar, musculocutaneous, and median nerves.

      Understanding the Brachial Plexus and Cutaneous Sensation of the Upper Limb

      The brachial plexus is a network of nerves that originates from the anterior rami of C5 to T1. It is divided into five sections: roots, trunks, divisions, cords, and branches. To remember these sections, a common mnemonic used is Real Teenagers Drink Cold Beer.

      The roots of the brachial plexus are located in the posterior triangle and pass between the scalenus anterior and medius muscles. The trunks are located posterior to the middle third of the clavicle, with the upper and middle trunks related superiorly to the subclavian artery. The lower trunk passes over the first rib posterior to the subclavian artery. The divisions of the brachial plexus are located at the apex of the axilla, while the cords are related to the axillary artery.

      The branches of the brachial plexus provide cutaneous sensation to the upper limb. This includes the radial nerve, which provides sensation to the posterior arm, forearm, and hand; the median nerve, which provides sensation to the palmar aspect of the thumb, index, middle, and half of the ring finger; and the ulnar nerve, which provides sensation to the palmar and dorsal aspects of the fifth finger and half of the ring finger.

      Understanding the brachial plexus and its branches is important in diagnosing and treating conditions that affect the upper limb, such as nerve injuries and neuropathies. It also helps in understanding the cutaneous sensation of the upper limb and how it relates to the different nerves of the brachial plexus.

    • This question is part of the following fields:

      • Neurological System
      3.9
      Seconds
  • Question 20 - You are asked to clerk a 73-year-old-man who presented with a fall. He...

    Incorrect

    • You are asked to clerk a 73-year-old-man who presented with a fall. He was seen by the stroke team who requested a CT head. This excluded an intracranial haemorrhage and he was started on aspirin. When you enter the cubicle, you notice the patient has a right-sided facial droop.

      What type of speech disturbance does this patient have? You start taking a history but find it difficult to understand what he says. He is unable to get the words out easily and his speech is non-fluent as if hesitating before uttering the words.

      During the cranial nerve examination, he understood and followed your instructions well. However, he is unable to repeat words after you.

      Your Answer: Conductive dysphasia

      Correct Answer: Broca's dysphasia

      Explanation:

      This man experienced a stroke that affected Broca’s area, resulting in Broca’s dysphasia. This condition causes non-fluent speech, but normal comprehension, and impaired repetition. Despite knowing what they want to say, patients with Broca’s dysphasia struggle to articulate their words. They can understand instructions, but have difficulty repeating words. This is different from conductive dysphasia, which presents with fluent speech but an inability to repeat words. Dysarthria, on the other hand, is characterized by difficulty articulating words due to a lack of coordination in the muscles of speech. Global aphasia is the inability to understand, repeat, and produce speech, which was not the case for this patient as they were able to understand instructions.

      Types of Aphasia: Understanding the Different Forms of Language Impairment

      Aphasia is a language disorder that affects a person’s ability to communicate effectively. There are different types of aphasia, each with its own set of symptoms and underlying causes. Wernicke’s aphasia, also known as receptive aphasia, is caused by a lesion in the superior temporal gyrus. This area is responsible for forming speech before sending it to Broca’s area. People with Wernicke’s aphasia may speak fluently, but their sentences often make no sense, and they may use word substitutions and neologisms. Comprehension is impaired.

      Broca’s aphasia, also known as expressive aphasia, is caused by a lesion in the inferior frontal gyrus. This area is responsible for speech production. People with Broca’s aphasia may speak in a non-fluent, labored, and halting manner. Repetition is impaired, but comprehension is normal.

      Conduction aphasia is caused by a stroke affecting the arcuate fasciculus, the connection between Wernicke’s and Broca’s area. People with conduction aphasia may speak fluently, but their repetition is poor. They are aware of the errors they are making, but comprehension is normal.

      Global aphasia is caused by a large lesion affecting all three areas mentioned above, resulting in severe expressive and receptive aphasia. People with global aphasia may still be able to communicate using gestures. Understanding the different types of aphasia is important for proper diagnosis and treatment.

    • This question is part of the following fields:

      • Neurological System
      31
      Seconds
  • Question 21 - A 24-year-old gymnast comes to see you with complaints of left wrist pain...

    Incorrect

    • A 24-year-old gymnast comes to see you with complaints of left wrist pain that worsens with weight bearing. She reports that this has been going on for the past month since she began intense training for her gymnastics competition. During your physical examination, you observe swelling around her left wrist and note that the pain is exacerbated by hyperextension. You suspect that this may be due to impingement of the extensor retinaculum caused by continuous pressure on wrist extension during gymnastics.

      To which bone is this structure attached?

      Your Answer: Capitate

      Correct Answer: Triquetral

      Explanation:

      The extensor retinaculum is a thickened fascia that secures the tendons of the extensor muscles in place. It connects to the triquetral and pisiform bones on the medial side and the end of the radius on the lateral side.

      The radius bone is situated laterally to the ulna bone and articulates with the humerus proximally and the ulna distally.

      The trapezium bone is a carpal bone located beneath the thumb joint, forming the carpometacarpal joint.

      The capitate bone is the largest carpal bone in the hand and is positioned at the center of the distal row of carpal bones.

      The scaphoid bone is located in the two rows of carpal bones and is frequently fractured during a fall on an outstretched hand.

      The Extensor Retinaculum and its Related Structures

      The extensor retinaculum is a thick layer of deep fascia that runs across the back of the wrist, holding the long extensor tendons in place. It attaches to the pisiform and triquetral bones medially and the end of the radius laterally. The retinaculum has six compartments that contain the extensor muscle tendons, each with its own synovial sheath.

      Several structures are related to the extensor retinaculum. Superficial to the retinaculum are the basilic and cephalic veins, the dorsal cutaneous branch of the ulnar nerve, and the superficial branch of the radial nerve. Deep to the retinaculum are the tendons of the extensor carpi ulnaris, extensor digiti minimi, extensor digitorum, extensor indicis, extensor pollicis longus, extensor carpi radialis longus, extensor carpi radialis brevis, abductor pollicis longus, and extensor pollicis brevis.

      The radial artery also passes between the lateral collateral ligament of the wrist joint and the tendons of the abductor pollicis longus and extensor pollicis brevis. Understanding the topography of these structures is important for diagnosing and treating wrist injuries and conditions.

    • This question is part of the following fields:

      • Neurological System
      86.2
      Seconds
  • Question 22 - A 14-year-old boy comes to his doctor complaining of swollen testicles. He mentions...

    Correct

    • A 14-year-old boy comes to his doctor complaining of swollen testicles. He mentions being hit by a baseball during a game. The boy feels fine and has not experienced any vomiting.

      During the examination, the physician notices a slight swelling in his testicles. The boy also has decreased sensation in the skin of his scrotum's front.

      Which nerve provides sensory innervation to the skin in the front of the scrotum?

      Your Answer: Genital branch of the genitofemoral nerve

      Explanation:

      The anterior scrotal skin receives sensory sensation from the genital branch of the genitofemoral nerve. The ilioinguinal and genitofemoral nerves (genital branch) innervate the front of the scrotum, while the perineal branches of the pudendal nerves innervate the back. The dorsal branch of the pudendal nerve provides sensory innervation to the erectile tissue of the penis/clitoris and the skin over the foreskin, glans, and penis/foreskin’s dorsolateral aspect. The posterior scrotal nerves supply sensory innervation to the skin on the back of the scrotum. The cavernous nerves are responsible for facilitating penile erection and are postganglionic parasympathetic nerves.

      The Genitofemoral Nerve: Anatomy and Function

      The genitofemoral nerve is responsible for supplying a small area of the upper medial thigh. It arises from the first and second lumbar nerves and passes through the psoas major muscle before emerging from its medial border. The nerve then descends on the surface of the psoas major, under the cover of the peritoneum, and divides into genital and femoral branches.

      The genital branch of the genitofemoral nerve passes through the inguinal canal within the spermatic cord to supply the skin overlying the scrotum’s skin and fascia. On the other hand, the femoral branch enters the thigh posterior to the inguinal ligament, lateral to the femoral artery. It supplies an area of skin and fascia over the femoral triangle.

      Injuries to the genitofemoral nerve may occur during abdominal or pelvic surgery or inguinal hernia repairs. Understanding the anatomy and function of this nerve is crucial in preventing such injuries and ensuring proper treatment.

    • This question is part of the following fields:

      • Neurological System
      12.3
      Seconds
  • Question 23 - As a general practice registrar, you are reviewing a patient who was referred...

    Incorrect

    • As a general practice registrar, you are reviewing a patient who was referred to ENT and has a history of acoustic neuroma on the right side. The patient, who is in their early 50s, returned 2 months ago with pulsatile tinnitus in the left ear and was diagnosed with a left-sided acoustic neuroma after undergoing an MRI scan. Surgery is scheduled for later this week. What could be the probable cause of this patient's recurrent acoustic neuromas?

      Your Answer: Trisomy 21

      Correct Answer: Neurofibromatosis type 2

      Explanation:

      Neurofibromatosis type 2 is commonly linked to bilateral acoustic neuromas (vestibular schwannomas). Additionally, individuals with this condition may also experience benign neurological tumors and lens opacities.

      Vestibular schwannomas, also known as acoustic neuromas, make up about 5% of intracranial tumors and 90% of cerebellopontine angle tumors. These tumors typically present with a combination of vertigo, hearing loss, tinnitus, and an absent corneal reflex. The specific symptoms can be predicted based on which cranial nerves are affected. For example, cranial nerve VIII involvement can cause vertigo, unilateral sensorineural hearing loss, and unilateral tinnitus. Bilateral vestibular schwannomas are associated with neurofibromatosis type 2.

      If a vestibular schwannoma is suspected, it is important to refer the patient to an ear, nose, and throat specialist urgently. However, it is worth noting that these tumors are often benign and slow-growing, so observation may be appropriate initially. The diagnosis is typically confirmed with an MRI of the cerebellopontine angle, and audiometry is also important as most patients will have some degree of hearing loss. Treatment options include surgery, radiotherapy, or continued observation.

    • This question is part of the following fields:

      • Neurological System
      34.6
      Seconds
  • Question 24 - A 31-year-old arrives at the Emergency Department by ambulance after being involved in...

    Incorrect

    • A 31-year-old arrives at the Emergency Department by ambulance after being involved in a car accident. During the ABCDE assessment, it is discovered that the patient has suffered a penetrating injury at the T9 level.

      Following an MRI of the spine and consultation with a neurologist, the patient is diagnosed with Brown-Sequard syndrome on the left side.

      What symptoms can be expected from this patient's condition?

      Your Answer: Bilateral loss of motor, with some loss of vibration and proprioception

      Correct Answer: Left-sided loss of motor, vibration and proprioception, with right-sided loss of pain and temperature sensation

      Explanation:

      The spinothalamic tract crosses over at the same level where the nerve root enters the spinal cord, while the corticospinal tract, dorsal column medial lemniscus, and spinocerebellar tracts cross over at the medulla.

      Brown-Sequard syndrome affects one entire side of the spinal cord, resulting in the loss of motor function, vibration, and proprioception on the left side, and loss of pain and temperature sensation on the right side.

      In Brown-Sequard syndrome, the loss of motor function, vibration, and proprioception occurs on the same side due to the corticospinal tract and dorsal column medial meniscus crossing over at the medulla. The loss of pain and temperature sensation occurs on the opposite side due to the crossing over of the tract at the nerve root.

      Anterior cord syndrome affects the descending corticospinal tract and ascending spinothalamic tract, leading to the loss of motor function, pain, and temperature sensation below the injury site. However, proprioception and vibration sensation remain unaffected as the dorsal columns are spared.

      Central cord syndrome results in the loss of motor function on both sides, as well as some loss of vibration and proprioception.

      Posterior cord syndrome affects the dorsal column medial lemniscus, leading to the loss of proprioception and vibration sensation on the same side. This condition can be caused by neck hyperflexion, disc compression, ischaemia, vitamin B12 deficiency, or multiple sclerosis.

      The spinal cord is a central structure located within the vertebral column that provides it with structural support. It extends rostrally to the medulla oblongata of the brain and tapers caudally at the L1-2 level, where it is anchored to the first coccygeal vertebrae by the filum terminale. The cord is characterised by cervico-lumbar enlargements that correspond to the brachial and lumbar plexuses. It is incompletely divided into two symmetrical halves by a dorsal median sulcus and ventral median fissure, with grey matter surrounding a central canal that is continuous with the ventricular system of the CNS. Afferent fibres entering through the dorsal roots usually terminate near their point of entry but may travel for varying distances in Lissauer’s tract. The key point to remember is that the anatomy of the cord will dictate the clinical presentation in cases of injury, which can be caused by trauma, neoplasia, inflammatory diseases, vascular issues, or infection.

      One important condition to remember is Brown-Sequard syndrome, which is caused by hemisection of the cord and produces ipsilateral loss of proprioception and upper motor neuron signs, as well as contralateral loss of pain and temperature sensation. Lesions below L1 tend to present with lower motor neuron signs. It is important to keep a clinical perspective in mind when revising CNS anatomy and to understand the ways in which the spinal cord can become injured, as this will help in diagnosing and treating patients with spinal cord injuries.

    • This question is part of the following fields:

      • Neurological System
      29.6
      Seconds
  • Question 25 - A patient visiting the neurology outpatient clinic presents with a motor deficit. The...

    Incorrect

    • A patient visiting the neurology outpatient clinic presents with a motor deficit. The neurologist observes muscle fasciculations, flaccid weakness, and decreased reflexes.

      What is the location of the lesion?

      Your Answer: Motor cortex

      Correct Answer: Peripheral nerve

      Explanation:

      A lower motor neuron lesion can be identified by a decrease in reflex response.

      When a lower motor neuron lesion occurs, it can result in reduced tone, weakness, and muscle fasciculations. These neurons originate in the anterior horn of the spinal cord and connect with the neuromuscular junction.

      On the other hand, if the corticospinal tract is affected in the motor cortex, internal capsule, midbrain, or medulla, it would cause an upper motor neuron pattern of weakness. This would be characterized by hypertonia, brisk reflexes, and an upgoing plantar reflex response.

      Reflexes are automatic responses that our body makes in response to certain stimuli. These responses are controlled by the nervous system and do not require conscious thought. There are several common reflexes that are associated with specific roots in the spinal cord. For example, the ankle reflex is associated with the S1-S2 root, while the knee reflex is associated with the L3-L4 root. Similarly, the biceps reflex is associated with the C5-C6 root, and the triceps reflex is associated with the C7-C8 root. Understanding these reflexes can help healthcare professionals diagnose and treat certain conditions.

    • This question is part of the following fields:

      • Neurological System
      12.6
      Seconds
  • Question 26 - A 38-year-old male presents to a neurology clinic with complaints of recent falls...

    Incorrect

    • A 38-year-old male presents to a neurology clinic with complaints of recent falls and slurred speech. During examination, he exhibits horizontal nystagmus, difficulty with repetitive hand movements, and an intention tremor. What area of the brain is most likely affected by his lesion?

      Your Answer: Brainstem

      Correct Answer: Cerebellum

      Explanation:

      Unconsciousness can be caused by lesions in the brainstem.

      Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.

      There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.

    • This question is part of the following fields:

      • Neurological System
      104.9
      Seconds
  • Question 27 - A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with...

    Incorrect

    • A 35-year-old female patient with a history of relapsing-remitting multiple sclerosis presents with new-onset double vision. She reports that in the last week, she has noticed double vision when trying to focus on objects on the left side of her visual field. She reports no double vision when looking to the right.

      During examination, asking the patient to track the examiner's finger and look to the left (i.e. left horizontal conjugate gaze) elicits double vision, with the patient reporting that images appear 'side by side.' Additionally, there is a failure of the right eye to adduct past the midline, and nystagmus is noted in the left eye. Asking the patient to look to the right elicits no symptoms or abnormal findings. Asking the patient to converge her eyes on a nearby, midline object elicits no abnormalities, and the patient can abduct both eyes.

      Which part of the nervous system is most likely responsible for this patient's symptoms?

      Your Answer: Calcarine sulcus of the occipital lobe

      Correct Answer: Paramedian area of midbrain and pons

      Explanation:

      The medial longitudinal fasciculus is a pathway located in the paramedian area of the midbrain and pons that coordinates horizontal conjugate gaze by connecting the abducens nerve nucleus (CN VI) with the contralateral oculomotor nerve nucleus (CN III). Lesions in the MLF can result in internuclear ophthalmoplegia (INO), which is commonly caused by demyelinating disorders like multiple sclerosis. Bilateral INO is often associated with multiple sclerosis.

      The other options listed in the vignette can also cause visual disturbances, but they are not the cause of the patient’s INO. Lesions in the occipital lobe can cause contralateral homonymous, macular-sparing quadrantanopia or hemianopia. Lateral medullary lesions (Wallenberg syndrome) can cause an ipsilateral Horner’s syndrome marked by ptosis, miosis, and anhidrosis. Optic neuritis, which is common in multiple sclerosis, can cause blurred vision, colour desaturation, and eye pain, but it would not result in binocular diplopia that improves on covering the unaffected eye. Lesions affecting the oculomotor nerve nucleus would also affect the ipsilateral eye’s ability to abduct on horizontal conjugate gaze, but the test of convergence can help distinguish this from an MLF lesion.

      Understanding Internuclear Ophthalmoplegia

      Internuclear ophthalmoplegia is a condition that affects the horizontal movement of the eyes. It is caused by a lesion in the medial longitudinal fasciculus (MLF), which is responsible for interconnecting the IIIrd, IVth, and VIth cranial nuclei. This area is located in the paramedian region of the midbrain and pons. The main feature of this condition is impaired adduction of the eye on the same side as the lesion, along with horizontal nystagmus of the abducting eye on the opposite side.

      The most common causes of internuclear ophthalmoplegia are multiple sclerosis and vascular disease. It is important to note that this condition can also be a sign of other underlying neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      180
      Seconds
  • Question 28 - A 45-year-old man comes to the emergency department with a complaint of waking...

    Incorrect

    • A 45-year-old man comes to the emergency department with a complaint of waking up with a severe headache for the past three days. He has been feeling increasingly nauseated and has vomited three times in the last 24 hours. During the examination, it was found that he has reduced power in his left upper limb and bilateral papilloedema. A CT scan of his head revealed a mass on the right side, close to the midline in the posterior frontal lobe. The mass is blocking the drainage of cerebrospinal fluid (CSF) into the third ventricle, causing enlargement of the lateral ventricle on the right side. Can you identify the structure through which CSF from the lateral ventricle drains into the third ventricle?

      Your Answer: Lateral aperture (foramen of Luschka)

      Correct Answer: Interventricular foramen

      Explanation:

      The interventricular foramina allow the two lateral ventricles to drain into the third ventricle, which is located in the midline between the thalami of the two hemispheres. The third ventricle is connected to the fourth ventricle via the cerebral aqueduct (of Sylvius). CSF flows from the third ventricle into the fourth ventricle and exits through one of four openings: the median aperture (foramen of Magendie), either of the two lateral apertures (foramina of Luschka), or the central canal at the obex.

      The patient described in the question is exhibiting symptoms and signs that suggest an increase in intracranial pressure, which can be caused by various factors such as mass lesions and neoplasms. In this case, a mass is obstructing the normal flow of CSF through the ventricular system, leading to an increase in intracranial pressure and resulting in a motor deficit on the opposite side of the body. Symptoms of raised ICP may include vomiting, headaches that worsen when lying down or upon waking, changes in mental state, and papilloedema.

      Cerebrospinal Fluid: Circulation and Composition

      Cerebrospinal fluid (CSF) is a clear, colorless liquid that fills the space between the arachnoid mater and pia mater, covering the surface of the brain. The total volume of CSF in the brain is approximately 150ml, and it is produced by the ependymal cells in the choroid plexus or blood vessels. The majority of CSF is produced by the choroid plexus, accounting for 70% of the total volume. The remaining 30% is produced by blood vessels. The CSF is reabsorbed via the arachnoid granulations, which project into the venous sinuses.

      The circulation of CSF starts from the lateral ventricles, which are connected to the third ventricle via the foramen of Munro. From the third ventricle, the CSF flows through the cerebral aqueduct (aqueduct of Sylvius) to reach the fourth ventricle via the foramina of Magendie and Luschka. The CSF then enters the subarachnoid space, where it circulates around the brain and spinal cord. Finally, the CSF is reabsorbed into the venous system via arachnoid granulations into the superior sagittal sinus.

      The composition of CSF is essential for its proper functioning. The glucose level in CSF is between 50-80 mg/dl, while the protein level is between 15-40 mg/dl. Red blood cells are not present in CSF, and the white blood cell count is usually less than 3 cells/mm3. Understanding the circulation and composition of CSF is crucial for diagnosing and treating various neurological disorders.

    • This question is part of the following fields:

      • Neurological System
      14.8
      Seconds
  • Question 29 - A 65-year-old man has recently undergone parotidectomy on his left side due to...

    Incorrect

    • A 65-year-old man has recently undergone parotidectomy on his left side due to a malignant parotid gland tumor. He has been back on the surgical ward for a few hours when he reports feeling weakness on the left side of his mouth. Upon examination, you observe facial asymmetry and weakness on the left side. He is unable to hold air under pressure in his mouth and cannot raise his left lip to show his teeth. This complication is likely due to damage to which nerve?

      Your Answer: Glossopharyngeal nerve

      Correct Answer: Facial nerve

      Explanation:

      The facial nerve is the seventh cranial nerve and innervates the muscles of facial expression. It runs through the parotid gland and can be injured during parotidectomy. The maxillary nerve is the second division of the trigeminal nerve and carries sensory fibres from the lower eyelid, cheeks, upper teeth, palate, nasal cavity, and paranasal sinuses. The glossopharyngeal nerve is the ninth cranial nerve and has various functions, including carrying taste and sensation from the posterior third of the tongue and supplying parasympathetic innervation to the parotid gland. The mandibular nerve is the third division of the trigeminal nerve and carries sensory and motor fibres, supplying motor innervation to the muscles of mastication. The hypoglossal nerve is the twelfth cranial nerve and supplies the intrinsic muscles of the tongue.

      The facial nerve is responsible for supplying the muscles of facial expression, the digastric muscle, and various glandular structures. It also contains a few afferent fibers that originate in the genicular ganglion and are involved in taste. Bilateral facial nerve palsy can be caused by conditions such as sarcoidosis, Guillain-Barre syndrome, Lyme disease, and bilateral acoustic neuromas. Unilateral facial nerve palsy can be caused by these conditions as well as lower motor neuron issues like Bell’s palsy and upper motor neuron issues like stroke.

      The upper motor neuron lesion typically spares the upper face, specifically the forehead, while a lower motor neuron lesion affects all facial muscles. The facial nerve’s path includes the subarachnoid path, where it originates in the pons and passes through the petrous temporal bone into the internal auditory meatus with the vestibulocochlear nerve. The facial canal path passes superior to the vestibule of the inner ear and contains the geniculate ganglion at the medial aspect of the middle ear. The stylomastoid foramen is where the nerve passes through the tympanic cavity anteriorly and the mastoid antrum posteriorly, and it also includes the posterior auricular nerve and branch to the posterior belly of the digastric and stylohyoid muscle.

    • This question is part of the following fields:

      • Neurological System
      49.2
      Seconds
  • Question 30 - A 26-year-old female was admitted to the Emergency Department after a motorcycle accident....

    Correct

    • A 26-year-old female was admitted to the Emergency Department after a motorcycle accident. She reported experiencing intense pain in her left shoulder and a loss of strength in elbow flexion. The physician in the Emergency Department suspects that damage to the lateral cord of the brachial plexus may be responsible for the weakness.

      What are the end branches of this cord?

      Your Answer: The musculocutaneous nerve and the lateral root of the median nerve

      Explanation:

      The two end branches of the lateral cord of the brachial plexus are the lateral root of the median nerve and the musculocutaneous nerve. If the musculocutaneous nerve is damaged, it can result in weakened elbow flexion. The posterior cord has two end branches, the axillary nerve and radial nerve. The lateral pectoral nerve is a branch of the lateral cord but not an end branch. The medial cord has two end branches, the medial root of the median nerve and the ulnar nerve.

      Brachial Plexus Cords and their Origins

      The brachial plexus cords are categorized based on their position in relation to the axillary artery. These cords pass over the first rib near the lung’s dome and under the clavicle, just behind the subclavian artery. The lateral cord is formed by the anterior divisions of the upper and middle trunks and gives rise to the lateral pectoral nerve, which originates from C5, C6, and C7. The medial cord is formed by the anterior division of the lower trunk and gives rise to the medial pectoral nerve, the medial brachial cutaneous nerve, and the medial antebrachial cutaneous nerve, which originate from C8, T1, and C8, T1, respectively. The posterior cord is formed by the posterior divisions of the three trunks (C5-T1) and gives rise to the upper and lower subscapular nerves, the thoracodorsal nerve to the latissimus dorsi (also known as the middle subscapular nerve), and the axillary and radial nerves.

    • This question is part of the following fields:

      • Neurological System
      20.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Neurological System (14/30) 47%
Passmed