-
Question 1
Incorrect
-
A 9-year-old boy presents to the paediatric outpatient clinic with a history of duodenal atresia, clinodactyly, a wide nasal bridge, and a large tongue. What malignancy is he at an elevated risk for?
Your Answer: Solid CNS tumours
Correct Answer: Acute leukaemias
Explanation:Down’s Syndrome and Associated Conditions
Down’s syndrome, also known as trisomy 21, is characterized by several physical features such as a wide, flat nasal bridge, macroglossia, and clinodactyly. Other common features include a round face, hypothyroidism, a sandal gap between the toes, and a single palmar crease. Individuals with Down’s syndrome are predisposed to certain conditions such as Alzheimer’s disease and acute leukaemias. However, nephroblastomas, primary bone malignancies, soft tissue tumours, and solid CNS tumours are not directly related to Down’s syndrome. Nephroblastomas are associated with an absent iris, while primary bone malignancies have few predisposing factors except for rare cancer syndromes. Soft tissue tumours, such as rhabdomyosarcomas, are linked to familial retinoblastoma, while solid CNS tumours are increased in cancer syndromes like Li-Fraumeni. the associated conditions of Down’s syndrome can aid in early detection and treatment of these conditions.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 2
Incorrect
-
A 27-year-old woman visits the maternity assessment unit two weeks after giving birth with complaints of perineal pain and discharge. She had a forceps-assisted vaginal delivery at 40+5 weeks and suffered a type 3a perineal tear. Her primary concern is that the wound may be infected as it appears red and inflamed when she tries to examine it with a mirror.
During the examination, the perineal wound shows signs of purulent discharge, erythematous surrounding skin, and a buried suture. Given the complexity of the repair, the consultant orders a CT scan to rule out a pelvic abscess. The CT report reveals a small fluid collection in the perineal wound and lymphadenopathy.
Based on this information, where is the likely site of lymphatic drainage?Your Answer: Internal iliac lymph nodes
Correct Answer: Superficial inguinal lymph nodes
Explanation:The patient’s CT scan showed lymphadenopathy in the superficial inguinal lymph nodes, which is expected as the infection is located in the perineum. The deep inguinal lymph nodes, which drain the glans penis and clitoris, are not the primary site for perineal drainage. The medial group of external iliac lymph nodes drain the urinary bladder, membranous aspect of the urethra, cervix, and upper part of the vagina, while the internal iliac lymph nodes drain the anal canal above the pectinate line, the lower part of the rectum, the cervix, and the inferior uterus. If there were retained products of conception in the uterus causing an infection or a type 4 perineal tear involving a substantial portion of the rectum, lymphadenopathy of the internal iliac lymph nodes may be seen on the CT scan. The para-aortic lymph nodes drain the ovaries, but this is not relevant to the patient’s case as there is no indication of an ovarian pathology.
Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.
The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.
Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 3
Incorrect
-
A 25-year-old female comes to the clinic concerned about her risk of developing cancer due to her family history. Her grandfather recently passed away from lung cancer, and there are other cases of prostate, breast, and malignant melanoma in her family. She asks which type of cancer has the highest mortality rate in the UK. What is the correct answer?
Your Answer: Breast cancer
Correct Answer: Lung cancer
Explanation:The leading cause of cancer deaths in the UK is lung cancer, while malignant melanoma does not rank in the top 10. Prostate cancer is the most prevalent cancer in men and the second most common cause of cancer-related deaths in men. Breast cancer is the second most common cause of cancer deaths in women.
Cancer in the UK: Common Types and Causes of Death
Cancer is a major health concern in the UK, with several types of cancer affecting a significant number of people. The most common types of cancer in the UK are breast, lung, colorectal, prostate, bladder, non-Hodgkin’s lymphoma, melanoma, stomach, oesophagus, and pancreas. However, when it comes to causes of death from cancer, lung cancer tops the list, followed by colorectal, breast, prostate, and pancreatic cancer. Other types of cancer that contribute to cancer-related deaths in the UK include oesophageal, stomach, bladder, non-Hodgkin’s lymphoma, and ovarian cancer. It is important to note that non-melanoma skin cancer is not included in these statistics. Despite the prevalence of cancer in the UK, there are various treatments and support available for those affected by the disease.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 4
Incorrect
-
Which one of the following is not a major function of the spleen in adults?
Your Answer: Haematopoeisis in haematological disorders
Correct Answer: Storage red blood cells
Explanation:The primary function of the spleen is the removal of old or damaged red blood cells from circulation, which helps to maintain the health of the red cell mass. The other functions of the spleen are also important, but this is the main function.
The Anatomy and Function of the Spleen
The spleen is an organ located in the left upper quadrant of the abdomen. Its size can vary depending on the amount of blood it contains, but the typical adult spleen is 12.5cm long and 7.5cm wide, with a weight of 150g. The spleen is almost entirely covered by peritoneum and is separated from the 9th, 10th, and 11th ribs by both diaphragm and pleural cavity. Its shape is influenced by the state of the colon and stomach, with gastric distension causing it to resemble an orange segment and colonic distension causing it to become more tetrahedral.
The spleen has two folds of peritoneum that connect it to the posterior abdominal wall and stomach: the lienorenal ligament and gastrosplenic ligament. The lienorenal ligament contains the splenic vessels, while the short gastric and left gastroepiploic branches of the splenic artery pass through the layers of the gastrosplenic ligament. The spleen is in contact with the phrenicocolic ligament laterally.
The spleen has two main functions: filtration and immunity. It filters abnormal blood cells and foreign bodies such as bacteria, and produces properdin and tuftsin, which help target fungi and bacteria for phagocytosis. The spleen also stores 40% of platelets, reutilizes iron, and stores monocytes. Disorders of the spleen include massive splenomegaly, myelofibrosis, chronic myeloid leukemia, visceral leishmaniasis, malaria, Gaucher’s syndrome, portal hypertension, lymphoproliferative disease, haemolytic anaemia, infection, infective endocarditis, sickle-cell, thalassaemia, and rheumatoid arthritis.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 5
Incorrect
-
A toddler has been admitted following a prolonged chest infection. Recurrent chest and gastrointestinal infections have plagued the child in their first two years of life. Blood antibody titres have revealed reduced levels of IgA, IgG, and IgE, while IgM is three times higher than normal. The patient is currently awaiting gene sequencing results to confirm the suspected diagnosis.
Which gene mutations are responsible for the probable diagnosis?Your Answer: CD25
Correct Answer: CD40
Explanation:Hyper IgM syndrome is caused by mutations in the CD40 gene, which affects the ability of B cells to produce immunoglobulin A, G, and E. While the production of IgM is still possible, the process of switching to other antibodies is impaired due to a lack of activated T-cells. This results in increased susceptibility to infections during early childhood. Treatment options include regular immunoglobulin, antibiotics, and granulocyte-colony stimulating factor (GCS-F).
Overview of Primary Immunodeficiency Disorders
Primary immunodeficiency disorders are conditions that affect the immune system’s ability to fight off infections and diseases. These disorders can be classified based on which component of the immune system is affected. Neutrophil disorders, for example, are caused by a lack of NADPH oxidase, which reduces the ability of phagocytes to produce reactive oxygen species. This leads to recurrent pneumonias and abscesses, particularly due to catalase-positive bacteria and fungi. B-cell disorders, on the other hand, are caused by defects in B cell development, resulting in low antibody levels and recurrent infections. T-cell disorders are caused by defects in T cell development, leading to recurrent viral and fungal diseases. Finally, combined B- and T-cell disorders are caused by defects in both B and T cell development, resulting in recurrent infections and an increased risk of malignancy. Understanding the underlying defects and symptoms of these disorders is crucial for proper diagnosis and treatment.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 6
Incorrect
-
A 50-year-old woman has recently been diagnosed with breast cancer and is now undergoing treatment with docetaxel. What is the mechanism of action for this particular treatment?
Your Answer: It causes cross-linking in DNA
Correct Answer: It prevents microtubule depolymerisation and disassembly, decreasing free tubulin
Explanation:Docetaxel, a member of the taxane family, disrupts microtubule function by preventing depolymerisation and disassembly. This reduces free tubulin and halts cell division. Irinotecan inhibits topoisomerase I, preventing relaxation of supercoiled DNA, leading to DNA damage and cell death. Methotrexate inhibits dihydrofolate reductase and thymidylate synthesis, slowing and stopping DNA and protein synthesis necessary for normal cell cycle. Cisplatin binds to DNA, cross-linking and inhibiting replication. Doxorubicin stabilises the topoisomerase II complex, inhibiting DNA and RNA synthesis necessary for cell division.
Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 7
Incorrect
-
A 41-year-old male presents to the general practitioner with a 4-month history of a lump in his right testicle. On examination, there is a discrete nodule located near the superior pole of the right testicle and the left testicle is unremarkable. The patient is referred for further investigations and is ultimately diagnosed with a testicular seminoma.
In this patient, what is the most likely lymph node region for initial metastatic spread?Your Answer: Internal iliac nodes
Correct Answer: Para-aortic nodes
Explanation:The para-aortic nodes are responsible for receiving lymph drainage from the testes. This is because the testes develop in the abdomen and move down the posterior abdominal wall during fetal development, leading to their lymphatic drainage coming from the para-aortic lymph nodes. Therefore, the para-aortic nodes are the most likely location for lymphatic spread from the testes.
The inferior mesenteric nodes are not responsible for lymph drainage from the testes as they primarily drain hindgut structures such as the transverse colon down to the rectum. Similarly, the internal iliac nodes drain the inferior portion of the rectum, the anal canal superior to the pectinate line, and the pelvic viscera, but not the testes. The posterior mediastinal chain is also not responsible for lymph drainage from the testes as it drains the oesophagus, mediastinum, and posterior surface of the diaphragm.
Lymphatic drainage is the process by which lymphatic vessels carry lymph, a clear fluid containing white blood cells, away from tissues and organs and towards lymph nodes. The lymphatic vessels that drain the skin and follow venous drainage are called superficial lymphatic vessels, while those that drain internal organs and structures follow the arteries and are called deep lymphatic vessels. These vessels eventually lead to lymph nodes, which filter and remove harmful substances from the lymph before it is returned to the bloodstream.
The lymphatic system is divided into two main ducts: the right lymphatic duct and the thoracic duct. The right lymphatic duct drains the right side of the head and right arm, while the thoracic duct drains everything else. Both ducts eventually drain into the venous system.
Different areas of the body have specific primary lymph node drainage sites. For example, the superficial inguinal lymph nodes drain the anal canal below the pectinate line, perineum, skin of the thigh, penis, scrotum, and vagina. The deep inguinal lymph nodes drain the glans penis, while the para-aortic lymph nodes drain the testes, ovaries, kidney, and adrenal gland. The axillary lymph nodes drain the lateral breast and upper limb, while the internal iliac lymph nodes drain the anal canal above the pectinate line, lower part of the rectum, and pelvic structures including the cervix and inferior part of the uterus. The superior mesenteric lymph nodes drain the duodenum and jejunum, while the inferior mesenteric lymph nodes drain the descending colon, sigmoid colon, and upper part of the rectum. Finally, the coeliac lymph nodes drain the stomach.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 8
Incorrect
-
A 75-year-old man experiences an urgent amputation due to severe sepsis and gangrene in his lower limbs. Following the surgery, he develops disseminated intravascular coagulation. Which clotting factor will be depleted the fastest during this process?
Your Answer: Factor VI and VIII
Correct Answer: Factor V and VIII
Explanation:D-I-S-S-E-M-I-N-A-T-E-D
R-Rewritten
E-Explanations
W-Widespread
R-Reporting
I-Information
T-Transmission
E-ExposureM-Multiple sources
E-Extensive dissemination
D-DistributionRewriting and disseminating information can help to ensure that it is widely understood and accessible. This can be especially important in cases where there are multiple sources of information or when the information needs to be widely distributed. In some cases, such as with DIC, disseminating information can be critical for understanding and treating the condition.
Disseminated Intravascular Coagulation: A Condition of Simultaneous Coagulation and Haemorrhage
Disseminated intravascular coagulation (DIC) is a medical condition characterized by simultaneous coagulation and haemorrhage. It is caused by the initial formation of thrombi that consume clotting factors and platelets, ultimately leading to bleeding. DIC can be caused by various factors such as infection, malignancy, trauma, liver disease, and obstetric complications.
Clinically, bleeding is usually the dominant feature of DIC, accompanied by bruising, ischaemia, and organ failure. Blood tests can reveal prolonged clotting times, thrombocytopenia, decreased fibrinogen, and increased fibrinogen degradation products. The treatment of DIC involves addressing the underlying cause and providing supportive management.
In summary, DIC is a serious medical condition that requires prompt diagnosis and management. It is important to identify the underlying cause and provide appropriate treatment to prevent further complications. With proper care and management, patients with DIC can recover and regain their health.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 9
Incorrect
-
What characteristic could serve as a reliable indicator of prognosis for a patient who has recently been diagnosed with acute lymphoblastic leukemia (ALL)?
Your Answer: Non-Caucasian ethnicity
Correct Answer:
Explanation:Prognostic Factors in Acute Lymphoblastic Leukemia
Younger patients with acute lymphoblastic leukemia (ALL) have a better prognosis than older patients. In fact, the cure rate in children is around 90%, while it is less than 40% in adults. Additionally, male patients tend to fare worse than females, and they require a longer maintenance dose of chemotherapy (3 years versus 2 years). Interestingly, the Philadelphia chromosome, which is an effective treatment target in chronic myeloid leukemia, is actually a poor prognostic marker in ALL. Finally, higher white cell counts are associated with adverse outcomes, particularly if the count exceeds 100 ×106/ml.
Overall, these prognostic factors can help clinicians predict the likelihood of a successful outcome in patients with ALL. By taking these factors into account, healthcare providers can tailor treatment plans to each patient’s individual needs and improve their chances of a positive outcome.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 10
Incorrect
-
Which of the following is a primary lymphatic organ?
Your Answer: Lymph nodes
Correct Answer: Thymus
Explanation:The lymphatic system is composed of lymph vessels, primary lymphatic organs, and secondary lymphatic organs. The thymus and red bone marrow, which are responsible for lymphocyte formation and maturation, are considered primary lymphatic organs. These organs contain pluripotent cells that give rise to mature immunocompetent B cells and pre-T cells. To become mature T cells, pre-T cells must migrate to the thymus.
Secondary lymphatic organs include lymph nodes, the spleen, tonsils (adenoids), mucosa-associated lymphoid tissue (MALT), and Peyer’s patches. These organs filter lymphocytes and activate them to mount an immune response.
The Thymus Gland: Development, Structure, and Function
The thymus gland is an encapsulated organ that develops from the third and fourth pharyngeal pouches. It descends to the anterior superior mediastinum and is subdivided into lobules, each consisting of a cortex and a medulla. The cortex is made up of tightly packed lymphocytes, while the medulla is mostly composed of epithelial cells. Hassall’s corpuscles, which are concentrically arranged medullary epithelial cells that may surround a keratinized center, are also present.
The inferior parathyroid glands, which also develop from the third pharyngeal pouch, may be located with the thymus gland. The thymus gland’s arterial supply comes from the internal mammary artery or pericardiophrenic arteries, while its venous drainage is to the left brachiocephalic vein. The thymus gland plays a crucial role in the development and maturation of T-cells, which are essential for the immune system’s proper functioning.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 11
Incorrect
-
A 60-year-old male comes to you with complaints of fatigue and difficulty breathing for the past 2 months. During the physical examination, you observe that the patient is visibly jaundiced and the spleen is palpable. Upon conducting blood tests, the following results are obtained:
Hb 98 g/l
MCV 88 fl
Direct Coombs test Pos
Further testing is done to determine the antibody specificity, and the patient is diagnosed with warm autoimmune haemolytic anaemia. Which immunoglobulin is most likely responsible for mediating this condition?Your Answer: IgE
Correct Answer: IgG
Explanation:Warm autoimmune haemolytic anaemia involves IgG-mediated red blood cell destruction at body temperature, while IgM-mediated haemolysis is precipitated by the cold and affects the hands and feet. Other immunoglobulins such as IgA and IgE may also be involved.
Understanding Autoimmune Haemolytic Anaemia
Autoimmune haemolytic anaemia (AIHA) is a condition where the body’s immune system attacks its own red blood cells, leading to anaemia. There are two types of AIHA: warm and cold. Warm AIHA is the most common type and is caused by an antibody (usually IgG) that causes haemolysis at body temperature. It tends to occur in the spleen and is often idiopathic, but can also be secondary to autoimmune diseases, neoplasia, or drugs. On the other hand, cold AIHA is caused by an IgM antibody that causes haemolysis at 4°C and is more commonly intravascular. It is associated with neoplasia and infections, and patients may experience symptoms of Raynaud’s and acrocynaosis.
To diagnose AIHA, doctors look for general features of haemolytic anaemia, such as anaemia, reticulocytosis, low haptoglobin, raised lactate dehydrogenase (LDH) and indirect bilirubin, and spherocytes and reticulocytes on a blood film. A positive direct antiglobulin test (Coombs’ test) is specific for AIHA. Treatment for AIHA involves managing any underlying disorder and using steroids as first-line therapy, with rituximab as an option. However, patients with cold AIHA tend to respond less well to steroids.
In summary, AIHA is a condition where the immune system attacks red blood cells, leading to anaemia. Warm and cold AIHA are the two types, with warm being more common and caused by an IgG antibody that causes haemolysis at body temperature, while cold is caused by an IgM antibody that causes haemolysis at 4°C and is associated with neoplasia and infections. Diagnosis involves looking for general features of haemolytic anaemia and a positive direct antiglobulin test. Treatment involves managing any underlying disorder and using steroids as first-line therapy.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 12
Incorrect
-
A 50-year-old male patient is referred to an oncologist by his GP due to a 2-month history of fever, malaise, and weight loss. Upon reviewing the patient's blood results and bone marrow biopsy report, the doctor diagnoses chronic myelogenous leukaemia (CML) and prescribes hydroxycarbamide. What is the mechanism of action of this medication?
Your Answer: Inhibits topoisomerase I
Correct Answer: Inhibition of ribonucleotide reductase
Explanation:Hydroxyurea is a medication that is used to treat various diseases, including sickle cell disease and chronic myelogenous leukaemia. It works by inhibiting ribonucleotide reductase, which reduces the production of deoxyribonucleotides. This, in turn, inhibits cell synthesis by decreasing DNA synthesis. It is important to note that hydroxyurea does not work by causing the cross-linking of DNA, which is a mechanism used by other drugs such as Cisplatin. Methotrexate works through the inhibition of dihydrofolate reductase, while Irinotecan inhibits topoisomerase I, and Cytarabine is a pyrimidine antagonist. These drugs work through different mechanisms and are not related to hydroxyurea.
Cytotoxic agents are drugs that are used to kill cancer cells. There are several types of cytotoxic agents, each with their own mechanism of action and potential adverse effects. Alkylating agents, such as cyclophosphamide, work by causing cross-linking in DNA. However, they can also cause haemorrhagic cystitis, myelosuppression, and transitional cell carcinoma. Cytotoxic antibiotics, like bleomycin and anthracyclines, degrade preformed DNA and stabilize DNA-topoisomerase II complex, respectively. However, they can also cause lung fibrosis and cardiomyopathy. Antimetabolites, such as methotrexate and fluorouracil, inhibit dihydrofolate reductase and thymidylate synthesis, respectively. However, they can also cause myelosuppression, mucositis, and liver or lung fibrosis. Drugs that act on microtubules, like vincristine and docetaxel, inhibit the formation of microtubules and prevent microtubule depolymerisation & disassembly, respectively. However, they can also cause peripheral neuropathy, myelosuppression, and paralytic ileus. Topoisomerase inhibitors, like irinotecan, inhibit topoisomerase I, which prevents relaxation of supercoiled DNA. However, they can also cause myelosuppression. Other cytotoxic drugs, such as cisplatin and hydroxyurea, cause cross-linking in DNA and inhibit ribonucleotide reductase, respectively. However, they can also cause ototoxicity, peripheral neuropathy, hypomagnesaemia, and myelosuppression.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 13
Incorrect
-
A 14-year-old girl with beta thalassaemia major is receiving counselling from her haematologist regarding the potential complications of her condition. The doctor explains that frequent blood transfusions may result in iron overload, which can result in liver damage and heart failure. What is an example of an iron chelation medication?
Your Answer: Dimercaprol
Correct Answer: Deferiprone
Explanation:To prevent complications from iron overload caused by frequent transfusions in beta-thalassaemia major, iron chelation therapy is crucial. Iron chelation agents such as Deferiprone, Deferoxamine, and Deferasirox are commonly used for this purpose. Trientine is a copper chelator used in Wilson’s disease, while Dimercaptosuccinic acid is used as a lead chelator. Penicillamine is primarily used to treat copper toxicity.
Understanding Beta-Thalassaemia Major
Beta-thalassaemia major is a genetic disorder that results from the absence of beta globulin chains on chromosome 11. This condition typically presents in the first year of life with symptoms such as failure to thrive and hepatosplenomegaly. Microcytic anaemia is also a common feature, with raised levels of HbA2 and HbF, but absent HbA.
Management of beta-thalassaemia major involves repeated transfusions, which can lead to iron overload and organ failure. Therefore, iron chelation therapy, such as desferrioxamine, is crucial to prevent complications. It is important to understand the features and management of this condition to provide appropriate care for affected individuals.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 14
Incorrect
-
A 65-year-old man presents to the clinic with a complaint of losing 1 stone in weight over the past three months. Apart from this, he has no significant medical history. During the physical examination, his abdomen is soft, and no palpable masses are detected. A normal PR examination is also observed. The patient's blood tests reveal a haemoglobin level of 80 g/L (120-160) and an MCV of 70 fL (80-96). What is the most appropriate initial investigation for this patient?
Your Answer:
Correct Answer: Upper GI endoscopy and colonoscopy
Explanation:Possible GI Malignancy in a Man with Weight Loss and Microcytic Anaemia
This man is experiencing weight loss and has an unexplained microcytic anaemia. The most probable cause of his blood loss is from the gastrointestinal (GI) tract, as there is no other apparent explanation. This could be due to an occult GI malignancy, which is why the recommended initial investigations are upper and lower GI endoscopy. These tests will help to identify any potential sources of bleeding in the GI tract and determine if there is an underlying malignancy. It is important to diagnose and treat any potential malignancy as early as possible to improve the patient’s prognosis. Therefore, prompt investigation and management are crucial in this case.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 15
Incorrect
-
A 55-year-old male presents with fever, night sweats, weight loss, and upper abdominal pain. Upon examination, his liver and spleen are enlarged. A complete blood count shows elevated levels of basophils, eosinophils, and neutrophils. What is the most probable cause of these symptoms?
Your Answer:
Correct Answer: BCR-ABL
Explanation:The symptoms displayed by this individual suggest the presence of chronic myeloid leukemia (CML), which is identified by the Philadelphia chromosome. This chromosome results from a genetic abnormality where chromosome 9 and 22 exchange genetic material, leading to the formation of the BCR-ABL gene.
Understanding Chronic Myeloid Leukaemia and its Management
Chronic myeloid leukaemia (CML) is a type of cancer that affects the blood and bone marrow. It is characterized by the presence of the Philadelphia chromosome in more than 95% of patients. This chromosome is formed due to a translocation between chromosomes 9 and 22, resulting in the fusion of the ABL proto-oncogene and the BCR gene. The resulting BCR-ABL gene produces a fusion protein that has excessive tyrosine kinase activity.
CML typically affects individuals between the ages of 60-70 years and presents with symptoms such as anaemia, weight loss, sweating, and splenomegaly. The condition is also associated with an increase in granulocytes at different stages of maturation and thrombocytosis. In some cases, CML may undergo blast transformation, leading to acute myeloid leukaemia (AML) or acute lymphoblastic leukaemia (ALL).
The management of CML involves various treatment options, including imatinib, which is considered the first-line treatment. Imatinib is an inhibitor of the tyrosine kinase associated with the BCR-ABL defect and has a very high response rate in chronic phase CML. Other treatment options include hydroxyurea, interferon-alpha, and allogenic bone marrow transplant. With proper management, individuals with CML can lead a normal life.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 16
Incorrect
-
A 27-year-old vegetarian male visits his GP complaining of fatigue despite getting adequate sleep. The doctor conducts a thorough examination and orders a complete blood count and thyroid function tests. The results reveal that the patient has macrocytic anemia, and the doctor suspects B12 deficiency due to his dietary habits. If the body uses up vitamin B12 at a regular rate but is not replenished, how long can the body's stores last?
Your Answer:
Correct Answer: 3 years
Explanation:Vitamin B12 can be found in animal products, including meat. In order for it to be absorbed in the body’s terminal ileum, intrinsic factor is necessary. This factor is produced by the stomach’s parietal cells. The body stores around 2-3 mg of vitamin B12, which can last for 2-4 years. As a result, signs of B12 deficiency usually do not appear until after a prolonged period of insufficient consumption.
Vitamin B12 is essential for the development of red blood cells and the maintenance of the nervous system. It is absorbed through the binding of intrinsic factor, which is secreted by parietal cells in the stomach, and actively absorbed in the terminal ileum. A deficiency in vitamin B12 can be caused by pernicious anaemia, post gastrectomy, a vegan or poor diet, disorders or surgery of the terminal ileum, Crohn’s disease, or metformin use.
Symptoms of vitamin B12 deficiency include macrocytic anaemia, a sore tongue and mouth, neurological symptoms, and neuropsychiatric symptoms such as mood disturbances. The dorsal column is usually affected first, leading to joint position and vibration issues before distal paraesthesia.
Management of vitamin B12 deficiency involves administering 1 mg of IM hydroxocobalamin three times a week for two weeks, followed by once every three months if there is no neurological involvement. If a patient is also deficient in folic acid, it is important to treat the B12 deficiency first to avoid subacute combined degeneration of the cord.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 17
Incorrect
-
A 48-year-old woman presents to the clinic with complaints of abdominal pain and constipation. During the examination, you observe blue lines on the gum margin. She also reports experiencing weakness in her legs over the past few days. What is the probable diagnosis?
Your Answer:
Correct Answer: Lead poisoning
Explanation:Lead poisoning is a condition that should be considered when a patient presents with abdominal pain and neurological symptoms, along with acute intermittent porphyria. This condition is caused by defective ferrochelatase and ALA dehydratase function. Symptoms of lead poisoning include abdominal pain, peripheral neuropathy (mainly motor), neuropsychiatric features, fatigue, constipation, and blue lines on the gum margin (which is rare in children and only present in 20% of adult patients).
To diagnose lead poisoning, doctors typically measure the patient’s blood lead level, with levels greater than 10 mcg/dl considered significant. A full blood count may also be performed, which can reveal microcytic anemia and red cell abnormalities such as basophilic stippling and clover-leaf morphology. Additionally, raised serum and urine levels of delta aminolaevulinic acid may be seen, which can sometimes make it difficult to differentiate from acute intermittent porphyria. Urinary coproporphyrin is also increased, while urinary porphobilinogen and uroporphyrin levels are normal to slightly increased. In children, lead can accumulate in the metaphysis of the bones, although x-rays are not typically part of the standard work-up.
Various chelating agents are currently used to manage lead poisoning, including dimercaptosuccinic acid (DMSA), D-penicillamine, EDTA, and dimercaprol. These agents work to remove the lead from the body and can help alleviate symptoms.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 18
Incorrect
-
As a medical student working on a medical ward, you have a patient who is 12 hours post a blood transfusion. The patient has developed a new cough and difficulty breathing, and their observations show new hypotension and a fever. What is the probable cause of these symptoms?
Your Answer:
Correct Answer: Transfusion-related acute lung injury
Explanation:Transfusion reactions can be classified as immunological or non-immunological. Immunological reactions are caused by anti-HLA or other antibodies in the donor blood, while non-immunological reactions are triggered by an inflammatory cascade with lipids found in blood products.
Symptoms of transfusion-related acute lung injury (TRALI) include dyspnea, cough, fever, and hypotension. Signs and investigations may reveal hypoxemia and pulmonary infiltrates visible on a chest x-ray.
Fluid overload, on the other hand, typically presents with dyspnea, orthopnea, and paroxysmal nocturnal dyspnea.
Severe allergic reactions are rare but may occur when the immune system attacks the donated blood, usually due to a mismatch in blood type. Symptoms may include urticaria, edema, dizziness, and headaches.
Blood product transfusion complications can be categorized into immunological, infective, and other complications. Immunological complications include acute haemolytic reactions, non-haemolytic febrile reactions, and allergic/anaphylaxis reactions. Infective complications may arise due to transmission of vCJD, although measures have been taken to minimize this risk. Other complications include transfusion-related acute lung injury (TRALI), transfusion-associated circulatory overload (TACO), hyperkalaemia, iron overload, and clotting.
Non-haemolytic febrile reactions are thought to be caused by antibodies reacting with white cell fragments in the blood product and cytokines that have leaked from the blood cell during storage. These reactions may occur in 1-2% of red cell transfusions and 10-30% of platelet transfusions. Minor allergic reactions may also occur due to foreign plasma proteins, while anaphylaxis may be caused by patients with IgA deficiency who have anti-IgA antibodies.
Acute haemolytic transfusion reaction is a serious complication that results from a mismatch of blood group (ABO) which causes massive intravascular haemolysis. Symptoms begin minutes after the transfusion is started and include a fever, abdominal and chest pain, agitation, and hypotension. Treatment should include immediate transfusion termination, generous fluid resuscitation with saline solution, and informing the lab. Complications include disseminated intravascular coagulation and renal failure.
TRALI is a rare but potentially fatal complication of blood transfusion that is characterized by the development of hypoxaemia/acute respiratory distress syndrome within 6 hours of transfusion. On the other hand, TACO is a relatively common reaction due to fluid overload resulting in pulmonary oedema. As well as features of pulmonary oedema, the patient may also be hypertensive, a key difference from patients with TRALI.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 19
Incorrect
-
A 10-year-old girl comes to the doctor's office with purpura. She appears to be in good health, but her blood test reveals thrombocytopenia, lymphopenia, leukopenia, and anemia. What is the probable diagnosis?
Your Answer:
Correct Answer: Acute lymphoblastic leukaemia
Explanation:Acute Lymphoblastic Leukaemia
Acute lymphoblastic leukaemia (ALL) is a type of cancer that commonly affects children over the age of one. It occurs when a lymphocyte precursor, known as a ‘blast cell’, grows abnormally in the bone marrow, leading to a failure of normal blood cell production. This results in peripheral cytopenias, which can cause symptoms such as anaemia, recurrent infections, and purpura. While a raised peripheral white cell count may occur in severe or late-stage disease, it is not common.
Compared to other types of leukaemia and lymphoma, ALL is more likely to present with bone marrow failure symptoms. Acute myeloid leukaemia, for example, is more common in the elderly and presents with a raised peripheral white cell count. Burkitt lymphoma, on the other hand, is a high-grade non-Hodgkin lymphoma that typically presents with lymphadenopathy. Chronic lymphocytic leukaemia is also more common in the elderly and presents with a peripheral lymphocytosis. Langerhans histiocytosis, a condition that affects antigen-presenting cells, is more common in young children and often affects the skin or bones. While it can cause marrow failure, it is a rare occurrence.
In summary, ALL is a type of cancer that affects children and is caused by abnormal growth of blast cells in the bone marrow. It can cause symptoms of bone marrow failure, such as anaemia, recurrent infections, and purpura. While other types of leukaemia and lymphoma may present with different symptoms, ALL is more likely to present with bone marrow failure symptoms.
-
This question is part of the following fields:
- Haematology And Oncology
-
-
Question 20
Incorrect
-
A 28-year-old woman presents to the haematology clinic after experiencing 2 DVTs within a year. She mentions that her mother passed away at the age of 50 due to a pulmonary embolism. Her full blood count appears normal, but her coagulation screen suggests a coagulopathy.
What is the underlying pathological mechanism of the probable diagnosis?Your Answer:
Correct Answer: Activated protein C resistance
Explanation:The presence of factor V Leiden mutation leads to resistance to activated protein C.
The most probable cause of the patient’s recurrent DVTs and family history of thrombo-embolic events is factor V Leiden, which is the most common inherited thrombophilia. This mutation results in activated protein C resistance, as activated factor V is not inactivated as efficiently by protein C.
Antiphospholipid syndrome is an acquired thrombophilia that can cause both arterial and venous thromboses, and may present with thrombocytopenia. However, the patient’s positive family history and normal full blood count make this diagnosis less likely than factor V Leiden.
Protein C deficiency, protein S deficiency, and antithrombin III deficiency are all inherited thrombophilias, but they are less prevalent in the population compared to factor V Leiden. Therefore, they are less likely to be the underlying cause of the patient’s symptoms.
Understanding Factor V Leiden
Factor V Leiden is a common inherited thrombophilia, affecting around 5% of the UK population. It is caused by a mutation in the Factor V Leiden protein, resulting in activated factor V being inactivated 10 times more slowly by activated protein C than normal. This leads to activated protein C resistance, which increases the risk of venous thrombosis. Heterozygotes have a 4-5 fold risk of venous thrombosis, while homozygotes have a 10 fold risk, although the prevalence of homozygotes is much lower at 0.05%.
Despite its prevalence, screening for Factor V Leiden is not recommended, even after a venous thromboembolism. This is because a previous thromboembolism itself is a risk factor for further events, and specific management should be based on this rather than the particular thrombophilia identified.
Other inherited thrombophilias include Prothrombin gene mutation, Protein C deficiency, Protein S deficiency, and Antithrombin III deficiency. The table below shows the prevalence and relative risk of venous thromboembolism for each of these conditions.
Overall, understanding Factor V Leiden and other inherited thrombophilias can help healthcare professionals identify individuals at higher risk of venous thrombosis and provide appropriate management to prevent future events.
Condition | Prevalence | Relative risk of VTE
— | — | —
Factor V Leiden (heterozygous) | 5% | 4
Factor V Leiden (homozygous) | 0.05% | 10
Prothrombin gene mutation (heterozygous) | 1.5% | 3
Protein C deficiency | 0.3% | 10
Protein S deficiency | 0.1% | 5-10
Antithrombin III deficiency | 0.02% | 10-20 -
This question is part of the following fields:
- Haematology And Oncology
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)