-
Question 1
Incorrect
-
Linda, a 68-year-old female, visits a shoulder clinic for a routine follow-up appointment after undergoing a right shoulder replacement surgery for osteoarthritis. During the consultation, she reports limited movement in bending her elbow and shoulder.
Upon examining her upper limb, the surgeon observes decreased flexion at the elbow and suspects nerve damage during the operation.
Which nerve is most likely to have been affected based on the patient's symptoms and signs?Your Answer: Median nerve
Correct Answer: Musculocutaneous nerve
Explanation:When the musculocutaneous nerve is injured, it can result in weakness when flexing the upper arm at the shoulder and elbow. This nerve is responsible for innervating the brachialis, biceps brachii, and coracobrachialis muscles. Other nerves, such as the axillary nerve, median nerve, and radial nerve, also play a role in muscle innervation and movement. The axillary nerve innervates the teres minor and deltoid muscles, while the median nerve innervates the majority of the flexor muscles in the forearm, the thenar muscles, and the two lateral lumbricals. The radial nerve innervates the triceps brachii and the muscles in the posterior compartment of the forearm, which generally cause extension of the wrist and fingers.
The Musculocutaneous Nerve: Function and Pathway
The musculocutaneous nerve is a nerve branch that originates from the lateral cord of the brachial plexus. Its pathway involves penetrating the coracobrachialis muscle and passing obliquely between the biceps brachii and the brachialis to the lateral side of the arm. Above the elbow, it pierces the deep fascia lateral to the tendon of the biceps brachii and continues into the forearm as the lateral cutaneous nerve of the forearm.
The musculocutaneous nerve innervates the coracobrachialis, biceps brachii, and brachialis muscles. Injury to this nerve can cause weakness in flexion at the shoulder and elbow. Understanding the function and pathway of the musculocutaneous nerve is important in diagnosing and treating injuries or conditions that affect this nerve.
-
This question is part of the following fields:
- Neurological System
-
-
Question 2
Incorrect
-
Which one of the following vessels does not directly drain into the inferior vena cava?
Your Answer: Left hepatic vein
Correct Answer: Superior mesenteric vein
Explanation:The portal vein receives drainage from the superior mesenteric vein, while the right and left hepatic veins directly drain into it. This can result in significant bleeding in cases of severe liver lacerations.
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 55-year-old male presents with severe, central, crushing chest pain associated with sweating and nausea. He is a heavy smoker and has a medical history of type 2 diabetes, hypertension, morbid obesity and hyperlipidaemia. Upon admission, his troponin levels are significantly elevated and his electrocardiogram shows ST elevation in the anterior leads. He undergoes percutaneous coronary intervention and is prescribed several medications, including abciximab. What is the mechanism of action of this drug?
Your Answer: Factor Xa inhibitor
Correct Answer: Glycoprotein IIb/IIIa receptor antagonist
Explanation:Abciximab is a type of medication that blocks the glycoprotein IIb/IIIa receptors, which are responsible for platelet aggregation. By preventing platelet aggregation, it can help prevent the formation of blood clots in the coronary arteries.
Dabigatran is a direct thrombin inhibitor that is used to treat and prevent blood clots in patients with atrial fibrillation.
Rivaroxaban is a factor Xa inhibitor that is commonly used to prevent and treat blood clots.
Clopidogrel is a P2Y12 inhibitor that is often prescribed to prevent occlusive vascular disease in patients with peripheral arterial disease.
Monoclonal antibodies are becoming increasingly important in the field of medicine. They are created using a technique called somatic cell hybridization, which involves fusing myeloma cells with spleen cells from an immunized mouse to produce a hybridoma. This hybridoma acts as a factory for producing monoclonal antibodies.
However, a major limitation of this technique is that mouse antibodies can be immunogenic, leading to the formation of human anti-mouse antibodies. To overcome this problem, a process called humanizing is used. This involves combining the variable region from the mouse body with the constant region from a human antibody.
There are several clinical examples of monoclonal antibodies, including infliximab for rheumatoid arthritis and Crohn’s, rituximab for non-Hodgkin’s lymphoma and rheumatoid arthritis, and cetuximab for metastatic colorectal cancer and head and neck cancer. Monoclonal antibodies are also used for medical imaging when combined with a radioisotope, identifying cell surface markers in biopsied tissue, and diagnosing viral infections.
-
This question is part of the following fields:
- General Principles
-
-
Question 4
Incorrect
-
A 25-year-old male patient reports experiencing mild jaundice following periods of fasting or exercise. Upon examination, his complete blood count and liver function tests appear normal. What is the recommended course of treatment for this individual?
Your Answer: Phototherapy
Correct Answer: No treatment required
Explanation:Gilbert Syndrome
Gilbert syndrome is a common genetic condition that causes mild unconjugated hyperbilirubinemia, resulting in intermittent jaundice without any underlying liver disease or hemolysis. The bilirubin levels are usually less than 6 mg/dL, but most patients exhibit levels of less than 3 mg/dL. The condition is characterized by daily and seasonal variations, and occasionally, bilirubin levels may be normal in some patients. Gilbert syndrome can be triggered by dehydration, fasting, menstrual periods, or stress, such as an intercurrent illness or vigorous exercise. Patients may experience vague abdominal discomfort and fatigue, but these episodes resolve spontaneously, and no treatment is required except supportive care.
In recent years, Gilbert syndrome is believed to be inherited in an autosomal recessive manner, although there are reports of autosomal dominant inheritance. Despite the mild symptoms, it is essential to understand the condition’s triggers and symptoms to avoid unnecessary medical interventions. Patients with Gilbert syndrome can lead a normal life with proper care and management.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 5
Incorrect
-
You are developing a research project investigating the pathophysiology of abetalipoproteinemia. You determine that a viable focus would be the rate-limiting enzyme involved in lipogenesis.
Which enzyme will be the target of your investigation?Your Answer: Glycogen phosphorylase
Correct Answer: Acetyl CoA carboxylase
Explanation:The enzyme that limits the rate of lipogenesis is acetyl CoA carboxylase.
During lipogenesis, fatty acids are produced from acetyl-CoA. Acetyl CoA carboxylase is the enzyme that controls the rate of this process.
Carbamoyl phosphate synthetase I is the enzyme that limits the rate of the urea cycle.
Glycogen phosphorylase is the enzyme that controls the rate of glycogenolysis.
Isocitrate dehydrogenase is the enzyme that limits the rate of the citric acid cycle.
Rate-Determining Enzymes in Metabolic Processes
Metabolic processes involve a series of chemical reactions that occur in living organisms to maintain life. Enzymes play a crucial role in these processes by catalyzing the reactions. However, not all enzymes have the same impact on the rate of the reaction. Some enzymes are rate-determining, meaning that they control the overall rate of the process. The table above lists the rate-determining enzymes involved in common metabolic processes.
For example, in the TCA cycle, isocitrate dehydrogenase is the rate-determining enzyme. In glycolysis, phosphofructokinase-1 controls the rate of the process. In gluconeogenesis, fructose-1,6-bisphosphatase is the rate-determining enzyme. Similarly, glycogen synthase controls the rate of glycogenesis, while glycogen phosphorylase controls the rate of glycogenolysis.
Other metabolic processes, such as lipogenesis, lipolysis, cholesterol synthesis, and ketogenesis, also have rate-determining enzymes. Acetyl-CoA carboxylase controls the rate of lipogenesis, while carnitine-palmitoyl transferase I controls the rate of lipolysis. HMG-CoA reductase is the rate-determining enzyme in cholesterol synthesis, while HMG-CoA synthase controls the rate of ketogenesis.
The urea cycle, de novo pyrimidine synthesis, and de novo purine synthesis also have rate-determining enzymes. Carbamoyl phosphate synthetase I controls the rate of the urea cycle, while carbamoyl phosphate synthetase II controls the rate of de novo pyrimidine synthesis. Glutamine-PRPP amidotransferase is the rate-determining enzyme in de novo purine synthesis.
Understanding the rate-determining enzymes in metabolic processes is crucial for developing treatments for metabolic disorders and diseases. By targeting these enzymes, researchers can potentially regulate the rate of the process and improve the health outcomes of individuals with these conditions.
-
This question is part of the following fields:
- General Principles
-
-
Question 6
Incorrect
-
A 21-year-old male visits the GP complaining of a sore and itchy eye upon waking up. Upon examination, the right eye appears red with a discharge of mucopurulent nature. The patient has a medical history of asthma and eczema and is currently using a salbutamol inhaler. Based on this information, what is the most probable diagnosis?
Your Answer: Allergic rhinitis
Correct Answer: Bacterial conjunctivitis
Explanation:A mucopurulent discharge is indicative of bacterial conjunctivitis, which is likely in this patient presenting with an itchy, red eye. Although the patient has a history of asthma and eczema, allergic rhinitis would not produce a mucopurulent discharge. Viral conjunctivitis, the most common type of conjunctivitis, is associated with a watery discharge. A corneal ulcer, on the other hand, is characterized by pain and a watery eye.
Infective conjunctivitis is a common eye problem that is often seen in primary care. It is characterized by red, sore eyes that are accompanied by a sticky discharge. There are two types of infective conjunctivitis: bacterial and viral. Bacterial conjunctivitis is identified by a purulent discharge and eyes that may be stuck together in the morning. On the other hand, viral conjunctivitis is characterized by a serous discharge and recent upper respiratory tract infection, as well as preauricular lymph nodes.
In most cases, infective conjunctivitis is a self-limiting condition that resolves on its own within one to two weeks. However, patients are often offered topical antibiotic therapy, such as Chloramphenicol or topical fusidic acid. Chloramphenicol drops are given every two to three hours initially, while chloramphenicol ointment is given four times a day initially. Topical fusidic acid is an alternative and should be used for pregnant women. For contact lens users, topical fluoresceins should be used to identify any corneal staining, and treatment should be the same as above. It is important to advise patients not to share towels and to avoid wearing contact lenses during an episode of conjunctivitis. School exclusion is not necessary.
-
This question is part of the following fields:
- Neurological System
-
-
Question 7
Correct
-
A 12-day-old infant named Max is brought to the paediatric assessment unit due to yellowing of the skin that started 3 days ago. Max is currently in a bright and alert state and has not experienced any fever. The baby has been passing urine and stool normally, and the mother has not noticed any changes in this regard.
Apart from the jaundice, the mother has no other concerns, and Max has been thriving since birth. Max was born at term, is breastfed, and there are no other children in the house.
Hb: 140 g/L Male: (135-180) Female: (115 - 160)
Bilirubin: 30 µmol/L (3 - 17)
Upon further testing, it is revealed that Max's unconjugated bilirubin levels are 26 µmol/L. Based on these findings, what is the most likely cause of the jaundice in Max's case?Your Answer: Hepatic immaturity
Explanation:Neonatal jaundice caused by physiological factors is a result of the liver’s immaturity and the breakdown of fetal hemoglobin. To determine the cause of jaundice, both clinical symptoms and laboratory findings are crucial. In this case, the presence of isolated unconjugated hyperbilirubinemia without any clinical signs is indicative of physiological jaundice. This type of jaundice is common in the first few weeks of life and is caused by the immaturity of the liver and increased breakdown of hemoglobin. The fact that the baby is being breastfed also supports this diagnosis. Obstructive jaundice, on the other hand, would present with an obstructive picture and an elevated conjugated bilirubin level, which is not the case here. In MCQs, the history often provides clues, such as pale stools and dark urine.
Understanding Jaundice in Newborns
Jaundice is a common condition in newborns that occurs due to the accumulation of bilirubin in the blood. The severity and duration of jaundice can vary depending on the cause and age of the baby. Jaundice in the first 24 hours is always considered pathological and can be caused by conditions such as rhesus haemolytic disease, ABO haemolytic disease, hereditary spherocytosis, and glucose-6-phosphodehydrogenase deficiency.
Jaundice in the neonate from 2-14 days is usually physiological and affects up to 40% of babies. It is more commonly seen in breastfed babies and is due to a combination of factors such as more red blood cells, fragile red blood cells, and less developed liver function. However, if jaundice persists after 14 days (21 days if premature), a prolonged jaundice screen is performed to identify the cause. This includes tests for conjugated and unconjugated bilirubin, direct antiglobulin test, TFTs, FBC and blood film, urine for MC&S and reducing sugars, and U&Es and LFTs.
Prolonged jaundice can be caused by conditions such as biliary atresia, hypothyroidism, galactosaemia, urinary tract infection, breast milk jaundice, prematurity, and congenital infections like CMV and toxoplasmosis. Breast milk jaundice is more common in breastfed babies and is thought to be due to high concentrations of beta-glucuronidase, which increases the intestinal absorption of unconjugated bilirubin. It is important to identify the cause of prolonged jaundice as some conditions like biliary atresia require urgent surgical intervention, while others like hypothyroidism can lead to developmental delays if left untreated.
-
This question is part of the following fields:
- General Principles
-
-
Question 8
Correct
-
You are studying enzyme-kinetics before a crucial exam and come across the Line-Weaver Burk plot of the Michaelis-Menten model. You need to be familiar with all the abbreviations and their meanings.
What does 'Km' signify on the Line-Weaver Burk plot?Your Answer: Concentration of substrate that leads to half-maximal velocity
Explanation:The concentration of substrate that results in half of the maximum velocity is known as Km. The other options provided are not accurate. Vmax pertains to the highest rate achievable in the catalyzed reaction.
Enzyme kinetics is the study of how enzymes catalyze chemical reactions. Catalysts increase the rate of a chemical reaction without being consumed or altering the position of equilibrium between substrates and products. Enzyme-catalyzed reactions display saturation kinetics, meaning that there is not a linear response to increasing levels of substrate. Vmax is the maximum rate of the catalyzed reaction, while Km is the concentration of substrate that leads to half-maximal velocity. Enzymes with a low Km have a high affinity for their substrate. The Michaelis-Menten model of a single substrate reaction demonstrates the saturation curve for an enzyme, showing the relationship between substrate concentration and reaction rate. Linear plots of the Michaelis-Menten model are used to estimate Vmax. The Lineweaver-Burk plot of kinetic data shows how the y-intercept equals 1/Vmax, and as the y-intercept increases, Vmax decreases. There are three types of inhibitors: competitive, non-competitive, and uncompetitive. Each type has a different effect on Vmax and Km. Competitive inhibitors compete with the substrate for the enzyme’s active binding site, while non-competitive inhibitors bind outside the enzyme’s active binding site. Uncompetitive inhibitors are rare and bind to the enzyme, enhancing the binding of substrate.
-
This question is part of the following fields:
- General Principles
-
-
Question 9
Correct
-
A 35-year-old woman visits a Genetics clinic to discuss her son's recent diagnosis of Batten disease, which she has learned is partially caused by defects in the cellular Golgi apparatus. What is the typical function of this organelle in a cell?
Your Answer: Addition of mannose-6-phosphate to proteins for trafficking to lysosomes
Explanation:The Golgi apparatus is responsible for adding mannose-6-phosphate to proteins, which facilitates their trafficking to lysosomes. This is a crucial function of the Golgi, which modifies molecules for secretion or lysosomal breakdown. The peroxisome, not the Golgi, is responsible for catabolism of very long chain fatty acids and amino acids. Degradation of ubiquitinylated proteins occurs in the proteasome, not the Golgi. The manufacture of lysosomal enzymes is not a function of the Golgi, as these enzymes are synthesized in the rough endoplasmic reticulum and then transported to the lysosome.
Functions of Cell Organelles
The functions of major cell organelles can be summarized in a table. The rough endoplasmic reticulum (RER) is responsible for the translation and folding of new proteins, as well as the manufacture of lysosomal enzymes. It is also the site of N-linked glycosylation. Cells such as pancreatic cells, goblet cells, and plasma cells have extensive RER. On the other hand, the smooth endoplasmic reticulum (SER) is involved in steroid and lipid synthesis. Cells of the adrenal cortex, hepatocytes, and reproductive organs have extensive SER.
The Golgi apparatus modifies, sorts, and packages molecules that are destined for cell secretion. The addition of mannose-6-phosphate to proteins designates transport to lysosome. The mitochondrion is responsible for aerobic respiration and contains mitochondrial genome as circular DNA. The nucleus is involved in DNA maintenance, RNA transcription, and RNA splicing, which removes the non-coding sequences of genes (introns) from pre-mRNA and joins the protein-coding sequences (exons).
The lysosome is responsible for the breakdown of large molecules such as proteins and polysaccharides. The nucleolus produces ribosomes, while the ribosome translates RNA into proteins. The peroxisome is involved in the catabolism of very long chain fatty acids and amino acids, resulting in the formation of hydrogen peroxide. Lastly, the proteasome, along with the lysosome pathway, is involved in the degradation of protein molecules that have been tagged with ubiquitin.
-
This question is part of the following fields:
- General Principles
-
-
Question 10
Incorrect
-
Which statement accurately describes the structure of the heart?
Your Answer: The left ventricle lies anterior to the right ventricle
Correct Answer: The aortic valve has three cusps
Explanation:Heart Chamber Locations and Echocardiography
The heart is a complex organ with four chambers that work together to pump blood throughout the body. The right ventricle is located in front of the left ventricle, while the left atrium is the most posterior chamber of the heart. The right atrium is situated to the right and anterior to the left atrium.
When it comes to imaging the heart, transthoracic echocardiography is a common method used to visualize the heart’s structures. However, the left atrial appendage, a small pouch-like structure attached to the left atrium, may not be easily seen with this technique. In such cases, transoesophageal echocardiography may be necessary to obtain a clearer image of the left atrial appendage. the locations of the heart’s chambers and the limitations of imaging techniques can aid in the diagnosis and treatment of various cardiac conditions.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 11
Incorrect
-
A 14-year-old girl with beta thalassaemia major is receiving counselling from her haematologist regarding the potential complications of her condition. The doctor explains that frequent blood transfusions may result in iron overload, which can result in liver damage and heart failure. What is an example of an iron chelation medication?
Your Answer: Dimercaptosuccinic acid
Correct Answer: Deferiprone
Explanation:To prevent complications from iron overload caused by frequent transfusions in beta-thalassaemia major, iron chelation therapy is crucial. Iron chelation agents such as Deferiprone, Deferoxamine, and Deferasirox are commonly used for this purpose. Trientine is a copper chelator used in Wilson’s disease, while Dimercaptosuccinic acid is used as a lead chelator. Penicillamine is primarily used to treat copper toxicity.
Understanding Beta-Thalassaemia Major
Beta-thalassaemia major is a genetic disorder that results from the absence of beta globulin chains on chromosome 11. This condition typically presents in the first year of life with symptoms such as failure to thrive and hepatosplenomegaly. Microcytic anaemia is also a common feature, with raised levels of HbA2 and HbF, but absent HbA.
Management of beta-thalassaemia major involves repeated transfusions, which can lead to iron overload and organ failure. Therefore, iron chelation therapy, such as desferrioxamine, is crucial to prevent complications. It is important to understand the features and management of this condition to provide appropriate care for affected individuals.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 12
Incorrect
-
A patient has been diagnosed with multiple myeloma, and genetic analysis has revealed that a single copy of their p53 gene has been mutated. Usually, two copies of a tumour suppressor gene need to be mutated for cancer to develop. The doctor explains that sometimes having only one copy of TP53 is insufficient to suppress the cancer.
What is this phenomenon known as?Your Answer: Incomplete penetrance
Correct Answer: Haploinsufficiency
Explanation:Haploinsufficiency occurs when a single allele is unable to produce the typical phenotype in an individual. This happens when one functional allele of a gene is lost due to mutation or deletion, and the remaining normal allele is not enough to carry out its original function. Incomplete penetrance is when an allele may not always be expressed in an individual’s phenotype, and may require an environmental trigger. Codominance is when two different alleles for a trait are expressed equally in the phenotype of heterozygous individuals, such as the AB blood type. Genomic imprinting is an inheritance pattern where a gene has a different effect depending on the gender of the parent from whom it is inherited.
Autosomal Dominant Inheritance: Characteristics and Complicating Factors
Autosomal dominant diseases are genetic disorders that are inherited in an autosomal dominant pattern. This means that both homozygotes and heterozygotes manifest the disease, and there is no carrier state. Both males and females can be affected, and only affected individuals can pass on the disease. The disease is passed on to 50% of children, and it normally appears in every generation. The risk remains the same for each successive pregnancy.
However, there are complicating factors that can affect the inheritance of autosomal dominant diseases. One of these factors is non-penetrance, which refers to the lack of clinical signs and symptoms despite having an abnormal gene. For example, 40% of individuals with otosclerosis may not show any symptoms. Another complicating factor is spontaneous mutation, which occurs when there is a new mutation in one of the gametes. This means that 80% of individuals with achondroplasia have unaffected parents.
In summary, autosomal dominant inheritance is characterized by certain patterns of inheritance, but there are also complicating factors that can affect the expression of the disease. Understanding these factors is important for genetic counseling and for predicting the risk of passing on the disease to future generations.
-
This question is part of the following fields:
- General Principles
-
-
Question 13
Incorrect
-
A patient in his 60s has just been released from the hospital following a STEMI. As part of his new medication regimen, he has been instructed to take an antiplatelet, commonly known as aspirin, on a daily basis for the remainder of his life. The doctor has informed him that this will lower his chances of developing blood clots that could be fatal.
What is the mode of action of this medication?Your Answer: Inhibits thrombin
Correct Answer: Inhibits the formation of thromboxane A2
Explanation:Aspirin reduces platelet aggregation by decreasing the formation of thromboxane A2, which is a potent vasoconstrictor and facilitates platelet aggregation. This is achieved by irreversibly binding to cyclooxygenase (COX), an enzyme that converts arachidonic acid into various prostaglandin molecules, including thromboxane A2.
Direct oral anticoagulants (DOACs), such as rivaroxaban, work by directly inhibiting clotting factor Xa. They are effective anticoagulants that require less monitoring than warfarin, which inhibits the production of vitamin K-dependent clotting factors, including factor II, factor VII, factor IX, and factor X. Warfarin also inhibits some pro-thrombotic molecules, which initially increases the risk of thrombosis.
Dabigatran is a thrombin inhibitor and is another form of DOAC. It is currently the only DOAC with a reversal agent.
Clopidogrel is an antiplatelet medication that prevents the activation of the glycoprotein GPIIb/IIIa complex, which is an essential mechanism for platelet aggregation.
How Aspirin Works and its Use in Cardiovascular Disease
Aspirin is a medication that works by blocking the action of cyclooxygenase-1 and 2, which are responsible for the synthesis of prostaglandin, prostacyclin, and thromboxane. By blocking the formation of thromboxane A2 in platelets, aspirin reduces their ability to aggregate, making it a widely used medication in cardiovascular disease. However, recent trials have cast doubt on the use of aspirin in primary prevention of cardiovascular disease, and guidelines have not yet changed to reflect this. Aspirin should not be used in children under 16 due to the risk of Reye’s syndrome, except in cases of Kawasaki disease where the benefits outweigh the risks. As for its use in ischaemic heart disease, aspirin is recommended as a first-line treatment. It can also potentiate the effects of oral hypoglycaemics, warfarin, and steroids. It is important to note that recent guidelines recommend clopidogrel as a first-line treatment for ischaemic stroke and peripheral arterial disease, while the use of aspirin in TIAs remains a topic of debate among different guidelines.
Overall, aspirin’s mechanism of action and its use in cardiovascular disease make it a valuable medication in certain cases. However, recent studies have raised questions about its effectiveness in primary prevention, and prescribers should be aware of the potential risks and benefits when considering its use.
-
This question is part of the following fields:
- General Principles
-
-
Question 14
Correct
-
A 55-year-old man with a BMI of 32 kg/m2 has been experiencing indigestion for a long time. He recently had an endoscopy, during which biopsy samples of his oesophagus were taken. The pathology report revealed abnormal columnar epithelium in the distal samples. Can you identify the best answer that describes this adaptive cellular response to injury?
Your Answer: Metaplasia
Explanation:There are four adaptive cellular responses to injury: atrophy, hypertrophy, hyperplasia, and metaplasia. Metaplasia is the reversible change of one fully differentiated cell type to another, usually in response to irritation. Examples include Barrett’s esophagus, bronchoalveolar epithelium undergoing squamous metaplasia due to cigarette smoke, and urinary bladder transitional epithelium undergoing squamous metaplasia due to a urinary calculi. Atrophy refers to a loss of cells, hypertrophy refers to an increase in cell size, and hyperplasia refers to an increase in cell number. Apoptosis is a specialized form of programmed cell death.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 15
Correct
-
Which of the following hepatobiliary conditions is commonly linked with ulcerative colitis, typically seen in adult patients?
Your Answer: Primary sclerosing cholangitis
Explanation:The risk of developing liver cancer is higher in patients with primary sclerosing cholangitis (PSC) and ulcerative colitis. However, the risk of malignant transformation is not increased in patients with Crohn’s disease. Impaired entero-hepatic circulation in Crohn’s disease is linked to the development of gallstones. Unlike PSC, ulcerative colitis does not elevate the risk of other liver lesions.
Understanding Ulcerative Colitis
Ulcerative colitis is a type of inflammatory bowel disease that causes inflammation in the rectum and spreads continuously without going beyond the ileocaecal valve. It is most commonly seen in people aged 15-25 years and 55-65 years. The symptoms of ulcerative colitis are insidious and intermittent, including bloody diarrhea, urgency, tenesmus, abdominal pain, and extra-intestinal features. Diagnosis is done through colonoscopy and biopsy, but in severe cases, a flexible sigmoidoscopy is preferred to avoid the risk of perforation. The typical findings include red, raw mucosa that bleeds easily, widespread ulceration with preservation of adjacent mucosa, and inflammatory cell infiltrate in lamina propria. Extra-intestinal features of inflammatory bowel disease include arthritis, erythema nodosum, episcleritis, osteoporosis, uveitis, pyoderma gangrenosum, clubbing, and primary sclerosing cholangitis. Ulcerative colitis is linked with sacroiliitis, and a barium enema can show the whole colon affected by an irregular mucosa with loss of normal haustral markings.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 16
Correct
-
A 67-year-old female presents to the two-week wait colonoscopy clinic with a positive FIT result. She reports a 4-month history of altered bowel habit and incomplete bowel emptying. During colonoscopy, an adenocarcinoma is found in the lower rectum and upper third of the anal canal. What is the most likely lymph node region for initial metastatic spread in this patient?
Your Answer: Internal iliac nodes
Explanation:The internal iliac lymph nodes are responsible for draining the lower part of the rectum, as well as the pelvic viscera and the anal canal above the pectinate line. The ileocolic nodes primarily drain the ileum and proximal ascending colon, while the inferior mesenteric nodes drain the hindgut structures from the transverse colon down to the superior portion of the rectum. The para-aortic nodes do not directly drain the lower part of the rectum, but they do receive drainage from the testes and ovaries.
Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.
The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.
Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 17
Correct
-
A 56-year-old patient has undergone surgery for thyroid cancer and his family has noticed a change in his voice, becoming more hoarse a week after the surgery. Which nerve is likely to have been damaged during the surgery to cause this change in his voice?
Your Answer: Recurrent laryngeal nerve
Explanation:During surgeries of the thyroid and parathyroid glands, the recurrent laryngeal nerve is at risk due to its close proximity to the inferior thyroid artery. This nerve is responsible for supplying all intrinsic muscles of the larynx (excluding the cricothyroid muscle) that control the opening and closing of the vocal folds, as well as providing sensory innervation below the vocal folds. If damaged, it can result in hoarseness of voice or, in severe cases, aphonia.
The glossopharyngeal nerve, on the other hand, does not play a role in voice production. Its primary areas of innervation include the posterior part of the tongue, the middle ear, part of the pharynx, the carotid body and carotid sinus, and the parotid gland. It also provides motor supply to the stylopharyngeus muscle. Damage to this nerve typically presents with impaired swallowing and changes in taste.
The ansa cervicalis is located in the carotid triangle and is unlikely to be damaged during thyroid surgery. However, it may be used to re-innervate the vocal folds in the event of damage to the recurrent laryngeal nerve post-thyroidectomy. The ansa cervicalis primarily innervates the majority of infrahyoid muscles, with the exception of the stylohyoid and thyrohyoid. Damage to these muscles would primarily result in difficulty swallowing.
Finally, the superior laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is paralyzed, it can cause an inability to produce high-pitched voice, which may go unnoticed in many patients for an extended period of time.
The Recurrent Laryngeal Nerve: Anatomy and Function
The recurrent laryngeal nerve is a branch of the vagus nerve that plays a crucial role in the innervation of the larynx. It has a complex path that differs slightly between the left and right sides of the body. On the right side, it arises anterior to the subclavian artery and ascends obliquely next to the trachea, behind the common carotid artery. It may be located either anterior or posterior to the inferior thyroid artery. On the left side, it arises left to the arch of the aorta, winds below the aorta, and ascends along the side of the trachea.
Both branches pass in a groove between the trachea and oesophagus before entering the larynx behind the articulation between the thyroid cartilage and cricoid. Once inside the larynx, the recurrent laryngeal nerve is distributed to the intrinsic larynx muscles (excluding cricothyroid). It also branches to the cardiac plexus and the mucous membrane and muscular coat of the oesophagus and trachea.
Damage to the recurrent laryngeal nerve, such as during thyroid surgery, can result in hoarseness. Therefore, understanding the anatomy and function of this nerve is crucial for medical professionals who perform procedures in the neck and throat area.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A patient in his 60s with dilated cardiomyopathy visits his primary care physician complaining of heart failure symptoms. What is the reason behind his heart condition causing heart failure?
Your Answer: Ventricular dilatation leads to increased stroke volume because of Starlings law
Correct Answer: Ventricular dilatation increases afterload due to Laplace's law
Explanation:Laplace’s law states that the pressure in a lumen is equal to the wall tension divided by the lumen radius. Heart failure occurs when the heart is unable to meet the body’s demands for cardiac output. While an increased end diastolic volume can initially increase cardiac output, if myocytes become too stretched, cardiac output will decrease. Insufficient blood supply to the myocardium can also cause heart failure, but this is not related to dilated cardiomyopathy. The Bainbridge reflex and baroreceptor reflex are the main controllers of heart rate, with the former responding to increased stretch in the atrium. Ventricular dilatation does not directly cause an increase in aortic pressure. Laplace’s law shows that as the ventricle dilates, tension must increase to maintain pressure, but at a certain point, myocytes will no longer be able to exert enough force, leading to heart failure. Additionally, as the ventricle dilates, afterload increases, which is the force the heart must contract against.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Correct
-
A 28-year-old athlete visits her GP with complaints of amenorrhea. She hasn't had her period for the past 6 months, and her pregnancy test came back negative. She had regular periods before and started menstruating at the age of 12. The patient has been undergoing rigorous training for marathons for the last 8 months. She doesn't have any fever or diarrhea, and there are no signs of hirsutism on examination.
The blood test results show:
- TSH: 2 mU/L (normal range: 0.4 – 4)
- Free T4: 15 pmol/L (normal range: 9 – 25)
- Free T3: 5.2 nmol/L (normal range: 3.5 – 7.8)
- LH: <1 IU/L (normal range: 1-12)
- FSH: <1 IU/L (normal range: 1-9)
What is the most likely cause of her amenorrhea?Your Answer: Hypothalamic amenorrhoea
Explanation:The patient is experiencing secondary amenorrhoea, which is indicative of hypothalamic amenorrhoea due to low-level gonadotrophins. This could be caused by the patient’s intensive training for marathons, as well as other risk factors such as stress and anorexia nervosa. Hyperthyroidism is unlikely as the patient does not exhibit any symptoms or abnormal thyroid function test results. Polycystic ovarian syndrome (PCOS) can be ruled out as the patient does not have hirsutism, a high BMI, or elevated LH and FSH levels. Pregnancy is also not a possibility as the patient’s test was negative and she does not exhibit any signs of pregnancy.
Understanding Amenorrhoea: Causes, Investigations, and Management
Amenorrhoea is a condition characterized by the absence of menstrual periods. It can be classified into two types: primary and secondary. Primary amenorrhoea occurs when menstruation fails to start by the age of 15 in girls with normal secondary sexual characteristics or by the age of 13 in girls with no secondary sexual characteristics. On the other hand, secondary amenorrhoea is the cessation of menstruation for 3-6 months in women with previously normal and regular menses or 6-12 months in women with previous oligomenorrhoea.
The causes of amenorrhoea vary depending on the type. Primary amenorrhoea may be caused by gonadal dysgenesis, testicular feminization, congenital malformations of the genital tract, functional hypothalamic amenorrhoea, congenital adrenal hyperplasia, imperforate hymen, hypothalamic amenorrhoea, polycystic ovarian syndrome, hyperprolactinemia, premature ovarian failure, and thyrotoxicosis. Meanwhile, secondary amenorrhoea may be caused by stress, excessive exercise, PCOS, Sheehan’s syndrome, Asherman’s syndrome, and other underlying medical conditions.
To diagnose amenorrhoea, initial investigations may include pregnancy tests, full blood count, urea & electrolytes, coeliac screen, thyroid function tests, gonadotrophins, prolactin, and androgen levels. Management of amenorrhoea involves treating the underlying cause. For primary amenorrhoea, it is important to investigate and treat any underlying cause. For secondary amenorrhoea, it is important to exclude pregnancy, lactation, and menopause and treat the underlying cause accordingly. Women with primary ovarian insufficiency due to gonadal dysgenesis may benefit from hormone replacement therapy to prevent osteoporosis and other complications.
In conclusion, amenorrhoea is a condition that requires proper diagnosis and management. Understanding the causes and appropriate investigations can help in providing the necessary treatment and care for women experiencing this condition.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 20
Incorrect
-
In a 70-year-old man undergoing a sigmoid colectomy for diverticular disease, what measures can be taken to minimize the risk of postoperative wound infection?
Your Answer: Shaving his abdominal wall one day prior to surgery
Correct Answer: Administration of single dose of broad spectrum antibiotics prior to the procedure
Explanation:The risk of wound infection can be reduced by administering prophylactic antibiotics, while the use of plain incise drapes should be avoided as they increase the risk. On the other hand, iodophor impregnated drapes have been proven to lower the risk of wound infection. It is not advisable to shave one day before surgery as it can increase the risk of infection.
Surgical site infections (SSI) are a common complication following surgery, occurring when normal bacteria and other pathogens enter the body through a breach in tissue surfaces. These infections can cause significant morbidity and mortality, with up to 20% of all healthcare-associated infections being SSIs. Patients undergoing surgery have at least a 5% chance of developing an SSI. In many cases, the bacteria causing the infection come from the patient’s own body. Certain measures can increase the risk of SSI, such as using a razor to shave the wound or using a non-iodine impregnated incise drape.
To prevent SSI, certain steps can be taken before, during, and after surgery. Body hair should not be removed routinely, but if necessary, electrical clippers with a single-use head should be used instead of razors. Antibiotic prophylaxis should be given for certain types of surgery, and a single-dose IV antibiotic should be given on anesthesia. If a tourniquet is used, prophylactic antibiotics should be given earlier. During surgery, the skin should be prepared with alcoholic chlorhexidine, and the surgical site should be covered with a dressing. Postoperatively, tissue viability advice should be given for managing surgical wounds healing by secondary intention.
The use of diathermy for skin incisions is not recommended in the NICE guidelines, as several randomized controlled trials have shown no increase in the risk of SSI when diathermy is used. It has also been found that wound edge protectors do not provide any benefit in preventing SSI. A recent meta-analysis has shown that the administration of supplementary oxygen does not reduce the risk of wound infection, contrary to previous individual RCTs. By following these preventative measures, the risk of SSI can be significantly reduced, leading to better outcomes for patients undergoing surgery.
-
This question is part of the following fields:
- General Principles
-
-
Question 21
Correct
-
A study is conducted to assess the impact of cytokine administration on the progression of multi-drug resistant tuberculosis in HIV patients aged 50 and above. Various cytokines are administered daily to a group of 15 individuals. Treatment progress is evaluated by chest x-ray and sputum culture. Out of these individuals, 5 showed an increase in intracellular killing of Mycobacterium by macrophages.
Based on the cytokines administered during the study, which one is most probable to have been given to these 5 participants?Your Answer: Interferon-γ
Explanation:The activation of macrophages is attributed to Interferon-γ. In the case of Mycobacterium tuberculosis, the immune response relies on the cytokines produced by T-helper-1 (TH1) cells to enhance the intracellular killing in phagocytic cells. Interferon-γ, which is produced by TH1 cells, acts on macrophages and triggers the enhancement of their microbicidal properties.
IL-12 is a cytokine that stimulates the differentiation of naive T cells into TH1 cells and activates NK cells.
IL-2, on the other hand, causes the proliferation of other lymphocytes and does not affect macrophages.
Tumour necrosis factor-α is a pro-inflammatory cytokine produced by macrophages and plays a crucial role in inflammatory processes.
Overview of Cytokines and Their Functions
Cytokines are signaling molecules that play a crucial role in the immune system. Interleukins are a type of cytokine that are produced by various immune cells and have specific functions. IL-1, produced by macrophages, induces acute inflammation and fever. IL-2, produced by Th1 cells, stimulates the growth and differentiation of T cell responses. IL-3, produced by activated T helper cells, stimulates the differentiation and proliferation of myeloid progenitor cells. IL-4, produced by Th2 cells, stimulates the proliferation and differentiation of B cells. IL-5, also produced by Th2 cells, stimulates the production of eosinophils. IL-6, produced by macrophages and Th2 cells, stimulates the differentiation of B cells and induces fever. IL-8, produced by macrophages, promotes neutrophil chemotaxis. IL-10, produced by Th2 cells, inhibits Th1 cytokine production and is known as an anti-inflammatory cytokine. IL-12, produced by dendritic cells, macrophages, and B cells, activates NK cells and stimulates the differentiation of naive T cells into Th1 cells.
In addition to interleukins, there are other cytokines with specific functions. Tumor necrosis factor-alpha, produced by macrophages, induces fever and promotes neutrophil chemotaxis. Interferon-gamma, produced by Th1 cells, activates macrophages. Understanding the functions of cytokines is important in developing treatments for various immune-related diseases.
-
This question is part of the following fields:
- General Principles
-
-
Question 22
Incorrect
-
A 5-year-old boy comes to the clinic with his mother, complaining of ear pain that started last night. He has been unable to sleep due to the pain and has not been eating well. His mother reports that he seems different than his usual self. The affected side has muffled sounds, and he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid-level. What is the structure that connects the middle ear to the nasopharynx?
Your Answer: Greater palatine canal
Correct Answer: Eustachian tube
Explanation:The pharyngotympanic tube, also known as the Eustachian tube, is responsible for connecting the middle ear and the nasopharynx, allowing for pressure equalization in the middle ear. It opens on the anterior wall of the middle ear and extends anteriorly, medially, and inferiorly to open into the nasopharynx. The palatovaginal canal connects the pterygopalatine fossa with the nasopharynx, while the pterygoid canal runs from the anterior boundary of the foramen lacerum to the pterygopalatine fossa. The semicircular canals are responsible for sensing balance, while the greater palatine canal transmits the greater and lesser palatine nerves, as well as the descending palatine artery and vein. In the case of ear pain, otitis media is a likely cause, which can be confirmed through otoscopy. The pharyngotympanic tube is particularly important in otitis media as it is the only outlet for pus or fluid in the middle ear, provided the tympanic membrane is intact.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 35-year-old male presents with gynaecomastia. He is later diagnosed with a testicular germ cell tumour.
What is the underlying mechanism that causes this type of cancer to present with gynaecomastia?Your Answer: Testicular tumours secrete excess amounts of testosterone, which promotes the proliferation of breast glandular tissue
Correct Answer: Testicular tumours secrete beta-HCG, which increases oestrogen levels, promoting the proliferation of breast tissue
Explanation:Gynaecomastia can be caused by testicular cancer, specifically seminoma that secretes beta-HCG. This hormone acts as a tumour marker for testicular germ cell cancer and increases oestrogen levels, leading to an imbalance of oestrogen to androgen ratio. This imbalance promotes the growth of breast tissue, resulting in gynaecomastia.
Alpha-fetoprotein is another tumour marker for testicular cancer, but it does not affect oestrogen levels or breast glandular tissue. It is important to note that gynaecomastia is a separate condition from metastatic testicular cancer in the breast.
Testicular involution, or shrinkage of the testes, is not a common symptom of testicular cancer. Instead, patients typically present with a painless swelling or nodule in the testis.
Elevated testosterone levels are not associated with testicular cancer, as they would prevent the growth of breast tissue and gynaecomastia.
Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Correct
-
A 26-year-old male patient comes to the follow-up clinic after undergoing surgery to remove an endocrine gland. He had been experiencing symptoms such as profuse sweating, headaches, palpitations, and high blood pressure (200/120mmHg) prior to the decision for surgery. What type of cells would be revealed through histological staining of the removed organ?
Your Answer: Chromaffin cells
Explanation:The man’s initial symptoms are consistent with a diagnosis of phaeochromocytoma, a type of neuroendocrine tumor that affects the chromaffin cells in the adrenal medulla. This condition leads to an overproduction of adrenaline and noradrenaline, resulting in an excessive sympathetic response.
Calcitonin is secreted by the parafollicular C cells in the thyroid gland.
The anterior pituitary gland contains gonadotropes, lactotropes, and thyrotropes, which secrete gonadotropins (FSH, LH), prolactin, and TSH, respectively.
Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines
Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.
The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).
Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Incorrect
-
What immunological changes are observed in advancing HIV infection?
Your Answer: A rise in the CD4/CD8 ratio
Correct Answer: Increase in B2-microglobulin levels
Explanation:Immunological Changes in Progressive HIV
In progressive HIV, there are several immunological changes that occur. These changes include a reduction in CD4 count, an increase in B2-microglobulin, a decrease in IL-2 production, polyclonal B-cell activation, a decrease in NK cell function, and reduced delayed hypersensitivity responses. These changes can lead to a weakened immune system and an increased susceptibility to infections. It is important for individuals with HIV to receive proper medical care and treatment to manage these immunological changes and maintain their overall health.
-
This question is part of the following fields:
- General Principles
-
-
Question 26
Incorrect
-
A 17-year-old pupil comes in with rapid breathing, lack of fluids and high blood sugar levels. What evidence would most strongly suggest a diagnosis of type 1 diabetes?
Your Answer: Pancreatic alpha cell failure
Correct Answer: Positive anti-glutamic acid decarboxylase antibodies
Explanation:Type 1 Diabetes
Type 1 diabetes is a condition where the body’s immune system attacks the pancreas, specifically the islet cells and glutamic acid decarboxylase (GAD). This autoimmune process leads to a loss of insulin production, which is necessary for regulating blood sugar levels. However, it is important to note that the exocrine function of the pancreas, which is responsible for producing digestive enzymes, remains intact.
Interestingly, the alpha and delta cells in the pancreas, which produce glucagon and somatostatin respectively, are initially unaffected by the autoimmune process. This means that early on in the development of type 1 diabetes, these cells continue to function normally.
Overall, the mechanisms behind type 1 diabetes can help individuals with the condition better manage their symptoms and improve their quality of life. It is important to work closely with healthcare professionals to develop a personalized treatment plan.
-
This question is part of the following fields:
- Clinical Sciences
-
-
Question 27
Incorrect
-
A 13-year-old, recently-immigrated girl from Nigeria is referred to the hospital after presenting to her GP with a growth of the jaw. A number of investigations are performed, including a test for the Epstein-Barr virus which comes back positive. A biopsy is taken, which demonstrates a 'starry sky' appearance.
Based on the presented information and the probable diagnosis, which translocation is most likely involved?Your Answer: T(9:22)
Correct Answer: T(8:14)
Explanation:Understanding Burkitt’s Lymphoma
Burkitt’s lymphoma is a type of high-grade B-cell neoplasm that can occur in two major forms. The endemic or African form typically affects the maxilla or mandible, while the sporadic form is commonly found in the abdomen, particularly in patients with HIV. The development of Burkitt’s lymphoma is strongly associated with the c-myc gene translocation, usually t(8:14), and the Epstein-Barr virus (EBV) is also implicated in its development.
Microscopy findings of Burkitt’s lymphoma show a starry sky appearance, characterized by lymphocyte sheets interspersed with macrophages containing dead apoptotic tumor cells. Management of this condition involves chemotherapy, which can produce a rapid response but may also cause tumor lysis syndrome. To reduce the risk of this occurring, rasburicase, a recombinant version of urate oxidase, is often given before chemotherapy. Complications of tumor lysis syndrome include hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, and acute renal failure.
In summary, Burkitt’s lymphoma is a serious condition that can occur in two major forms and is associated with c-myc gene translocation and the Epstein-Barr virus. Microscopy findings show a characteristic appearance, and management involves chemotherapy with the use of rasburicase to reduce the risk of complications.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 28
Incorrect
-
A female neonate born prematurely by spontaneous vaginal delivery at 30 weeks gestation is admitted to the neonatal intensive care unit with respiratory distress. The neonate is given exogenous surfactant therapy and her respiratory distress improves.
During the discussion of the neonate's ongoing care plan, the paediatrician advises the mother to provide expressed breast milk. What is the primary immunoglobulin class that will be transferred to the infant through this method?Your Answer: IgE
Correct Answer: IgA
Explanation:The most prevalent immunoglobulin in breast milk is IgA. This antibody is crucial for providing immunity to newborns and reducing the risk of infections during their first few weeks of life. IgD is not a significant component of breast milk, as it is primarily found on the surface of B cells and its function is not well understood. IgE and IgG are also present in breast milk, but in lower concentrations than IgA. IgE is involved in antiparasitic immune responses and allergic reactions, while IgG is the most abundant antibody in the bloodstream and is produced after exposure to pathogens.
Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.
IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.
IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.
IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.
IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.
IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.
-
This question is part of the following fields:
- General Principles
-
-
Question 29
Incorrect
-
A 65-year-old man arrives at the emergency department with abrupt and intense eye pain, a red eye, and a mid-dilated fixed pupil on the right side. The on-call ophthalmologist suspects acute angle closure glaucoma and prescribes several medications, including pilocarpine, to reduce intraocular pressure.
What is the mechanism of action of pilocarpine?Your Answer: Muscarinic antagonist
Correct Answer: Muscarinic agonist
Explanation:A muscarinic agonist, pilocarpine stimulates muscarinic acetylcholine receptors, which are categorized into 5 subtypes (M1-M5) and are G-protein coupled receptors.
Drugs Acting on Common Receptors
The following table provides examples of drugs that act on common receptors in the body. These receptors include alpha, beta, dopamine, GABA, histamine, muscarinic, nicotinic, oxytocin, and serotonin. For each receptor, both agonists and antagonists are listed.
For example, decongestants such as phenylephrine and oxymetazoline act as agonists on alpha-1 receptors, while topical brimonidine is an agonist on alpha-2 receptors. On the other hand, drugs used to treat benign prostatic hyperplasia, such as tamsulosin, act as antagonists on alpha-1 receptors.
Similarly, inotropes like dobutamine act as agonists on beta-1 receptors, while beta-blockers such as atenolol and bisoprolol act as antagonists on both non-selective and selective beta receptors. Bronchodilators like salbutamol act as agonists on beta-2 receptors, while non-selective beta-blockers like propranolol and labetalol act as antagonists.
Understanding the actions of drugs on common receptors is important in pharmacology and can help healthcare professionals make informed decisions when prescribing medications.
-
This question is part of the following fields:
- General Principles
-
-
Question 30
Correct
-
A 5-year-old girl from an underprivileged family comes in with a waddling gait. She displays signs of a proximal myopathy and positional deformity in her lower limbs. Upon examination, x-rays reveal a widened growth plate with cupping of the metaphysis. What is the probable diagnosis?
Your Answer: Vitamin D deficiency
Explanation:Rickets and Other Growth-Related Disorders
Rickets is a condition that results from a deficiency in vitamin D, which is essential for the mineralization of osteoid. This process primarily occurs at the growth plate, or physis, and in vitamin D deficiency, the growth plate widens, and the metaphysis appears cupped and frayed. The bones become softer than usual, and the lower limbs may develop a bow-legged deformity. In addition to affecting bone health, vitamin D deficiency can also lead to hypocalcemia, which causes muscle spasms and changes in bowel habits.
Growth hormone deficiency, on the other hand, causes growth failure and an immature doll-like facies. Hyperthyroidism tends to occur in teenage girls and presents with weight loss, heat intolerance, and diarrhea. Hypothyroidism, on the other hand, presents with failure to grow, disproportionate weight gain, tiredness, and cold intolerance.
It is important to understand these growth-related disorders and their symptoms to ensure proper diagnosis and treatment. By recognizing the characteristic changes on x-ray in rickets, for example, healthcare professionals can identify and address vitamin D deficiency early on. Similarly, the symptoms of other disorders can help healthcare professionals provide appropriate care and support to those affected.
-
This question is part of the following fields:
- Paediatrics
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)