-
Question 1
Incorrect
-
A 27-year-old man with a history of epilepsy is admitted to the hospital after experiencing a tonic-clonic seizure. He is currently taking sodium valproate as his only medication. A venous blood gas is obtained immediately.
What are the expected venous blood gas results for this patient?Your Answer: High pH, normal lactate, low SaO2
Correct Answer: Low pH, high lactate, low SaO2
Explanation:Acidosis shifts the oxygen dissociation curve to the right, which enhances oxygen delivery to the tissues by causing more oxygen to dissociate from Hb. postictal lactic acidosis is a common occurrence in patients with tonic-clonic seizures, and it is typically managed by monitoring for spontaneous resolution. During a seizure, tissue hypoxia can cause lactic acidosis. Therefore, a venous blood gas test for this patient should show low pH, high lactate, and low SaO2.
If the venous blood gas test shows a high pH, normal lactate, and low SaO2, it would not be consistent with postictal lactic acidosis. This result indicates alkalosis, which can be caused by gastrointestinal losses, renal losses, or Cushing syndrome.
A high pH, normal lactate, and normal SaO2 would also be inconsistent with postictal lactic acidosis because tissue hypoxia would cause an increase in lactate levels.
Similarly, low pH, high lactate, and normal SaO2 would not be expected in postictal lactic acidosis because acidosis would shift the oxygen dissociation curve to the right, decreasing the oxygen saturation of haemoglobin.
Finally, normal pH, normal lactate, and normal SaO2 are unlikely to be found in this patient shortly after a seizure. However, if the venous blood gas test was taken days after the seizure following an uncomplicated clinical course, these findings would be more plausible.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 75-year-old man presents to the Emergency Department with acute shortness of breath following a 4-day febrile illness. On initial assessment, his oxygen saturation is 70% on room air with a PaO2 of 4.2kpa on an arterial blood gas.
What would be the anticipated physiological response in this patient?Your Answer: Increased tidal volume with decreased respiratory rate
Correct Answer: Pulmonary artery vasoconstriction
Explanation:When faced with hypoxia, the pulmonary arteries undergo vasoconstriction, which redirects blood flow away from poorly oxygenated areas of the lungs and towards well-oxygenated regions. In cases where patients remain hypoxic despite optimal mechanical ventilation, inhaled nitric oxide can be used to induce pulmonary vasodilation and reverse this response.
The statement that increased tidal volume with decreased respiratory rate is a response to hypoxia is incorrect. While an increase in tidal volume may occur, it is typically accompanied by an increase in respiratory rate.
Pulmonary artery vasodilation is also incorrect. Hypoxia actually induces vasoconstriction in the pulmonary vasculature, as explained above.
Similarly, reduced tidal volume with increased respiratory rate is not a direct response to hypoxia. While respiratory rate may increase, tidal volumes typically increase in response to hypoxia.
In contrast to the pulmonary vessels, the systemic vasculature vasodilates in response to hypoxia.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
A seven-year-old boy who was born in Germany presents to paediatrics with a history of recurrent chest infections, steatorrhoea, and poor growth. He has a significant medical history of meconium ileus. Following a thorough evaluation, the suspected diagnosis is confirmed through a chloride sweat test. The paediatrician informs the parents that their son will have an elevated risk of infertility in adulthood. What is the pathophysiological basis for the increased risk of infertility in this case?
Your Answer: Post-infective testicular damage
Correct Answer: Absent vas deferens
Explanation:Men with cystic fibrosis are at risk of infertility due to the absence of vas deferens. Unfortunately, this condition often goes undetected in infancy as Germany does not perform neonatal testing for it. Hypogonadism, which can cause infertility, is typically caused by genetic factors like Kallmann syndrome, but not cystic fibrosis. Retrograde ejaculation is most commonly associated with complicated urological surgery, while an increased risk of testicular cancer can be caused by factors like cryptorchidism. However, cystic fibrosis is also a risk factor for testicular cancer.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing central chest pain that radiates to his back, neck, and left shoulder. He reports feeling feverish and states that sitting forward relieves the pain while lying down worsens it. The patient also mentions a recent hospitalization for a heart attack three weeks ago. During auscultation at the left sternal border, a scratchy sound is heard while the patient leans forward and holds his breath. His ECG shows widespread ST-segment saddle elevation and PR-segment depression. Can you identify the nerve responsible for his shoulder pain?
Your Answer:
Correct Answer: Phrenic nerve
Explanation:The referred pain to the shoulder in this case is likely caused by Dressler’s syndrome, a type of pericarditis that occurs after a heart attack. The scratchy sound heard during auscultation is a pericardial friction rub, which is a common characteristic of pericarditis. The phrenic nerve, which supplies the pericardium, travels from the neck down through the thoracic cavity and can cause referred pain to the shoulder in cases of pericarditis.
The axillary nerve is responsible for innervating the teres minor and deltoid muscles, and dysfunction of this nerve can result in loss of sensation or movement in the shoulder area.
While the accessory nerve does innervate muscles in the neck that attach to the shoulder, it has a purely motor function and is not responsible for sensory input. Additionally, the referred pain in this case is not typical of musculoskeletal pain, but rather a result of pericarditis.
Injuries involving the long thoracic nerve often result in winging of the scapula and are commonly caused by axillary surgery.
Although the vagus nerve does supply parasympathetic innervation to the heart, it is not responsible for the referred pain in this case, as the pericardium is innervated by the phrenic nerve.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 49-year-old man comes to the clinic with recent onset of asthma and frequent nosebleeds. Laboratory results reveal elevated eosinophil counts and a positive pANCA test.
What is the probable diagnosis?Your Answer:
Correct Answer: Eosinophilic granulomatosis with polyangiitis (EGPA)
Explanation:The presence of adult-onset asthma, eosinophilia, and a positive pANCA test strongly suggests a diagnosis of eosinophilic granulomatosis with polyangiitis (EGPA) in this patient.
Although GPA can cause epistaxis, the absence of other characteristic symptoms such as saddle-shaped nose deformity, haemoptysis, renal failure, and positive cANCA make EGPA a more likely diagnosis.
Polyarteritis Nodosa, Temporal Arteritis, and Toxic Epidermal Necrolysis have distinct clinical presentations that do not match the symptoms exhibited by this patient.
Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome)
Eosinophilic granulomatosis with polyangiitis (EGPA), previously known as Churg-Strauss syndrome, is a type of small-medium vessel vasculitis that is associated with ANCA. It is characterized by asthma, blood eosinophilia (more than 10%), paranasal sinusitis, mononeuritis multiplex, and pANCA positivity in 60% of cases.
Compared to granulomatosis with polyangiitis, EGPA is more likely to have blood eosinophilia and asthma as prominent features. Additionally, leukotriene receptor antagonists may trigger the onset of the disease.
Overall, EGPA is a rare but serious condition that requires prompt diagnosis and treatment to prevent complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 14-year-old boy comes to the clinic complaining of ear pain. He mentions having some crusty discharge at the entrance of his ear canal when he woke up this morning. He denies any hearing loss, dizziness, or other symptoms. He swims twice a week. Upon examination, he has no fever. The auricle of his ear appears red, and pressing on the tragus causes discomfort. Otoscopy reveals an erythematous canal with a small amount of yellow discharge. The superior edge of the tympanic membrane is also red, but there is no bulging or fluid in the middle ear. Which bone articulates with the bone that is typically seen pressing against the tympanic membrane?
Your Answer:
Correct Answer: Incus
Explanation:The middle bone of the 3 ossicles is known as the incus. During otoscopy, the malleus can be observed in contact with the tympanic membrane and it connects with the incus medially.
The ossicles, which are the 3 bones in the middle ear, are arranged from lateral to medial as follows:
Malleus: This is the most lateral of the ossicles. The handle and lateral process of the malleus attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus connects with the incus. The term ‘malleus’ is derived from the Latin word for ‘hammer’.
Incus: The incus is positioned between and connects with the other two ossicles. The body of the incus connects with the malleus, while the long limb of the bone connects with the stapes. The term ‘incus’ is derived from the Latin word for ‘anvil’.Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
A 25-year-old man presents to the Emergency department with acute onset of shortness of breath during a basketball game. He reports no history of trauma and is typically healthy. Upon examination, he appears tall and lean, and respiratory assessment reveals reduced breath sounds and hyper-resonant percussion notes on the right side. The trachea remains centrally located. A chest x-ray confirms a diagnosis of a collapsed lung due to a right-sided pneumothorax. What is the reason for the lung's failure to re-expand?
Your Answer:
Correct Answer: Increase in intrapleural pressure
Explanation:The process of lung expansion relies on the negative pressure in the intrapleural space between the visceral and parietal pleura, which is present throughout respiration. This negative pressure pulls the lung towards the chest wall, allowing it to expand. However, if air enters the intrapleural space, the negative pressure is lost and the lung cannot fully reinflate. It is important to note that the intrapleural space is a potential space between the pleural surfaces, and there is typically no actual space present under normal circumstances.
Management of Pneumothorax: BTS Guidelines
Pneumothorax is a condition where air accumulates in the pleural space, causing the lung to collapse. The British Thoracic Society (BTS) has published guidelines for the management of spontaneous pneumothorax, which can be primary or secondary. Primary pneumothorax occurs without any underlying lung disease, while secondary pneumothorax is associated with lung disease.
The BTS recommends that patients with a rim of air less than 2 cm and no shortness of breath may be discharged, while those with a larger rim of air or shortness of breath should undergo aspiration or chest drain insertion. For secondary pneumothorax, patients over 50 years old with a rim of air greater than 2 cm or shortness of breath should undergo chest drain insertion. Aspiration may be attempted for those with a rim of air between 1-2 cm, but chest drain insertion is recommended if aspiration fails.
Patients with iatrogenic pneumothorax, which is caused by medical procedures, have a lower likelihood of recurrence than those with spontaneous pneumothorax. Observation is usually sufficient, but chest drain insertion may be required in some cases. Ventilated patients and those with chronic obstructive pulmonary disease (COPD) may require chest drain insertion.
Patients with pneumothorax should be advised to avoid smoking to reduce the risk of further episodes. They should also be aware of restrictions on air travel and scuba diving. The CAA recommends a waiting period of two weeks after successful drainage before air travel, while the BTS advises against scuba diving unless the patient has undergone bilateral surgical pleurectomy and has normal lung function and chest CT scan postoperatively.
In summary, the BTS guidelines provide a comprehensive approach to the management of pneumothorax, taking into account the type of pneumothorax and the patient’s individual circumstances. Early intervention and appropriate follow-up can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 40-year-old woman visits her GP after being treated at the Emergency Department for a foreign body lodged in her throat for 2 days. Although the object has been removed, she is experiencing difficulty swallowing. Upon further questioning, she mentions altered sensation while swallowing, describing it as a sensation of 'not feeling like food is being swallowed' during meals.
Which nerve or nerves are likely to have been affected?Your Answer:
Correct Answer: Internal laryngeal nerve
Explanation:The internal laryngeal nerve is responsible for providing sensory information to the supraglottis and branches off from the superior laryngeal nerve. It is important to note that the cervical plexus, external laryngeal nerve, recurrent laryngeal nerve, and superior laryngeal nerve do not perform the same function as the internal laryngeal nerve.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Incorrect
-
A 24-year-old man is admitted to the emergency department after a car accident. During the initial evaluation, he complains of difficulty breathing. A portable chest X-ray shows a 3 cm gap between the right lung margin and the chest wall, indicating a significant traumatic pneumothorax. The medical team administers high-flow oxygen and performs a right-sided chest drain insertion to drain the pneumothorax.
What is a potential negative outcome that could arise from the insertion of a chest drain?Your Answer:
Correct Answer: Winging of the scapula
Explanation:Insertion of a chest drain poses a risk of damaging the long thoracic nerve, which runs from the neck to the serratus anterior muscle. This can result in weakness or paralysis of the muscle, causing a winged scapula that is noticeable along the medial border of the scapula. It is important to use aseptic technique during the procedure to prevent hospital-acquired pleural infection. Chylothorax, pneumothorax, and pyothorax are all conditions that may require chest drain insertion, but they are not known complications of the procedure. Therefore, these options are not applicable.
Anatomy of Chest Drain Insertion
Chest drain insertion is necessary for various medical conditions such as trauma, haemothorax, pneumothorax, and pleural effusion. The size of the chest drain used depends on the specific condition being treated. While ultrasound guidance is an option, the anatomical method is typically tested in exams.
It is recommended that chest drains are placed in the safe triangle, which is located in the mid axillary line of the 5th intercostal space. This triangle is bordered by the anterior edge of the latissimus dorsi, the lateral border of pectoralis major, a line superior to the horizontal level of the nipple, and the apex below the axilla. Another triangle, known as the triangle of auscultation, is situated behind the scapula and is bounded by the trapezius, latissimus dorsi, and vertebral border of the scapula. By folding the arms across the chest and bending forward, parts of the sixth and seventh ribs and the interspace between them become subcutaneous and available for auscultation.
References:
– Prof Harold Ellis. The applied anatomy of chest drains insertions. British Journal of hospital medicine 2007; (68): 44-45.
– Laws D, Neville E, Duffy J. BTS guidelines for insertion of chest drains. Thorax, 2003; (58): 53-59. -
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
Which of the following laryngeal tumors is unlikely to spread to the cervical lymph nodes?
Your Answer:
Correct Answer: Glottic
Explanation:The area of the vocal cords lacks lymphatic drainage, making it a lymphatic boundary. The upper portion above the vocal cords drains to the deep cervical nodes through vessels that penetrate the thyrohyoid membrane. The lower portion below the vocal cords drains to the pre-laryngeal, pre-tracheal, and inferior deep cervical nodes. The aryepiglottic and vestibular folds have a significant lymphatic drainage and are prone to early metastasis.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
An 85-year-old woman visits her doctor with a complaint of worsening breathlessness in the past 6 months. She has been smoking 10 cigarettes a day for the last 40 years. The doctor suspects that she may have chronic obstructive pulmonary disease. What is one of the mechanisms by which smoking damages the lungs and leads to emphysema?
Your Answer:
Correct Answer: Inactivation of alpha-1 antitrypsin
Explanation:The function of alpha-1 antitrypsin is to inhibit elastase. However, smoke has a negative impact on this protein in the lungs, resulting in increased activity of elastases and the breakdown of elastic tissue, which leads to emphysema.
Contrary to popular belief, smoke actually activates polymorphonuclear leucocytes, which contributes to the development of emphysema.
Mucous gland hyperplasia, basal cell metaplasia, and basement membrane thickening are all examples of how smoke affects the lungs to cause chronic bronchitis, not emphysema.
COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives at the hospital complaining of worsening shortness of breath and a productive cough. As part of the initial evaluation, a chest X-ray is requested.
What radiographic feature would you anticipate observing on her chest X-ray?Your Answer:
Correct Answer: Flattened diaphragm
Explanation:The diaphragm of patients with COPD often appears flattened on a chest X-ray due to the chronic expiratory airflow obstruction causing dynamic hyperinflation of the lungs. Pleural effusions are commonly associated with infection, malignancy, or heart failure, while empyema is a result of pus accumulation in the pleural space caused by an infection.
Understanding COPD: Symptoms and Diagnosis
Chronic obstructive pulmonary disease (COPD) is a common medical condition that includes chronic bronchitis and emphysema. Smoking is the leading cause of COPD, and patients with mild disease may only need occasional use of a bronchodilator, while severe cases may result in frequent hospital admissions due to exacerbations. Symptoms of COPD include a productive cough, dyspnea, wheezing, and in severe cases, right-sided heart failure leading to peripheral edema.
To diagnose COPD, doctors may recommend post-bronchodilator spirometry to demonstrate airflow obstruction, a chest x-ray to check for hyperinflation, bullae, and flat hemidiaphragm, and to exclude lung cancer. A full blood count may also be necessary to exclude secondary polycythemia, and body mass index (BMI) calculation is important. The severity of COPD is categorized using the FEV1, with a ratio of less than 70% indicating airflow obstruction. The grading system has changed following the 2010 NICE guidelines, with Stage 1 – mild now including patients with an FEV1 greater than 80% predicted but with a post-bronchodilator FEV1/FVC ratio of less than 0.7. Measuring peak expiratory flow is of limited value in COPD, as it may underestimate the degree of airflow obstruction.
In summary, COPD is a common condition caused by smoking that can result in a range of symptoms and severity. Diagnosis involves various tests to check for airflow obstruction, exclude lung cancer, and determine the severity of the disease.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Incorrect
-
Cystic fibrosis is caused by a mutation in the CFTR gene. On which chromosome is this gene located?
Your Answer:
Correct Answer: Chromosome 7
Explanation:Understanding Cystic Fibrosis
Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.
CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.
Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 65-year-old man presents with respiratory symptoms and is referred to his primary care physician for pulmonary function testing. The estimated vital capacity is 3.5 liters. What does the measurement of vital capacity involve?
Your Answer:
Correct Answer: Inspiratory reserve volume + Tidal volume + Expiratory reserve volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Incorrect
-
A 72-year-old woman is brought to the stroke unit with a suspected stroke. She has a medical history of hypertension, type II diabetes, and hypothyroidism. Additionally, she experienced a myocardial infarction 4 years ago. Upon arrival, the patient exhibited a positive FAST result and an irregular breathing pattern. An urgent brain CT scan was performed and is currently under review. What region of the brainstem is responsible for regulating the fundamental breathing rhythm?
Your Answer:
Correct Answer: Medulla oblongata
Explanation:The medullary rhythmicity area in the medullary oblongata controls the basic rhythm of breathing through its inspiratory and expiratory neurons. During quiet breathing, the inspiratory area is active for approximately 2 seconds, causing the diaphragm and external intercostals to contract, followed by a period of inactivity lasting around 3 seconds as the muscles relax and there is elastic recoil. Additional brainstem regions can be stimulated to regulate various aspects of breathing, such as extending inspiration in the apneustic area (refer to the table below).
The Control of Ventilation in the Human Body
The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.
The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.
Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.
Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Incorrect
-
A 70-year-old man visits his primary care physician with complaints of hearing difficulties. He states that he has been increasingly struggling to hear his wife's conversations for the past six months. He is concerned that this problem will worsen and eventually lead to complete hearing loss, making it difficult for him to communicate with his children over the phone. His wife is also distressed by the situation, as he frequently asks her to turn up the volume on the television. The man has no history of exposure to loud noises and has well-controlled hypertension. He is a retired police officer and currently resides with his wife. What is the primary pathology underlying this man's most likely diagnosis?
Your Answer:
Correct Answer: Degeneration of the cells at the cochlear base
Explanation:The patient has a gradual-onset hearing loss, which is most likely due to presbycusis, an aging-related sensorineural hearing loss. This condition has multiple causes, including environmental factors like noise pollution and biological factors like genetics and oxidative stress. Damage to the organ of Corti stereocilia from exposure to sudden loud noises can also cause hearing loss, which is typically sudden and associated with a history of exposure to loud noises. Other conditions that can cause hearing loss include cholesteatoma, which is due to the accumulation of keratin debris in the middle ear, and otosclerosis, which is characterized by the overgrowth of bone in the middle ear.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 5-year-old boy comes to the clinic with his mother, complaining of ear pain that started last night. He has been unable to sleep due to the pain and has not been eating well. His mother reports that he seems different than his usual self. The affected side has muffled sounds, and he has a fever. Otoscopy reveals a bulging tympanic membrane with visible fluid-level. What is the structure that connects the middle ear to the nasopharynx?
Your Answer:
Correct Answer: Eustachian tube
Explanation:The pharyngotympanic tube, also known as the Eustachian tube, is responsible for connecting the middle ear and the nasopharynx, allowing for pressure equalization in the middle ear. It opens on the anterior wall of the middle ear and extends anteriorly, medially, and inferiorly to open into the nasopharynx. The palatovaginal canal connects the pterygopalatine fossa with the nasopharynx, while the pterygoid canal runs from the anterior boundary of the foramen lacerum to the pterygopalatine fossa. The semicircular canals are responsible for sensing balance, while the greater palatine canal transmits the greater and lesser palatine nerves, as well as the descending palatine artery and vein. In the case of ear pain, otitis media is a likely cause, which can be confirmed through otoscopy. The pharyngotympanic tube is particularly important in otitis media as it is the only outlet for pus or fluid in the middle ear, provided the tympanic membrane is intact.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Incorrect
-
A 54-year-old man complains of facial pain and discomfort during meals. He has been experiencing halitosis and a dry mouth. Additionally, he has a lump under his left mandible. What is the probable underlying diagnosis?
Your Answer:
Correct Answer: Stone impacted in Whartons duct
Explanation:The signs are indicative of sialolithiasis, which usually involves the formation of stones in the submandibular gland and can block Wharton’s duct. Stensen’s duct, on the other hand, is responsible for draining the parotid gland.
Diseases of the Submandibular Glands
The submandibular glands are responsible for producing mixed seromucinous secretions, which can range from more serous to more mucinous depending on parasympathetic activity. These glands secrete approximately 800-1000ml of saliva per day, with parasympathetic fibers derived from the chorda tympani nerves and the submandibular ganglion. However, several conditions can affect the submandibular glands.
One such condition is sialolithiasis, which occurs when salivary gland calculi form in the submandibular gland. These stones are usually composed of calcium phosphate or calcium carbonate and can cause colicky pain and postprandial swelling of the gland. Sialography is used to investigate the site of obstruction and associated stones, with impacted stones in the distal aspect of Wharton’s duct potentially removed orally. However, other stones and chronic inflammation may require gland excision.
Sialadenitis is another condition that can affect the submandibular glands, usually as a result of Staphylococcus aureus infection. This can cause pus to leak from the duct and erythema to be noted. A submandibular abscess may develop, which is a serious complication as it can spread through other deep fascial spaces and occlude the airway.
Finally, submandibular tumors can also affect these glands, with only 8% of salivary gland tumors affecting the submandibular gland. Of these, 50% are malignant, usually adenoid cystic carcinoma. Diagnosis usually involves fine needle aspiration cytology, with imaging using CT and MRI. Due to the high prevalence of malignancy, all masses of the submandibular glands should generally be excised.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Incorrect
-
A 32-year-old male presents to the GP clinic complaining of vertigo. He mentions having a mild upper respiratory tract infection one week prior. Which structure is most likely responsible for the accompanying nausea?
Your Answer:
Correct Answer: Vestibular system of the inner ear
Explanation:Based on the symptoms presented, it is probable that the patient is experiencing viral labyrinthitis, which is a common condition that occurs after an upper respiratory tract infection. This condition causes inflammation in the vestibular system of the inner ear, leading to confusion or failure of proprioceptive signals to the brain, resulting in vertigo.
During retching, the antrum of the stomach contracts while the cardia and fundus relax. Although vagal stimulation can arise from the stomach, it does not cause the spinning sensation associated with vertigo.
The area postrema is located in the medulla and contains the chemoreceptor trigger zone, which is involved in receiving and transmitting signals related to the vomiting reflex. However, the specific signal for vertigo arises from the vestibular system. The pons also plays a role in communicating sensory inputs related to vomiting.
Vertigo is a condition characterized by a false sensation of movement in the body or environment. There are various causes of vertigo, each with its own unique characteristics. Viral labyrinthitis, for example, is typically associated with a recent viral infection, sudden onset, nausea and vomiting, and possible hearing loss. Vestibular neuronitis, on the other hand, is characterized by recurrent vertigo attacks lasting hours or days, but with no hearing loss. Benign paroxysmal positional vertigo is triggered by changes in head position and lasts for only a few seconds. Meniere’s disease, meanwhile, is associated with hearing loss, tinnitus, and a feeling of fullness or pressure in the ears. Elderly patients with vertigo may be experiencing vertebrobasilar ischaemia, which is accompanied by dizziness upon neck extension. Acoustic neuroma, which is associated with hearing loss, vertigo, and tinnitus, is also a possible cause of vertigo. Other causes include posterior circulation stroke, trauma, multiple sclerosis, and ototoxicity from medications like gentamicin.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
A 63-year-old man visits his GP complaining of worsening shortness of breath. He was diagnosed with COPD six years ago and has been frequently admitted to the emergency department due to lower respiratory tract infections, especially in the past year. He has a smoking history of 50 pack-years and currently smokes 20 cigarettes per day.
During the examination, the patient appears to be struggling to breathe even at rest and is in the tripod position. His heart rate is 78/min, blood pressure is 140/88 mmHg, oxygen saturation is 88% on air, respiratory rate is 26 breaths per minute, and temperature is 36.4ÂșC. His chest expansion is symmetrical, and breath sounds are equal throughout the lung fields.
Recent spirometry results show that his FEV1 was 47% a week ago, 53% a month ago, and 67% six months ago. What intervention would be most effective in slowing the decline of his FEV1?Your Answer:
Correct Answer: Smoking cessation
Explanation:Slowing the decrease in FEV1 in COPD can be most effectively achieved by quitting smoking.
The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.
Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.
If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.
NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.
Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Incorrect
-
A 20-year-old woman comes to your general practice complaining of hearing difficulties for the past month. She was previously diagnosed with tinnitus by one of your colleagues at the practice 11 months ago. The patient reports that she can hear better when outside but struggles in quiet environments. Upon otoscopy, no abnormalities are found. Otosclerosis is one of the differential diagnoses for this patient, which primarily affects the ossicle that connects to the cochlea. What is the name of the ossicle that attaches to the cochlea at the oval window?
Your Answer:
Correct Answer: Stapes
Explanation:The stapes bone is the correct answer.
The ossicles are three bones located in the middle ear. They are arranged from lateral to medial and include the malleus, incus, and stapes. The malleus is the most lateral bone and its handle and lateral process attach to the tympanic membrane, making it visible on otoscopy. The head of the malleus articulates with the incus. The stapes bone is the most medial of the ossicles and is also known as the stirrup.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Incorrect
-
A 12-year-old girl is referred to a respiratory specialist due to persistent episodes of shortness of breath. She also suffers from severe hay fever and eczema. After undergoing a peak expiratory flow test, signs of outflow obstruction of her lungs are detected. The doctor prescribes beclomethasone and salbutamol for her and advises her mother to keep her away from dust, as asthma is often linked to hypersensitivity to dust. Which type of hypersensitivity is associated with asthma?
Your Answer:
Correct Answer: Type 1 hypersensitivity
Explanation:Asthma is linked to type 1 hypersensitivity, which is caused by the binding of IgE to Mast cells, resulting in an inflammatory reaction. Other types of hypersensitivity include type 2, which involves the binding of IgG or IgM to cell surface antigens, type 3, which is immune complex-mediated, and type 4, which is T-cell mediated.
Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.
Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.
Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.
Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 35-year-old female patient presents to the GP with complaints of headaches, nasal congestion, and facial pain that worsens upon leaning forward. Sinusitis is suspected. Which sinus is typically affected in this condition?
Your Answer:
Correct Answer: Maxillary
Explanation:The maxillary sinus is susceptible to infections due to its drainage from the top. This sinus is the most frequently affected in cases of sinusitis. While frontal sinusitis can lead to intracranial complications, it is still less common than maxillary sinusitis.
The petrosal sinus is not a bone cavity, but rather a venous structure situated beneath the brain.
Acute sinusitis is a condition where the mucous membranes of the paranasal sinuses become inflamed. This inflammation is usually caused by infectious agents such as Streptococcus pneumoniae, Haemophilus influenzae, and rhinoviruses. Certain factors can predispose individuals to this condition, including nasal obstruction, recent local infections, swimming/diving, and smoking. Symptoms of acute sinusitis include facial pain, nasal discharge, and nasal obstruction. Treatment options include analgesia, intranasal decongestants or nasal saline, and intranasal corticosteroids. Oral antibiotics may be necessary for severe presentations, but they are not typically required. In some cases, an initial viral sinusitis can worsen due to secondary bacterial infection, which is known as double-sickening.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Incorrect
-
A 60-year-old man visits his GP with worries about his hearing in recent months. He has difficulty understanding conversations in noisy environments and his spouse has commented on his need for the television to be turned up to maximum volume.
During the examination, the GP conducts some basic tests and finds:
Rinne's Test - Air conduction > bone conduction in both ears
Weber's Test - Lateralises to the left ear
What can be inferred from these test results?Your Answer:
Correct Answer: Left sensorineural hearing loss
Explanation:The patient has left sensorineural hearing loss, as indicated by the normal Rinne result (air conduction > bone conduction bilaterally) and abnormal Weber result (lateralising to the unaffected ear). In contrast, if the patient had conductive hearing loss, Rinne’s test would show bone conduction > air conduction, and Weber’s test would localise to the worse ear in bilateral conductive hearing loss or the affected ear in unilateral conductive hearing loss. For right sensorineural hearing loss, Rinne’s test would be normal, but Weber’s test would localise to the left ear.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Incorrect
-
A 9-month-old girl is brought to the hospital due to recurrent episodes of breathing difficulties. She has been experiencing a gradual worsening of symptoms, including a wet cough and expiratory wheezing, for the past 4 days.
During the examination, her temperature is recorded at 38.2°C, and her respiratory rate is 60 breaths per minute. Oxygen saturation levels are at 92% on air. Chest examination reveals mild intercostal retractions, scattered crackles, and expiratory wheezing in both lungs.
What is the most probable causative agent responsible for the symptoms?Your Answer:
Correct Answer: Respiratory syncytial virus
Explanation:Bronchiolitis is commonly caused by respiratory syncytial virus, which accounts for the majority of cases of serious lower respiratory tract infections in children under one.
Understanding Bronchiolitis
Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.
The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.
Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.
The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Incorrect
-
What is the embryonic origin of the pulmonary artery?
Your Answer:
Correct Answer: Sixth pharyngeal arch
Explanation:The right pulmonary artery originates from the proximal portion of the sixth pharyngeal arch on the right side, while the distal portion of the same arch gives rise to the left pulmonary artery and the ductus arteriosus.
The Development and Contributions of Pharyngeal Arches
During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.
Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.
Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Incorrect
-
A 57-year-old woman arrives at the emergency department complaining of difficulty breathing. She has a medical history of idiopathic interstitial lung disease. Upon examination, her temperature is 37.1ÂșC, oxygen saturation is 76% on air, heart rate is 106 beats per minute, respiratory rate is 26 breaths per minute, and blood pressure is 116/60 mmHg.
What pulmonary alteration would take place in response to her low oxygen saturation?Your Answer:
Correct Answer: Pulmonary artery vasoconstriction
Explanation:Hypoxia causes vasoconstriction in the pulmonary arteries, which can lead to pulmonary artery hypertension in patients with chronic lung disease and chronic hypoxia. Diffuse bronchoconstriction is not a response to hypoxia, but may cause hypoxia in conditions such as acute asthma exacerbation. Hypersecretion of mucus from goblet cells is a characteristic finding in chronic inflammatory lung diseases, but is not a response to hypoxia. Pulmonary artery vasodilation occurs around well-ventilated alveoli to optimize oxygen uptake into the blood.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Incorrect
-
A 27-year-old man is undergoing respiratory spirometry. He performs a maximal inhalation followed by a maximal exhalation. Which of the following measurements will most accurately depict this process?
Your Answer:
Correct Answer: Vital capacity
Explanation:The maximum amount of air that can be breathed in and out within one minute is known as maximum voluntary ventilation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
Which of the following physiological changes does not take place after a tracheostomy?
Your Answer:
Correct Answer: Work of breathing is increased.
Explanation:HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
A 70-year-old man with lung cancer is having a left pneumonectomy. The left main bronchus is being divided. Which thoracic vertebrae is located behind this structure?
Your Answer:
Correct Answer: T6
Explanation:Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)