00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 57-year-old woman presents to the physician with a recurring blistering rash on...

    Correct

    • A 57-year-old woman presents to the physician with a recurring blistering rash on her hands. The rash has also affected her legs, inguinal creases, and the corners of her mouth at different times. She was diagnosed with type 2 diabetes mellitus three months ago and has occasional loose stools. The patient denies experiencing palpitations, abdominal pain, or vomiting, but reports having occasional watery stools.

      During the physical examination, the physician observes coalescing erythematous plaques with crusting and scaling at the borders and central areas of brownish induration over the lower abdomen and in the perioral skin.

      What is the most likely diagnosis for this patient?

      Your Answer: Glucagonoma

      Explanation:

      The patient is likely suffering from a glucagonoma, a rare tumor that originates from the alpha cells of the pancreas. This condition causes the excessive secretion of glucagon, resulting in hyperglycemia or diabetes mellitus. One of the characteristic symptoms of glucagonoma is necrolytic migratory erythema, a painful and itchy rash that appears on the face, groin, and limbs.

      Gastrinoma, on the other hand, does not cause a blistering rash or diabetes mellitus. However, it is often associated with abdominal pain, diarrhea, and ulceration.

      Somatostatinoma typically presents with abdominal pain, constipation, hyperglycemia, and steatorrhea, which are not present in this patient.

      VIPoma is unlikely as it usually causes intractable diarrhea, hypokalemia, and achlorhydria.

      Although zinc deficiency can cause skin lesions that resemble necrolytic migratory erythema, the patient’s recent diabetes mellitus diagnosis and lack of other symptoms make glucagonoma the more likely diagnosis.

      Glucagonoma: A Rare Pancreatic Tumor

      Glucagonoma is a rare type of pancreatic tumor that usually originates from the alpha cells of the pancreas. These tumors are typically small and malignant, and they can cause a range of symptoms, including diabetes mellitus, venous thrombo-embolism, and a distinctive red, blistering rash known as necrolytic migratory erythema. To diagnose glucagonoma, doctors typically look for a serum level of glucagon that is higher than 1000pg/ml, and they may also use CT scanning to visualize the tumor. Treatment options for glucagonoma include surgical resection and octreotide, a medication that can help to control the symptoms of the disease. Overall, glucagonoma is a rare but serious condition that requires prompt diagnosis and treatment to manage its symptoms and prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      122.2
      Seconds
  • Question 2 - A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with...

    Correct

    • A 23-year-old woman presents with clinical manifestations of hyperthyroidism and is diagnosed with Graves disease. What is the most appropriate explanation for the pathophysiology of this condition?

      Your Answer: Formation of IgG antibodies to the TSH receptors on the thyroid gland

      Explanation:

      Graves disease typically results in the formation of IgG antibodies that target the TSH receptors located on the thyroid gland, leading to a significant decrease in TSH levels.

      Thyroid Hormones and LATS in Graves Disease

      Thyroid hormones are produced by the thyroid gland and include triiodothyronine (T3) and thyroxine (T4), with T3 being the major hormone active in target cells. The synthesis and secretion of these hormones involves the active concentration of iodide by the thyroid, which is then oxidized and iodinated by peroxidase in the follicular cells. This process is stimulated by thyroid-stimulating hormone (TSH), which is released by the pituitary gland. The normal thyroid has approximately three months’ worth of reserves of thyroid hormones.

      In Graves disease, patients develop IgG antibodies to the TSH receptors on the thyroid gland. This results in chronic and long-term stimulation of the gland with the release of thyroid hormones. As a result, individuals with Graves disease typically have raised thyroid hormones and low TSH levels. It is important to check for thyroid receptor autoantibodies in individuals presenting with hyperthyroidism, as they are present in up to 85% of cases. This condition is known as LATS (long-acting thyroid stimulator) and can lead to a range of symptoms and complications if left untreated.

    • This question is part of the following fields:

      • Endocrine System
      166.5
      Seconds
  • Question 3 - A 30-year-old female patient complains of anxiety and weight loss. During the examination,...

    Incorrect

    • A 30-year-old female patient complains of anxiety and weight loss. During the examination, a fine tremor of the outstretched hands, lid lag, and a moderate goitre with a bruit are observed. What is the probable diagnosis?

      Your Answer: Hashimoto's thyroiditis

      Correct Answer: Graves' disease

      Explanation:

      Thyroid Disorders and their Differentiation

      Thyroid disorders are a common occurrence, and their diagnosis is crucial for effective treatment. One such disorder is Graves’ disease, which is characterized by a goitre with a bruit. Unlike MNG, Graves’ disease is associated with angiogenesis and thyroid follicular hypertrophy. Other signs of Graves’ disease include eye signs such as conjunctival oedema, exophthalmos, and proptosis. Additionally, pretibial myxoedema is a dermatological manifestation of this disease.

      DeQuervain’s thyroiditis is another thyroid disorder that follows a viral infection and is characterized by painful thyroiditis. Hashimoto’s thyroiditis, on the other hand, is a chronic autoimmune degradation of the thyroid. Multinodular goitre (MNG) is the most common form of thyroid disorder, leading to the formation of multiple nodules over the gland. Lastly, a toxic thyroid nodule is a solitary lesion on the thyroid that produces excess thyroxine.

      In conclusion, the different types of thyroid disorders and their symptoms is crucial for accurate diagnosis and effective treatment.

    • This question is part of the following fields:

      • Endocrine System
      37
      Seconds
  • Question 4 - A 42-year-old woman has been admitted to the renal ward with acute kidney...

    Incorrect

    • A 42-year-old woman has been admitted to the renal ward with acute kidney injury. Her blood test shows that her potassium levels are above normal limits. While renal failure is a known cause of hyperkalaemia, the patient mentions having an endocrine disorder in the past but cannot recall its name. This information is crucial as certain endocrine disorders can also cause potassium disturbances. Which of the following endocrine disorders is commonly associated with hyperkalaemia?

      Your Answer: Cushing's syndrome

      Correct Answer: Addison's disease

      Explanation:

      The correct answer is Addison’s disease, which is a condition of primary adrenal insufficiency. One of the hormones that is deficient in this disease is aldosterone, which plays a crucial role in maintaining the balance of potassium in the body. Aldosterone activates Na+/K+ ATPase pumps on the cell wall, causing the movement of potassium into the cell and increasing renal potassium secretion. Therefore, a lack of aldosterone leads to hyperkalaemia.

      Phaeochromocytomas are tumours that produce catecholamines and typically arise in the adrenal medulla. They are associated with hypertension and hyperglycaemia, but not disturbances in potassium balance.

      Hyperthyroidism is a condition of excess thyroid hormone and does not affect potassium balance.

      Conn’s syndrome, on the other hand, is a type of primary hyperaldosteronism where there is excess aldosterone production. Aldosterone activates the Na+/K+ pump on the cell wall, causing the movement of potassium into the cell, which can lead to hypokalaemia.

      Addison’s disease is the most common cause of primary hypoadrenalism in the UK, with autoimmune destruction of the adrenal glands being the main culprit, accounting for 80% of cases. This results in reduced production of cortisol and aldosterone. Symptoms of Addison’s disease include lethargy, weakness, anorexia, nausea and vomiting, weight loss, and salt-craving. Hyperpigmentation, especially in palmar creases, vitiligo, loss of pubic hair in women, hypotension, hypoglycemia, and hyponatremia and hyperkalemia may also be observed. In severe cases, a crisis may occur, leading to collapse, shock, and pyrexia.

      Other primary causes of hypoadrenalism include tuberculosis, metastases (such as bronchial carcinoma), meningococcal septicaemia (Waterhouse-Friderichsen syndrome), HIV, and antiphospholipid syndrome. Secondary causes include pituitary disorders, such as tumours, irradiation, and infiltration. Exogenous glucocorticoid therapy can also lead to hypoadrenalism.

      It is important to note that primary Addison’s disease is associated with hyperpigmentation, while secondary adrenal insufficiency is not.

    • This question is part of the following fields:

      • Endocrine System
      290.3
      Seconds
  • Question 5 - An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness...

    Correct

    • An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness upon standing up, which is interfering with her daily activities. Gwyneth is in good health and does not take any regular medications. The physician diagnoses Gwyneth with orthostatic hypotension and prescribes fludrocortisone as a treatment.

      What is the most probable side effect that Gwyneth may encounter?

      Your Answer: Fluid retention

      Explanation:

      Corticosteroids are a class of medications commonly prescribed for various clinical uses, such as treating allergies, inflammatory conditions, auto-immunity, and endogenous steroid replacement.

      There are different types of corticosteroids, each with varying levels of glucocorticoid and mineralocorticoid activity. Glucocorticoids mimic cortisol, which is involved in carbohydrate metabolism and the stress response, while mineralocorticoids mimic aldosterone, which regulates sodium and water retention in response to low blood pressure.

      The clinical uses and side effects of corticosteroids depend on their level of glucocorticoid and mineralocorticoid activity. Fludrocortisone, for example, has minimal glucocorticoid activity and high mineralocorticoid activity.

      Therefore, fluid retention is the most associated side effect with mineralocorticoid activity, while depression, hyperglycemia, osteoporosis, and peptic ulceration are side effects associated with glucocorticoid activity.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      145.5
      Seconds
  • Question 6 - A 65-year-old male with a diagnosis of lung cancer presents with fatigue and...

    Correct

    • A 65-year-old male with a diagnosis of lung cancer presents with fatigue and lightheadedness. Upon examination, the following results are obtained:

      Plasma sodium concentration 115 mmol/L (137-144)
      Potassium 3.5 mmol/L (3.5-4.9)
      Urea 3.2 mmol/L (2.5-7.5)
      Creatinine 67 Āµmol/L (60-110)

      What is the probable reason for his symptoms based on these findings?

      Your Answer: Syndrome of inappropriate ADH secretion

      Explanation:

      Syndrome of Inappropriate ADH Secretion

      Syndrome of inappropriate ADH secretion (SIADH) is a condition characterized by low levels of sodium in the blood. This is caused by the overproduction of antidiuretic hormone (ADH) by the posterior pituitary gland. Tumors such as bronchial carcinoma can cause the ectopic elaboration of ADH, leading to dilutional hyponatremia. The diagnosis of SIADH is one of exclusion, but it can be supported by a high urine sodium concentration with high urine osmolality.

      Hypoadrenalism is less likely to cause hyponatremia, as it is usually associated with hyperkalemia and mild hyperuricemia. On the other hand, diabetes insipidus is a condition where the kidneys are unable to reabsorb water, leading to excessive thirst and urination.

      It is important to diagnose and treat SIADH promptly to prevent complications such as seizures, coma, and even death. Treatment options include fluid restriction, medications to block the effects of ADH, and addressing the underlying cause of the condition.

      In conclusion, SIADH is a condition that can cause low levels of sodium in the blood due to the overproduction of ADH. It is important to differentiate it from other conditions that can cause hyponatremia and to treat it promptly to prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      70.6
      Seconds
  • Question 7 - A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured...

    Incorrect

    • A 23-year-old male visits his GP complaining of polyuria, chronic thirst and pale-coloured urine that have persisted for 3 months. He had a concussion from a car accident a month before the onset of his urinary symptoms. The patient is diagnosed with cranial diabetes insipidus after undergoing several tests.

      What would the water deprivation test likely reveal in this case?

      Your Answer: High urine osmolality after fluid deprivation, but normal after desmopressin

      Correct Answer: Low urine osmolality after fluid deprivation, but high after desmopressin

      Explanation:

      The correct answer is low urine osmolality after fluid deprivation, but high after desmopressin, for a patient with cranial diabetes insipidus (DI). This condition is characterized by polyuria, chronic thirst, and pale-coloured urine, and is caused by insufficient antidiuretic hormone (ADH) secretion. As a result, the kidneys are unable to concentrate urine, leading to a low urine osmolality even during water deprivation. However, the kidneys will respond to desmopressin (synthetic ADH) to produce concentrated urine.

      High urine osmolality after both fluid deprivation and desmopressin is incorrect, as it would be seen in a healthy individual or a patient with primary polydipsia, a psychogenic disorder characterized by excessive drinking despite being properly hydrated.

      Low urine osmolality after both fluid deprivation and desmopressin is incorrect, as this is typical of nephrogenic DI, a condition in which the kidneys are insensitive to ADH.

      High urine osmolality after fluid deprivation, but normal after desmopressin is incorrect, as this would not be commonly seen with any pathological state.

      Low urine osmolality after desmopressin, but high after fluid deprivation is incorrect, as this would not be commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      198.6
      Seconds
  • Question 8 - A 62-year-old male with type 2 diabetes is urgently referred by his GP...

    Correct

    • A 62-year-old male with type 2 diabetes is urgently referred by his GP due to poor glycaemic control for the past three days, with home blood glucose readings around 25 mmol/L. He is currently being treated with metformin and lisinopril. Yesterday, his GP checked his U+E and found that his serum sodium was 138 mmol/L (137-144), serum potassium was 5.8 mmol/L (3.5-4.9), serum urea was 20 mmol/L (2.5-7.5), and serum creatinine was 350 Āµmol/L (60-110). On examination, he has a temperature of 39Ā°C, a pulse of 108 bpm, a blood pressure of 96/60 mmHg, a respiratory rate of 32/min, and oxygen saturations of 99% on air. His cardiovascular, respiratory, and abdominal examination are otherwise normal. Further investigations reveal a plasma glucose level of 17 mmol/L (3.0-6.0) and urine analysis showing blood ++ and protein ++, but ketones are negative. What is the likely diagnosis?

      Your Answer: Sepsis

      Explanation:

      The causes of septic shock are important to understand in order to provide appropriate treatment and improve patient outcomes. Septic shock can cause fever, hypotension, and renal failure, as well as tachypnea due to metabolic acidosis. However, it is crucial to rule out other conditions such as hyperosmolar hyperglycemic state or diabetic ketoacidosis, which have different symptoms and diagnostic criteria.

      While metformin can contribute to acidosis, it is unlikely to be the primary cause in this case. Diabetic patients may be prone to renal tubular acidosis, but this is not likely to be the cause of an acute presentation. Instead, a type IV renal tubular acidosis, characterized by hyporeninaemic hypoaldosteronism, may be a more likely association.

      Overall, it is crucial to carefully evaluate patients with septic shock and consider all possible causes of their symptoms. By ruling out other conditions and identifying the underlying cause of the acidosis, healthcare providers can provide targeted treatment and improve patient outcomes. Further research and education on septic shock and its causes can also help to improve diagnosis and treatment in the future.

    • This question is part of the following fields:

      • Endocrine System
      132.1
      Seconds
  • Question 9 - A 47-year-old man comes to your clinic with a complaint of erectile dysfunction...

    Correct

    • A 47-year-old man comes to your clinic with a complaint of erectile dysfunction for the past 6 weeks. He also mentions that his nipples have been lactating. You inform him that these symptoms could be a result of his body producing too much prolactin hormone and suggest testing his serum prolactin levels. Which part of the body secretes prolactin?

      Your Answer: Anterior pituitary

      Explanation:

      The anterior pituitary gland releases prolactin, which can cause hyperprolactinaemia. This condition can lead to impotence, loss of libido, and galactorrhoea in men, and amenorrhoea and galactorrhoea in women. The hypothalamus, parathyroid glands, adrenal gland, and posterior pituitary gland also release hormones that play important roles in maintaining homoeostasis. Hyperprolactinaemia can be caused by various factors, including certain medications.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      24.9
      Seconds
  • Question 10 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Correct

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      17.8
      Seconds
  • Question 11 - A 42-year-old woman visits her GP complaining of chest pain. She has a...

    Correct

    • A 42-year-old woman visits her GP complaining of chest pain. She has a history of hypertension and is currently taking metformin for diabetes. The GP observes that her BMI is 45. What is a possible complication of the metabolic syndrome in this case?

      Your Answer: Ischemic stroke

      Explanation:

      Metabolic syndrome is a group of risk factors for cardiovascular disease that are caused by insulin resistance and central obesity.

      Obesity is associated with higher rates of illness and death, as well as decreased productivity and functioning, increased healthcare expenses, and social and economic discrimination.

      The consequences of obesity include strokes, type 2 diabetes, heart disease, certain cancers (such as breast, colon, and endometrial), polycystic ovarian syndrome, obstructive sleep apnea, fatty liver, gallstones, and mental health issues.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      24.8
      Seconds
  • Question 12 - A 32-year-old male is referred to the endocrine clinic due to a change...

    Incorrect

    • A 32-year-old male is referred to the endocrine clinic due to a change in his shoe size and numbness in his hand. He reports increased sweating and oily skin. The endocrinologist suspects pituitary gland pathology and orders an MRI. What is the most abundant secretory cell type in the anterior pituitary gland?

      Your Answer: Lactotrophs

      Correct Answer: Somatotrophs

      Explanation:

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      75.2
      Seconds
  • Question 13 - A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g...

    Correct

    • A 65-year-old man with type 2 diabetes mellitus has been taking metformin 1g twice daily for the past 6 months. Despite this, his HbA1c has remained above target at 64 mmol/mol (8.0%).

      He has a history of left ventricular failure following a myocardial infarction 2 years ago. He has been trying to lose weight since but still has a body mass index of 33 kg/mĀ². He is also prone to recurrent urinary tract infections.

      You intend to intensify treatment by adding a second medication.

      What is the mechanism of action of the most appropriate anti-diabetic drug for him?

      Your Answer: Inhibition of dipeptidyl peptidase-4 (DPP-4) to increase incretin levels

      Explanation:

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      84.6
      Seconds
  • Question 14 - A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago....

    Incorrect

    • A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago. Upon examination, she has a smooth, small goiter and a pulse rate of 68 bpm. Her lab results show a Free T4 level of 9.3 pmol/L (normal range: 9.8-23.1) and a TSH level of 49.3 mU/L (normal range: 0.35-5.50). What additional test would you perform to confirm the diagnosis?

      Your Answer: Thyroid ultrasound

      Correct Answer: Thyroid peroxidase (TPO) antibodies

      Explanation:

      Diagnosis and Management of Primary Hypothyroidism

      The patient’s test results indicate a case of primary hypothyroidism, characterized by low levels of thyroxine (T4) and elevated thyroid-stimulating hormone (TSH). The most likely cause of this condition is Hashimoto’s thyroiditis, which is often accompanied by the presence of thyroid peroxidase antibodies. While the patient has a goitre, it appears to be smooth and non-threatening, so a thyroid ultrasound is not necessary. Additionally, a radio-iodine uptake scan is unlikely to show significant uptake and is therefore not recommended. Positive TSH receptor antibodies are typically associated with Graves’ disease, which is not the likely diagnosis in this case. For further information on Hashimoto’s thyroiditis, patients can refer to Patient.info.

    • This question is part of the following fields:

      • Endocrine System
      51.3
      Seconds
  • Question 15 - A 45-year-old male has presented to discuss the management of primary hyperparathyroidism. He...

    Incorrect

    • A 45-year-old male has presented to discuss the management of primary hyperparathyroidism. He was diagnosed 3 weeks ago after complaining of bone pain and gastrointestinal discomfort. Today's blood results indicate an electrolyte abnormality.

      What is the most probable electrolyte abnormality that will be observed on the blood results?

      Your Answer: Hypocalcaemia

      Correct Answer: Hypophosphataemia

      Explanation:

      Renal phosphate reabsorption is decreased by PTH.

      When PTH levels are excessive, as seen in hyperparathyroidism, renal reabsorption is reduced, leading to low serum phosphate levels. PTH inhibits osteoblasts, not osteoclasts, resulting in an increase in plasma calcium levels. PTH is released in response to low calcium levels and works to increase calcium resorption in the kidneys. Additionally, PTH increases magnesium resorption in the kidneys.

      It is important to note that PTH does not affect potassium levels.

      Understanding Parathyroid Hormone and Its Effects

      Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.

      The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.

      Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.

    • This question is part of the following fields:

      • Endocrine System
      27.3
      Seconds
  • Question 16 - A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending...

    Correct

    • A 39-year-old, with an elevated BMI and confirmed type II diabetes is attending a clinic for a check-up on his glucose control.

      Despite being on treatment for a few months, his latest Hb1Ac and home blood glucose readings are still high. The healthcare provider decides to start the patient on gliclazide. The patient is informed that this medication may cause hypoglycaemia as a side effect by increasing insulin production and release.

      Which pancreatic cell membrane channels does gliclazide bind to?

      Your Answer: ATP-dependent potassium

      Explanation:

      Gliclazide is a medication used to treat diabetes by increasing insulin release from pancreatic beta cells. It works by binding to ATP-dependent potassium channels on these cells, causing depolarization and an increase in intracellular calcium. This leads to the secretion of insulin.

      Dipeptidyl peptidase-4 (DDP) inhibitors are another type of medication used to manage diabetes. They work by increasing levels of incretin hormones such as GLP-1 and GIP, which stimulate insulin secretion and decrease blood glucose levels.

      Chloride channels are not affected by sulfonylureas, and they play a role in regulating fluid transport in various organs.

      Insulin binds to tyrosine kinase receptors on the cell membrane, which triggers a signal transduction pathway that activates enzymes and transcription factors within the cell. Sulfonylureas do not affect these receptors.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      55.7
      Seconds
  • Question 17 - A 14-year-old boy is brought to the clinic by his mother due to...

    Incorrect

    • A 14-year-old boy is brought to the clinic by his mother due to concerns about his height compared to other boys his age. The boy also shares that he often receives comments about his appearance, with some likening him to a toy doll. What can be inferred about the pattern of hormone release that he may be lacking?

      Your Answer: Released diurnally

      Correct Answer: It is released in a pulsatile manner

      Explanation:

      The doll-like appearance of the boy in his presentation suggests that he may be suffering from growth hormone deficiency, which can cause short stature, forehead prominence, and maxillary hypoplasia. The hypothalamus controls the release of growth hormone through the pulsatile release of growth hormone releasing hormone. Therefore, measuring GHRH levels is not a useful method for investigating growth hormone deficiency.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      29.1
      Seconds
  • Question 18 - For individuals with multiple endocrine neoplasia type IIb, what is the most probable...

    Incorrect

    • For individuals with multiple endocrine neoplasia type IIb, what is the most probable clinical presentation they will exhibit?

      Your Answer: Acromegalic facies

      Correct Answer: Marfanoid features

      Explanation:

      Understanding Multiple Endocrine Neoplasia

      Multiple endocrine neoplasia (MEN) is an autosomal dominant disorder that affects the endocrine system. There are three main types of MEN, each with its own set of associated features. MEN type I is characterized by the 3 P’s: parathyroid hyperplasia leading to hyperparathyroidism, pituitary tumors, and pancreatic tumors such as insulinomas and gastrinomas. MEN type IIa is associated with the 2 P’s: parathyroid hyperplasia leading to hyperparathyroidism and phaeochromocytoma, as well as medullary thyroid cancer. MEN type IIb is characterized by phaeochromocytoma, medullary thyroid cancer, and a marfanoid body habitus.

      The most common presentation of MEN is hypercalcaemia, which is often seen in MEN type I due to parathyroid hyperplasia. MEN type IIa and IIb are both associated with medullary thyroid cancer, which is caused by mutations in the RET oncogene. MEN type I is caused by mutations in the MEN1 gene. Understanding the different types of MEN and their associated features is important for early diagnosis and management of this rare but potentially serious condition.

    • This question is part of the following fields:

      • Endocrine System
      31.3
      Seconds
  • Question 19 - A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and...

    Correct

    • A 60-year-old patient visits their doctor complaining of dehydration caused by vomiting and diarrhoea. The kidneys detect reduced renal perfusion, leading to activation of the renin-angiotensin-aldosterone system. What is the specific part of the adrenal gland required for this system?

      Your Answer: Zona glomerulosa

      Explanation:

      Aldosterone is produced in the zona glomerulosa of the adrenal gland.

      Renin is released by juxtaglomerular cells located in the nephron.

      ACE is produced by the pulmonary endothelium in the lungs.

      The adrenal gland is composed of the zona glomerulosa, fasciculata, and reticularis.

      Glucocorticoids are produced in the zona fasciculata.

      Adrenal Physiology: Medulla and Cortex

      The adrenal gland is composed of two main parts: the medulla and the cortex. The medulla is responsible for secreting the catecholamines noradrenaline and adrenaline, which are released in response to sympathetic nervous system stimulation. The chromaffin cells of the medulla are innervated by the splanchnic nerves, and the release of these hormones is triggered by the secretion of acetylcholine from preganglionic sympathetic fibers. Phaeochromocytomas, which are tumors derived from chromaffin cells, can cause excessive secretion of both adrenaline and noradrenaline.

      The adrenal cortex is divided into three distinct zones: the zona glomerulosa, zona fasciculata, and zona reticularis. Each zone is responsible for secreting different hormones. The outer zone, zona glomerulosa, secretes aldosterone, which regulates electrolyte balance and blood pressure. The middle zone, zona fasciculata, secretes glucocorticoids, which are involved in the regulation of metabolism, immune function, and stress response. The inner zone, zona reticularis, secretes androgens, which are involved in the development and maintenance of male sex characteristics.

      Most of the hormones secreted by the adrenal cortex, including glucocorticoids and aldosterone, are bound to plasma proteins in the circulation. Glucocorticoids are inactivated and excreted by the liver. Understanding the physiology of the adrenal gland is important for the diagnosis and treatment of various endocrine disorders.

    • This question is part of the following fields:

      • Endocrine System
      12.6
      Seconds
  • Question 20 - A patient currently being treated for bipolar disorder with lithium is referred to...

    Incorrect

    • A patient currently being treated for bipolar disorder with lithium is referred to hospital after developing severe polyuria. She denies polydipsia.

      Blood tests reveal the following:

      Na+ 154 mmol/L (135 - 145)
      K+ 3.5 mmol/L (3.5 - 5.0)
      Bicarbonate 24 mmol/L (22 - 29)
      Urea 8 mmol/L (2.0 - 7.0)
      Creatinine 110 Āµmol/L (55 - 120)
      Blood glucose 7mmol/L (4 - 11)

      Based on the results, a decision is made to carry out a water deprivation test. The patient is considered to have capacity and agrees to this. As part of this test, desmopressin is given.

      Considering the most likely diagnosis, which of the following results would be most likely to be seen in a 45-year-old patient?

      Your Answer: High urine osmolality after fluid deprivation and normal urine osmolality after desmopressin provision

      Correct Answer: Low urine osmolality after fluid deprivation and low urine osmolality after desmopressin provision

      Explanation:

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      76.1
      Seconds
  • Question 21 - A 54-year-old man with a history of type II diabetes mellitus presents for...

    Correct

    • A 54-year-old man with a history of type II diabetes mellitus presents for a routine check-up. He reports no symptoms of increased urination or thirst. Laboratory results reveal an HbA1c level of 67 mmol/mol and a random plasma glucose level of 15.6 mg/l. The patient is currently taking metformin, and his physician decides to add gliclazide to his medication regimen. What is the mechanism of action of gliclazide?

      Your Answer: Stimulates sulphonylurea-1 receptors

      Explanation:

      The primary mode of action of gliclazide, which belongs to the sulphonylurea class, is to activate the sulphonylurea-1 receptors present on pancreatic cells, thereby promoting insulin secretion. The remaining choices pertain to alternative medications for diabetes.

      Common Medications for Type 2 Diabetes

      Type 2 diabetes is a chronic condition that affects millions of people worldwide. Fortunately, there are several medications available to help manage the disease. Some of the most commonly prescribed drugs include sulphonylureas, metformin, alpha-glucosidase inhibitors (such as acarbose), glitazones, and insulin.

      Sulphonylureas are a type of medication that stimulates the pancreas to produce more insulin. This helps to lower blood sugar levels and improve glucose control. Metformin, on the other hand, works by reducing the amount of glucose produced by the liver and improving insulin sensitivity. Alpha-glucosidase inhibitors, like acarbose, slow down the digestion of carbohydrates in the small intestine, which helps to prevent spikes in blood sugar levels after meals.

      Glitazones, also known as thiazolidinediones, improve insulin sensitivity and reduce insulin resistance. They work by activating a specific receptor in the body that helps to regulate glucose metabolism. Finally, insulin is a hormone that is naturally produced by the pancreas and helps to regulate blood sugar levels. In some cases, people with type 2 diabetes may need to take insulin injections to help manage their condition.

      Overall, these medications can be very effective in helping people with type 2 diabetes to manage their blood sugar levels and prevent complications. However, it’s important to work closely with a healthcare provider to determine the best treatment plan for each individual.

    • This question is part of the following fields:

      • Endocrine System
      48
      Seconds
  • Question 22 - These thyroid function tests were obtained on a 55-year-old female who has recently...

    Incorrect

    • These thyroid function tests were obtained on a 55-year-old female who has recently been treated for hypertension:
      Free T4 28.5 pmol/L (9.8-23.1)
      TSH <0.02 mU/L (0.35-5.5)
      Free T3 10.8 pmol/L (3.5-6.5)
      She now presents with typical symptoms of hyperthyroidism.
      Which medication is likely to have caused this?

      Your Answer: Digoxin

      Correct Answer: Amiodarone

      Explanation:

      Amiodarone and its Effects on Thyroid Function

      Amiodarone is a medication that can have an impact on thyroid function, resulting in both hypo- and hyperthyroidism. This is due to the high iodine content in the drug, which contributes to its antiarrhythmic effects. Atenolol, on the other hand, is a beta blocker that is commonly used to treat thyrotoxicosis. Warfarin is another medication that is used to treat atrial fibrillation.

      There are two types of thyrotoxicosis that can be caused by amiodarone. Type 1 results in excess thyroxine synthesis, while type 2 leads to the release of excess thyroxine but normal levels of synthesis. It is important for healthcare professionals to monitor thyroid function in patients taking amiodarone and adjust treatment as necessary to prevent complications.

    • This question is part of the following fields:

      • Endocrine System
      122.6
      Seconds
  • Question 23 - A 27-year-old man presents to the consultant's office with complaints of increased thirst...

    Incorrect

    • A 27-year-old man presents to the consultant's office with complaints of increased thirst and frequent urination for the past month. He has a history of physical injuries due to a motor vehicle accident that occurred 4 months ago. The patient is currently not on any medications and is in good health. Urinalysis reveals a decreased sodium concentration and urine osmolarity of 90 mOsm/L. What renal tubular changes would be anticipated in this patient due to his current condition?

      Your Answer:

      Correct Answer: Decreased expression of aquaporin-2 channels in the collecting ducts

      Explanation:

      The insertion of aquaporin-2 channels by antidiuretic hormone promotes water reabsorption, which is compromised in central diabetes insipidus (DI) caused by physical trauma to the pituitary gland. Symptoms include increased thirst, polydipsia, and polyuria, with urinalysis showing decreased urine osmolality and sodium concentration. Aldosterone regulates epithelial sodium channel (ENaC) and K+/H+ exchanger, while angiotensin II regulates Na+/H+ exchanger in proximal tubules. Loop diuretics decrease activity of Na-K-Cl cotransporter in the loops of Henle. However, none of these are relevant to this patient’s presentation.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 16-year-old patient presents to his GP with concerns about his physical development....

    Incorrect

    • A 16-year-old patient presents to his GP with concerns about his physical development. The patient reports feeling self-conscious about his body shape and experiencing bullying at school. On examination, the patient is noted to have gynaecomastia and microorchidism. The patient is referred to a paediatrician, who subsequently refers the patient to the genetics team. As part of their assessment, the genetics team orders a karyotype.

      What karyotype results would be expected for this patient, given the likely diagnosis?

      Your Answer:

      Correct Answer: Klinefelter syndrome (47,XXY)

      Explanation:

      Understanding Klinefelter’s Syndrome

      Klinefelter’s syndrome is a genetic condition that is characterized by an extra X chromosome, resulting in a karyotype of 47, XXY. Individuals with this syndrome often have a taller than average stature, but lack secondary sexual characteristics. They may also have small, firm testes and be infertile. Gynaecomastia, or the development of breast tissue, is also common in individuals with Klinefelter’s syndrome, and there is an increased risk of breast cancer. Despite elevated levels of gonadotrophins, testosterone levels are typically low.

      Diagnosis of Klinefelter’s syndrome is made through karyotyping, which involves analyzing an individual’s chromosomes. It is important for individuals with this condition to receive appropriate medical care and support, as well as genetic counseling for family planning.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A 28-year-old female patient presents to her GP with concerns about the appearance...

    Incorrect

    • A 28-year-old female patient presents to her GP with concerns about the appearance of lumps in her lower abdomen. She has been diagnosed with type 1 diabetes and has been using insulin for more than a decade. The lumps have developed in the areas where she administers her insulin injections.

      What is the probable cause of the lumps?

      Your Answer:

      Correct Answer: Lipodystrophy

      Explanation:

      Small subcutaneous lumps at injection sites, known as lipodystrophy, can be caused by insulin.

      The type and location of the lump suggest that lipodystrophy is the most probable cause.

      Deposits of insulin and glucose are not responsible for the formation of these lumps.

      While a lipoma could also cause similar lumps, it is less likely than lipodystrophy, which is a known complication of insulin injections, especially at the injection site. These lumps can occur in multiple locations.

      Insulin therapy can have side-effects that patients should be aware of. One of the most common side-effects is hypoglycaemia, which can cause sweating, anxiety, blurred vision, confusion, and aggression. Patients should be taught to recognize these symptoms and take 10-20g of a short-acting carbohydrate, such as a glass of Lucozade or non-diet drink, three or more glucose tablets, or glucose gel. It is also important for every person treated with insulin to have a glucagon kit for emergencies where the patient is not able to orally ingest a short-acting carbohydrate. Patients who have frequent hypoglycaemic episodes may develop reduced awareness, and beta-blockers can further reduce hypoglycaemic awareness.

      Another potential side-effect of insulin therapy is lipodystrophy, which typically presents as atrophy or lumps of subcutaneous fat. This can be prevented by rotating the injection site, as using the same site repeatedly can cause erratic insulin absorption. It is important for patients to be aware of these potential side-effects and to discuss any concerns with their healthcare provider. By monitoring their blood sugar levels and following their treatment plan, patients can manage the risks associated with insulin therapy and maintain good health.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical...

    Incorrect

    • A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical examination, an irregular pulsatile hepatomegaly and a pansystolic murmur that is most pronounced during inspiration are detected. What diagnostic test could provide insight into the probable underlying condition?

      Your Answer:

      Correct Answer: Urinary 5-HIAA (5-hydroxyindole acetic acid)

      Explanation:

      Carcinoid Syndrome and its Diagnosis

      Carcinoid syndrome is characterized by the presence of vasoactive amines such as serotonin in the bloodstream, leading to various clinical features. The primary carcinoid tumor is usually found in the small intestine or appendix, but it may not cause significant symptoms as the liver detoxifies the blood of these amines. However, systemic effects occur when malignant cells spread to other organs, such as the lungs, which are not part of the portal circulation. One of the complications of carcinoid syndrome is damage to the right heart valves, which can cause tricuspid regurgitation, as evidenced by a pulsatile liver and pansystolic murmur.

      To diagnose carcinoid syndrome, the 5-HIAA test is usually performed, which measures the breakdown product of serotonin in a 24-hour urine collection. If the test is positive, imaging and histology are necessary to confirm malignancy.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type...

    Incorrect

    • A 23-year-old man was diagnosed with maturity-onset diabetes of the young (MODY) type 1 and has been on an oral anti-diabetic agent for the past year. What is the mechanism of action of the drug he is most likely taking?

      Your Answer:

      Correct Answer: Binding to ATP-dependent K+ channel on the pancreatic beta cell membrane

      Explanation:

      The patient is likely taking a sulfonylurea medication, which works by binding to the ATP-dependent K+ channel on the pancreatic beta-cell membrane to promote endogenous insulin secretion. This is the recommended first-line treatment for patients with MODY type 1, as their genetic defect results in reduced insulin secretion. Thiazolidinediones (glitazones) activate peroxisome proliferator-activated receptor-gamma (PPARĪ³) and are not typically used in this population. Metformin (biguanide class) inhibits hepatic glucose production and increases peripheral uptake, but is less effective than sulfonylureas in MODY type 1. Acarbose inhibits intestinal alpha-glucosidase and is not used in MODY patients. Dipeptidyl peptidase-4 inhibitors (gliptins) are commonly used in type 2 diabetes but are not first-line treatment for MODY.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - Which of the following most accurately explains how glucocorticoids work? ...

    Incorrect

    • Which of the following most accurately explains how glucocorticoids work?

      Your Answer:

      Correct Answer: Binding of intracellular receptors that migrate to the nucleus to then affect gene transcription

      Explanation:

      The effects of glucocorticoids are mediated by intracellular receptors that bind to them and are subsequently transported to the nucleus, where they modulate gene transcription.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A 15-year-old male arrives at the emergency department with intense abdominal pain and...

    Incorrect

    • A 15-year-old male arrives at the emergency department with intense abdominal pain and a decreased Glasgow coma score (GCS). Over the past few weeks, he has been experiencing excessive urination, abnormal thirst, and weight loss. Laboratory results reveal:

      Ketones 4.2 mmol/L (<0.6 mmol/L)
      Glucose 20 mmol/L
      pH 7.25

      What is the probable cause of the acidosis and hyperketonemia in this case?

      Your Answer:

      Correct Answer: Uncontrolled lipolysis

      Explanation:

      The likely cause of the patient’s condition is diabetic ketoacidosis, which is a result of uncontrolled lipolysis. This process leads to an excess of free fatty acids that are eventually converted into ketone bodies. It is important to note that proteolysis, the breakdown of proteins into smaller polypeptides, does not yield ketone bodies and is not the cause of this condition. While glycogenolysis and gluconeogenesis are increased due to the lack of insulin and rise of glucagon, they do not result in acidosis or elevated levels of ketone bodies. It is ketogenesis, not ketolysis, that leads to the increased levels of ketone bodies.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - You are in charge of the care of a 23-year-old man who has...

    Incorrect

    • You are in charge of the care of a 23-year-old man who has come for a military medical evaluation. Based on his symptoms, you suspect that he has type 1 diabetes and has been secretly administering insulin. What clinical methods can you use to evaluate his endogenous insulin production?

      Your Answer:

      Correct Answer: C-peptide

      Explanation:

      C-peptide is a reliable indicator of insulin production as it is secreted in proportion to insulin. It is often used clinically to measure endogenous insulin production.

      Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (12/22) 55%
Passmed