00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 45-year-old patient presents to the clinic with complaints of abdominal pain. Upon...

    Incorrect

    • A 45-year-old patient presents to the clinic with complaints of abdominal pain. Upon routine blood tests, the following results were obtained:

      Na+ 142 mmol/l
      K+ 4.0 mmol/l
      Chloride 104 mmol/l
      Bicarbonate 19 mmol/l
      Urea 7.0 mmol/l
      Creatinine 112 µmol/l

      What is the calculated anion gap?

      Your Answer: 21 mmol/L

      Correct Answer: 23 mmol/L

      Explanation:

      Understanding Anion Gap in Metabolic Acidosis

      Metabolic acidosis is a condition where the body produces too much acid or loses too much bicarbonate. Anion gap is a useful tool in diagnosing metabolic acidosis. It is calculated by subtracting the sum of bicarbonate and chloride from the sum of sodium and potassium. A normal anion gap is between 8-14 mmol/L.

      There are two types of metabolic acidosis: normal anion gap and raised anion gap. Normal anion gap or hyperchloraemic metabolic acidosis can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis can be caused by lactate due to shock or hypoxia, ketones in diabetic ketoacidosis or alcohol, urate in renal failure, acid poisoning from salicylates or methanol, and 5-oxoproline from chronic paracetamol use.

      Understanding anion gap in metabolic acidosis is crucial in identifying the underlying cause of the condition. It helps healthcare professionals in providing appropriate treatment and management to patients.

    • This question is part of the following fields:

      • Renal System
      38.8
      Seconds
  • Question 2 - A 6-year-old girl is undergoing a renal biopsy due to recent haematuria and...

    Correct

    • A 6-year-old girl is undergoing a renal biopsy due to recent haematuria and proteinuria. Upon histological analysis, immune complex deposition is found within the glomeruli. Further investigation reveals the presence of IgG, IgM, and C3 within the complexes.

      What is the probable diagnosis?

      Your Answer: Post-streptococcal glomerulonephritis

      Explanation:

      The correct diagnosis is post-streptococcal glomerulonephritis, which is a condition that commonly affects young children following an upper respiratory tract infection. Symptoms include haematuria, proteinuria, and general malaise. Biopsy samples typically show immune complex deposition of IgG, IgM, and C3, endothelial proliferation with neutrophils, and a subepithelial ‘hump’ appearance on electron microscopy. Immunofluorescence may show a granular or ‘starry sky’ appearance.

      Minimal change disease is an incorrect diagnosis as it typically presents with nephrotic syndrome and does not include haematuria as a symptom. Additionally, minimal changes in glomerular structure should be seen on histology.

      IgA nephropathy is also an incorrect diagnosis as it has IgA complex deposition on histology, which is different from the immune complex deposition seen in post-streptococcal glomerulonephritis.

      Amyloidosis is another incorrect diagnosis as it is a cause of nephrotic syndrome and is characterised by amyloid deposition.

      Post-streptococcal glomerulonephritis is a condition that typically occurs 7-14 days after an infection caused by group A beta-haemolytic Streptococcus, usually Streptococcus pyogenes. It is more common in young children and is caused by the deposition of immune complexes (IgG, IgM, and C3) in the glomeruli. Symptoms include headache, malaise, visible haematuria, proteinuria, oedema, hypertension, and oliguria. Blood tests may show a raised anti-streptolysin O titre and low C3, which confirms a recent streptococcal infection.

      It is important to note that IgA nephropathy and post-streptococcal glomerulonephritis are often confused as they both can cause renal disease following an upper respiratory tract infection. Renal biopsy features of post-streptococcal glomerulonephritis include acute, diffuse proliferative glomerulonephritis with endothelial proliferation and neutrophils. Electron microscopy may show subepithelial ‘humps’ caused by lumpy immune complex deposits, while immunofluorescence may show a granular or ‘starry sky’ appearance.

      Despite its severity, post-streptococcal glomerulonephritis carries a good prognosis.

    • This question is part of the following fields:

      • Renal System
      27.6
      Seconds
  • Question 3 - A 63-year-old man is seen in the oncology clinic. He is being monitored...

    Correct

    • A 63-year-old man is seen in the oncology clinic. He is being monitored for known breast cancer. His recent mammogram and biopsy suggest an increased disease burden. It is decided to initiate Tamoxifen therapy while awaiting a mastectomy.

      What is the mechanism of action of this new medication?

      Your Answer: Androgen receptor blocker

      Explanation:

      Bicalutamide is a medication that blocks the androgen receptor and is commonly used to treat prostate cancer. Abiraterone, on the other hand, is an androgen synthesis inhibitor that is prescribed to patients with metastatic prostate cancer who have not responded to androgen deprivation therapy. GnRH agonists like goserelin can also be used to treat prostate cancer by reducing the release of gonadotrophins and inhibiting androgen production. While cyproterone acetate is a steroidal anti-androgen, it is not as commonly used as non-steroidal anti-androgens like bicalutamide.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      26.8
      Seconds
  • Question 4 - A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound...

    Incorrect

    • A 33-year-old woman is scheduled for a kidney biopsy following a renal ultrasound that revealed several large cysts on her left kidney. The medical team has informed her of the potential risks associated with the procedure, such as the possibility of puncturing the primary blood vessels that supply the kidney - the renal artery and vein. At what anatomical level do these vessels enter the left kidney, considering their location?

      Your Answer: L4

      Correct Answer: L1

      Explanation:

      The correct level for the hilum of the left kidney is L1, which is also where the renal artery, vein, and ureter enter the kidney. T12 is not the correct level as it is the location of the adrenal glands or upper pole of the kidney. L2 is also not correct as it refers to the hilum of the right kidney, which is slightly lower. L4 is not the correct level as both renal arteries come off above this level from the abdominal aorta.

      Renal Anatomy: Understanding the Structure and Relations of the Kidneys

      The kidneys are two bean-shaped organs located in a deep gutter alongside the vertebral bodies. They measure about 11cm long, 5cm wide, and 3 cm thick, with the left kidney usually positioned slightly higher than the right. The upper pole of both kidneys approximates with the 11th rib, while the lower border is usually alongside L3. The kidneys are surrounded by an outer cortex and an inner medulla, which contains pyramidal structures that terminate at the renal pelvis into the ureter. The renal sinus lies within the kidney and contains branches of the renal artery, tributaries of the renal vein, major and minor calyces, and fat.

      The anatomical relations of the kidneys vary depending on the side. The right kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, and transversus abdominis, while the left kidney is in direct contact with the quadratus lumborum, diaphragm, psoas major, transversus abdominis, stomach, pancreas, spleen, and distal part of the small intestine. Each kidney and suprarenal gland is enclosed within a common layer of investing fascia, derived from the transversalis fascia, which is divided into anterior and posterior layers (Gerotas fascia).

      At the renal hilum, the renal vein lies most anteriorly, followed by the renal artery (an end artery), and the ureter lies most posteriorly. Understanding the structure and relations of the kidneys is crucial in diagnosing and treating renal diseases and disorders.

    • This question is part of the following fields:

      • Renal System
      30.9
      Seconds
  • Question 5 - Which serum protein is most likely to increase in a patient with severe...

    Incorrect

    • Which serum protein is most likely to increase in a patient with severe sepsis?

      Your Answer: Albumin

      Correct Answer: Ferritin

      Explanation:

      During an acute phase response, ferritin levels can significantly rise while other parameters typically decrease.

      Acute Phase Proteins and their Role in the Body’s Response to Infection

      During an infection or injury, the body undergoes an acute phase response where it produces a variety of proteins to help fight off the infection and promote healing. These proteins are known as acute phase proteins and include CRP, procalcitonin, ferritin, fibrinogen, alpha-1 antitrypsin, ceruloplasmin, serum amyloid A, serum amyloid P component, haptoglobin, and complement.

      CRP is a commonly measured acute phase protein that is synthesized in the liver and binds to bacterial cells and those undergoing apoptosis. It is able to activate the complement system and its levels are known to rise in patients following surgery. Procalcitonin is another acute phase protein that is used as a marker for bacterial infections. Ferritin is involved in iron storage and transport, while fibrinogen is important for blood clotting. Alpha-1 antitrypsin helps protect the lungs from damage, and ceruloplasmin is involved in copper transport. Serum amyloid A and serum amyloid P component are involved in inflammation, while haptoglobin binds to hemoglobin to prevent its breakdown. Complement is a group of proteins that help to destroy pathogens.

      During the acute phase response, the liver decreases the production of other proteins known as negative acute phase proteins, including albumin, transthyretin, transferrin, retinol binding protein, and cortisol binding protein. These proteins are important for maintaining normal bodily functions, but their production is decreased during an infection or injury to allow for the production of acute phase proteins.

    • This question is part of the following fields:

      • Renal System
      15.4
      Seconds
  • Question 6 - A 67-year-old man is attending the urology clinic and receiving goserelin for his...

    Incorrect

    • A 67-year-old man is attending the urology clinic and receiving goserelin for his metastatic prostate cancer. Can you explain the drug's mechanism of action?

      Your Answer: Understimulation of GnRH receptors

      Correct Answer: Overstimulation of GnRH receptors

      Explanation:

      GnRH agonists used in the treatment of prostate cancer can paradoxically lead to lower LH levels in the long term. This is because chronic use of these agonists can result in overstimulation of GnRH receptors, which in turn disrupts endogenous hormonal feedback systems. While initially stimulating the production of LH/FSH and subsequent androgen production, chronic use of GnRH agonists can cause negative feedback to suppress the release of gonadotropins, resulting in a significant decrease in serum testosterone levels. This mechanism can be thought of as switching on to switch off. It is important to note that inhibiting the 5 alpha-reductase enzyme and relaxing prostatic smooth muscle are not mechanisms of action for GnRH agonists, but rather for other medications used in the treatment of prostate conditions.

      Prostate cancer management varies depending on the stage of the disease and the patient’s life expectancy and preferences. For localized prostate cancer (T1/T2), treatment options include active monitoring, watchful waiting, radical prostatectomy, and radiotherapy (external beam and brachytherapy). For localized advanced prostate cancer (T3/T4), options include hormonal therapy, radical prostatectomy, and radiotherapy. Patients may develop proctitis and are at increased risk of bladder, colon, and rectal cancer following radiotherapy for prostate cancer.

      In cases of metastatic prostate cancer, reducing androgen levels is a key aim of treatment. A combination of approaches is often used, including anti-androgen therapy, synthetic GnRH agonist or antagonists, bicalutamide, cyproterone acetate, abiraterone, and bilateral orchidectomy. GnRH agonists, such as Goserelin (Zoladex), initially cause a rise in testosterone levels before falling to castration levels. To prevent a rise in testosterone, anti-androgens are often used to cover the initial therapy. GnRH antagonists, such as degarelix, are being evaluated to suppress testosterone while avoiding the flare phenomenon. Chemotherapy with docetaxel is also an option for the treatment of hormone-relapsed metastatic prostate cancer in patients who have no or mild symptoms after androgen deprivation therapy has failed, and before chemotherapy is indicated.

    • This question is part of the following fields:

      • Renal System
      15.7
      Seconds
  • Question 7 - A 26-year-old man falls and lands on a manhole cover, resulting in an...

    Incorrect

    • A 26-year-old man falls and lands on a manhole cover, resulting in an injury to his anterior bulbar urethra. Where is the likely location for the accumulation of extravasated urine?

      Your Answer: Deep perineal space

      Correct Answer: Connective tissue of the scrotum

      Explanation:

      The section of the urethra located between the perineal membrane and the membranous layer of the superficial fascia is tightly bound to the ischiopubic rami. This prevents urine from leaking backwards as the two layers are seamlessly connected around the superficial transverse perineal muscles.

      Lower Genitourinary Tract Trauma: Types of Injury and Management

      Lower genitourinary tract trauma can occur due to blunt trauma, with most bladder injuries associated with pelvic fractures. However, these injuries can easily be overlooked during trauma assessment. Up to 10% of male pelvic fractures are associated with urethral or bladder injuries.

      Urethral injuries mainly occur in males and can be identified by blood at the meatus in 50% of cases. There are two types of urethral injury: bulbar rupture, which is the most common and often caused by straddle-type injuries such as bicycles, and membranous rupture, which can be extra or intraperitoneal and commonly caused by pelvic fractures. Penile or perineal oedema/hematoma and displacement of the prostate upwards during PR examination are also signs of urethral injury. An ascending urethrogram is used for investigation, and management involves surgical placement of a suprapubic catheter.

      External genitalia injuries, such as those to the penis and scrotum, can be caused by penetration, blunt trauma, continence- or sexual pleasure-enhancing devices, and mutilation.

      Bladder injuries can be intra or extraperitoneal and present with haematuria or suprapubic pain. A history of pelvic fracture and inability to void should always raise suspicion of bladder or urethral injury. Inability to retrieve all fluid used to irrigate the bladder through a Foley catheter also indicates bladder injury. IVU or cystogram is used for investigation, and management involves laparotomy if intraperitoneal and conservative treatment if extraperitoneal.

      In summary, lower genitourinary tract trauma can result in urethral or bladder injuries, which can be identified through various signs and symptoms. Proper investigation and management are crucial for successful treatment.

    • This question is part of the following fields:

      • Renal System
      26.5
      Seconds
  • Question 8 - A 56-year-old man with end stage diabetic nephropathy is undergoing evaluation for a...

    Incorrect

    • A 56-year-old man with end stage diabetic nephropathy is undergoing evaluation for a renal transplant. In terms of HLA matching between donor and recipient, which HLA antigen is the most crucial to match?

      Your Answer: DP

      Correct Answer: DR

      Explanation:

      The HLA system, also known as the major histocompatibility complex (MHC), is located on chromosome 6 and is responsible for human leucocyte antigens. Class 1 antigens include A, B, and C, while class 2 antigens include DP, DQ, and DR. When matching for a renal transplant, the importance of HLA antigens is ranked as DR > B > A.

      Graft survival rates for renal transplants are high, with a 90% survival rate at one year and a 60% survival rate at ten years for cadaveric transplants. Living-donor transplants have even higher survival rates, with a 95% survival rate at one year and a 70% survival rate at ten years. However, postoperative problems can occur, such as acute tubular necrosis of the graft, vascular thrombosis, urine leakage, and urinary tract infections.

      Hyperacute rejection can occur within minutes to hours after a transplant and is caused by pre-existing antibodies against ABO or HLA antigens. This type of rejection is an example of a type II hypersensitivity reaction and leads to widespread thrombosis of graft vessels, resulting in ischemia and necrosis of the transplanted organ. Unfortunately, there is no treatment available for hyperacute rejection, and the graft must be removed.

      Acute graft failure, which occurs within six months of a transplant, is usually due to mismatched HLA and is caused by cell-mediated cytotoxic T cells. This type of failure is usually asymptomatic and is detected by a rising creatinine, pyuria, and proteinuria. Other causes of acute graft failure include cytomegalovirus infection, but it may be reversible with steroids and immunosuppressants.

      Chronic graft failure, which occurs after six months of a transplant, is caused by both antibody and cell-mediated mechanisms that lead to fibrosis of the transplanted kidney, known as chronic allograft nephropathy. The recurrence of the original renal disease, such as MCGN, IgA, or FSGS, can also cause chronic graft failure.

    • This question is part of the following fields:

      • Renal System
      18.4
      Seconds
  • Question 9 - A 65-year-old woman with a past medical history of heart failure presents to...

    Incorrect

    • A 65-year-old woman with a past medical history of heart failure presents to the emergency department complaining of palpitations. During the history-taking process, it is revealed that she takes ramipril and paracetamol regularly, but her cardiologist prescribed a new medication a week ago. She is unsure of the name of the medication but describes it as a 'water pill'. An electrocardiogram is performed, which shows abnormal tall T waves. What is the name of the 'water pill' that was recently prescribed?

      Your Answer: Furosemide (loop diuretic)

      Correct Answer: Spironolactone (potassium-sparing diuretic)

      Explanation:

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      26.9
      Seconds
  • Question 10 - A 64-year-old man is seen in the endocrinology clinic for review of his...

    Correct

    • A 64-year-old man is seen in the endocrinology clinic for review of his type II diabetes. He is currently on metformin and gliclazide, but his HbA1c is 68 mmol/mol. To improve his glycaemic control, you plan to initiate empagliflozin as a third agent. What is the site of action of this medication to achieve its mechanism of action?

      Your Answer: Proximal convoluted tubule of the nephron

      Explanation:

      The proximal convoluted tubule of the nephron is where the majority of glucose reabsorption occurs. Empagliflozin, which inhibits the SGLT-2 receptor, prevents glucose reabsorption in this area. Insulin receptors are found throughout the body, not SGLT-2 receptors. The distal convoluted tubule regulates sodium, potassium, calcium, and pH, while the loop of Henle is involved in water resorption. Sulphonylureas act on pancreatic beta cells to increase insulin production and improve glucose metabolism.

      The Loop of Henle and its Role in Renal Physiology

      The Loop of Henle is a crucial component of the renal system, located in the juxtamedullary nephrons and running deep into the medulla. Approximately 60 litres of water containing 9000 mmol sodium enters the descending limb of the loop of Henle in 24 hours. The osmolarity of fluid changes and is greatest at the tip of the papilla. The thin ascending limb is impermeable to water, but highly permeable to sodium and chloride ions. This loss means that at the beginning of the thick ascending limb the fluid is hypo osmotic compared with adjacent interstitial fluid. In the thick ascending limb, the reabsorption of sodium and chloride ions occurs by both facilitated and passive diffusion pathways. The loops of Henle are co-located with vasa recta, which have similar solute compositions to the surrounding extracellular fluid, preventing the diffusion and subsequent removal of this hypertonic fluid. The energy-dependent reabsorption of sodium and chloride in the thick ascending limb helps to maintain this osmotic gradient. Overall, the Loop of Henle plays a crucial role in regulating the concentration of solutes in the renal system.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 11 - A 58-year-old man has had a radical nephrectomy. Upon bisecting the kidney, the...

    Correct

    • A 58-year-old man has had a radical nephrectomy. Upon bisecting the kidney, the pathologist observes a pink fleshy tumor in the renal pelvis. What is the probable illness?

      Your Answer: Transitional cell carcinoma

      Explanation:

      Renal tumours typically have a yellow or brown hue, but TCCs stand out as they have a pink appearance. If a TCC is detected in the renal pelvis, a nephroureterectomy is necessary.

      Renal Lesions: Types, Features, and Treatments

      Renal lesions refer to abnormal growths or masses that develop in the kidneys. There are different types of renal lesions, each with its own disease-specific features and treatment options. Renal cell carcinoma is the most common renal tumor, accounting for 85% of cases. It often presents with haematuria and may cause hypertension and polycythaemia as paraneoplastic features. Treatment usually involves radical or partial nephrectomy.

      Nephroblastoma, also known as Wilms tumor, is a rare childhood tumor that accounts for 80% of all genitourinary malignancies in those under the age of 15 years. It often presents with a mass and hypertension. Diagnostic workup includes ultrasound and CT scanning, and treatment involves surgical resection combined with chemotherapy. Neuroblastoma is the most common extracranial tumor of childhood, with up to 80% occurring in those under 4 years of age. It is a tumor of neural crest origin and may be diagnosed using MIBG scanning. Treatment involves surgical resection, radiotherapy, and chemotherapy.

      Transitional cell carcinoma accounts for 90% of lower urinary tract tumors but only 10% of renal tumors. It often presents with painless haematuria and may be caused by occupational exposure to industrial dyes and rubber chemicals. Diagnosis and staging are done with CT IVU, and treatment involves radical nephroureterectomy. Angiomyolipoma is a hamartoma type lesion that occurs sporadically in 80% of cases and in those with tuberous sclerosis in the remaining cases. It is composed of blood vessels, smooth muscle, and fat and may cause massive bleeding in 10% of cases. Surgical resection is required for lesions larger than 4 cm and causing symptoms.

    • This question is part of the following fields:

      • Renal System
      25.7
      Seconds
  • Question 12 - A 25-year-old male presents with a painless swelling of the testis. Histologically the...

    Correct

    • A 25-year-old male presents with a painless swelling of the testis. Histologically the stroma has a lymphocytic infiltrate. What is the most likely diagnosis?

      Seminoma is the most common type of testicular tumor and is frequently seen in males aged between 25-40 years. The classical subtype is the most prevalent, and histology shows a lymphocytic stromal infiltrate. Other subtypes include spermatocytic, anaplastic, and syncytiotrophoblast giant cells. A teratoma is more common in males aged 20-30 years.

      Your Answer: Classical seminoma

      Explanation:

      The most prevalent form of testicular tumor is seminoma, which is typically found in males between the ages of 30 and 40. The classical subtype of seminoma is the most common and is characterized by a lymphocytic stromal infiltrate. Other subtypes include spermatocytic, which features tumor cells that resemble spermatocytes and has a favorable prognosis, anaplastic, and syncytiotrophoblast giant cells, which contain β HCG. Teratoma, on the other hand, is more frequently observed in males between the ages of 20 and 30.

      Overview of Testicular Disorders

      Testicular disorders can range from benign conditions to malignant tumors. Testicular cancer is the most common malignancy in men aged 20-30 years, with germ-cell tumors accounting for 95% of cases. Seminomas are the most common subtype, while non-seminomatous germ cell tumors include teratoma, yolk sac tumor, choriocarcinoma, and mixed germ cell tumors. Risk factors for testicular cancer include cryptorchidism, infertility, family history, Klinefelter’s syndrome, and mumps orchitis. The most common presenting symptom is a painless lump, but pain, hydrocele, and gynecomastia may also be present.

      Benign testicular disorders include epididymo-orchitis, which is an acute inflammation of the epididymis often caused by bacterial infection. Testicular torsion, which results in testicular ischemia and necrosis, is most common in males aged between 10 and 30. Hydrocele presents as a mass that transilluminates and may occur as a result of a patent processus vaginalis in children. Treatment for these conditions varies, with orchidectomy being the primary treatment for testicular cancer. Surgical exploration is necessary for testicular torsion, while epididymo-orchitis and hydrocele may require medication or surgical procedures depending on the severity of the condition.

    • This question is part of the following fields:

      • Renal System
      37.9
      Seconds
  • Question 13 - A 45-year-old obese female patient presents with persistent abdominal pain in her right...

    Incorrect

    • A 45-year-old obese female patient presents with persistent abdominal pain in her right upper quadrant that extends to her right shoulder, along with nausea and vomiting. During the physical examination, a palpable mass is detected in her right upper quadrant and she exhibits a positive Murphy's sign.

      What abnormalities are expected to be observed in her liver function test (LFT) results?

      Your Answer: ALT 205 u/L, AST 198 u/L, ALP 549 u/L

      Correct Answer: ALT 113 u/L, AST 129 u/L, ALP 549 u/L

      Explanation:

      Elevated levels of alkaline phosphatase enzymes and slightly elevated liver transaminase enzymes indicate the possibility of biliary disease. Based on the patient’s medical history, it is likely that she has cholecystitis, which can lead to biliary obstruction and post-hepatic jaundice. In cholestatic diseases, the ALP level is typically much higher than liver transaminases. If the liver transaminases are elevated to the same or greater extent than ALP, it suggests a hepatocellular cause of disease, such as alcoholic liver disease or viral hepatitis. Normal or decreased liver function test results are unlikely in cases of cholestatic diseases.

      Understanding Alkaline Phosphatase and its Causes

      Alkaline phosphatase (ALP) is an enzyme found in various tissues throughout the body, including the liver, bones, and intestines. When the levels of ALP in the blood are elevated, it can indicate a potential health issue. The causes of raised ALP can be divided into two categories based on the calcium level in the blood.

      If both ALP and calcium levels are high, it may indicate bone metastases, hyperparathyroidism, osteomalacia, or renal failure. On the other hand, if ALP is high but calcium is low, it may be due to cholestasis, hepatitis, fatty liver, neoplasia, Paget’s disease, or physiological factors such as pregnancy, growing children, or healing fractures.

      It is important to note that elevated ALP levels do not necessarily indicate a serious health problem, and further testing may be needed to determine the underlying cause. Regular monitoring of ALP levels can help detect potential health issues early on and allow for prompt treatment.

    • This question is part of the following fields:

      • Renal System
      37.3
      Seconds
  • Question 14 - A 46-year-old patient visits his doctor 5 days after his last appointment, worried...

    Correct

    • A 46-year-old patient visits his doctor 5 days after his last appointment, worried about passing very small amounts of urine for the past 4 days. He was prescribed gentamicin for an infection during his last visit. The doctor suspects gentamicin-induced nephrotoxicity and conducts an examination, finding no abnormalities and normal blood pressure and temperature. The patient's fractional excretion of urine is greater than 4%, and a urine sample is sent to the lab for microscopy, culture, and sensitivity. What would be observed on microscopy if the doctor's suspicion is correct?

      Your Answer: Brown granular casts

      Explanation:

      The clinical significance of various laboratory findings is summarized in the table below:

      Laboratory Finding Clinical Significance

      Elevated creatinine and BUN Indicates impaired kidney function
      Low serum albumin Indicates malnutrition or liver disease
      Elevated liver enzymes Indicates liver damage or disease
      Elevated glucose Indicates diabetes or impaired glucose tolerance
      Elevated potassium Indicates kidney dysfunction or medication side effect
      Elevated sodium Indicates dehydration or excessive sodium intake
      Elevated nitrites Indicates urinary tract infection
      Elevated white blood cells Indicates infection or inflammation
      Elevated red blood cells Indicates dehydration or kidney disease
      Elevated platelets Indicates clotting disorder or inflammation

      Different Types of Urinary Casts and Their Significance

      Urine contains various types of urinary casts that can provide important information about the underlying condition of the patient. Hyaline casts, for instance, are composed of Tamm-Horsfall protein that is secreted by the distal convoluted tubule. These casts are commonly seen in normal urine, after exercise, during fever, or with loop diuretics. On the other hand, brown granular casts in urine are indicative of acute tubular necrosis.

      In prerenal uraemia, the urinary sediment appears ‘bland’, which means that there are no significant abnormalities in the urine. Lastly, red cell casts are associated with nephritic syndrome, which is a condition characterized by inflammation of the glomeruli in the kidneys. By analyzing the type of urinary casts present in the urine, healthcare professionals can diagnose and manage various kidney diseases and disorders. Proper identification and interpretation of urinary casts can help in the early detection and treatment of kidney problems.

    • This question is part of the following fields:

      • Renal System
      49.6
      Seconds
  • Question 15 - A 44-year-old woman presents to the emergency department with abdominal pain. She reports...

    Incorrect

    • A 44-year-old woman presents to the emergency department with abdominal pain. She reports feeling generally unwell for the last 2 days but says today is the worst she has felt.

      On examination, her heart rate is 110 beats/min with a blood pressure of 106/70mmHg and a respiratory rate of 27 breaths/min.

      An arterial blood gas is taken:

      pH 7.11 (7.35 - 7.45)
      pO2 11.2 kPa (10.5 - 13.5)
      pCO2 4.9 kPa (4.7 - 6.0)
      Sodium 142 mmol/L (135 - 145)
      Potassium 5.1 mmol/L (3.5 - 5.5)
      Chloride 111 mmol/L (96 - 106)
      Bicarbonate 17 mmol/L (22 - 28)
      Lactate 2.6 mmol/L (0.6 - 1.9)
      Glucose 10.5 mmol/L (4 - 7)

      What is the most likely cause for this patient's investigation findings?

      Your Answer: Diabetic ketoacidosis

      Correct Answer: Diarrhoea

      Explanation:

      The patient’s condition is caused by diarrhoea, which is a common cause of normal anion gap metabolic acidosis. The anion gap is calculated by subtracting the sum of chloride and bicarbonate levels from the sum of sodium and potassium levels. In this case, the anion gap is within the normal range of 10-18 mmol/L. Other causes of normal anion gap metabolic acidosis include ureterosigmoidostomy, renal tubular acidosis, Addison’s disease, and certain medications. Raised anion gap metabolic acidosis can be remembered using the mnemonic ‘MUDPILES’, which includes causes such as methanol poisoning, diabetic ketoacidosis, and salicylate poisoning. However, these are not relevant in this case as the patient has a normal anion gap metabolic acidosis caused by diarrhoea.

      Understanding Metabolic Acidosis

      Metabolic acidosis is a condition that can be classified based on the anion gap, which is calculated by subtracting the sum of chloride and bicarbonate from the sum of sodium and potassium. The normal range for anion gap is 10-18 mmol/L. If a question provides the chloride level, it may be an indication to calculate the anion gap.

      Hyperchloraemic metabolic acidosis is a type of metabolic acidosis with a normal anion gap. It can be caused by gastrointestinal bicarbonate loss, prolonged diarrhea, ureterosigmoidostomy, fistula, renal tubular acidosis, drugs like acetazolamide, ammonium chloride injection, and Addison’s disease. On the other hand, raised anion gap metabolic acidosis is caused by lactate, ketones, urate, acid poisoning, and other factors.

      Lactic acidosis is a type of metabolic acidosis that is caused by high lactate levels. It can be further classified into two types: lactic acidosis type A, which is caused by sepsis, shock, hypoxia, and burns, and lactic acidosis type B, which is caused by metformin. Understanding the different types and causes of metabolic acidosis is important in diagnosing and treating the condition.

    • This question is part of the following fields:

      • Renal System
      48.9
      Seconds
  • Question 16 - A 6-year-old boy arrives at the paediatric emergency department with a non-blanching rash....

    Correct

    • A 6-year-old boy arrives at the paediatric emergency department with a non-blanching rash. He is limping and complaining of abdominal pain. He had a recent bout of tonsillitis but is typically healthy. Upon examination, there are numerous palpable purpura in a symmetrical pattern, mainly on his buttocks and the backs of his legs. A urine dipstick reveals mild proteinuria and 2+ blood.

      What is the probable underlying pathophysiology of this presentation?

      Your Answer: IgA mediated small vessel vasculitis

      Explanation:

      The correct answer is IgA mediated small vessel vasculitis, specifically Henoch-Schonlein purpura (HSP). This condition is characterized by palpable purpura, arthralgia, abdominal pain, and haematuria, and typically affects children aged 4-6 years. HSP is often triggered by infections such as streptococcal pharyngitis, but can also be caused by other infections like Mycoplasma pneumoniae, Epstein-Barr virus, and adenovirus.

      The other options are incorrect. ANCA-associated vasculitis typically involves the respiratory and ENT systems, which this child does not have. Cryoglobulinaemic vasculitis is associated with hepatitis C, haematological malignancies, and autoimmune disease, none of which are present in this case. Deficiency of von Willebrand factor cleaving protein is a feature of TTP, which is rare in children and typically presents with a low platelet count. ITP is another autoimmune condition that can present similarly to HSP, but can be differentiated by a low platelet count.

      Understanding Henoch-Schonlein Purpura

      Henoch-Schonlein purpura (HSP) is a type of small vessel vasculitis that is mediated by IgA. It is often associated with IgA nephropathy, also known as Berger’s disease. HSP is commonly observed in children following an infection.

      The condition is characterized by a palpable purpuric rash, which is accompanied by localized oedema over the buttocks and extensor surfaces of the arms and legs. Other symptoms include abdominal pain and polyarthritis. In some cases, patients may also experience haematuria and renal failure, which are indicative of IgA nephropathy.

      Treatment for HSP typically involves analgesia for arthralgia. While there is inconsistent evidence for the use of steroids and immunosuppressants, supportive care is generally recommended for patients with nephropathy. The prognosis for HSP is usually excellent, particularly in children without renal involvement. However, it is important to monitor blood pressure and urinalysis to detect any signs of progressive renal involvement. Approximately one-third of patients may experience a relapse.

      In summary, Henoch-Schonlein purpura is a self-limiting condition that is often seen in children following an infection. While the symptoms can be uncomfortable, the prognosis is generally good. However, it is important to monitor patients for any signs of renal involvement and provide appropriate supportive care.

    • This question is part of the following fields:

      • Renal System
      36.1
      Seconds
  • Question 17 - A 56-year-old man with a history of alcohol excess and type 2 diabetes...

    Correct

    • A 56-year-old man with a history of alcohol excess and type 2 diabetes presents to the emergency department in an intoxicated state. He takes metformin and his recent HbA1c was 44 mmol/mol. On arrival, his blood sugar is 5.1 mmol/L and he frequently needs to urinate. The examination is unremarkable except for his intoxicated state. His blood test shows a creatinine level of 66 µmol/L (55 - 120). What is causing the patient's polyuria?

      Your Answer: ADH suppression in the posterior pituitary gland

      Explanation:

      Alcohol bingeing can result in the suppression of ADH in the posterior pituitary gland, leading to polyuria.

      Polyuria, or excessive urination, can be caused by a variety of factors. A recent review in the BMJ categorizes these causes by their frequency of occurrence. The most common causes of polyuria include the use of diuretics, caffeine, and alcohol, as well as diabetes mellitus, lithium, and heart failure. Less common causes include hypercalcaemia and hyperthyroidism, while rare causes include chronic renal failure, primary polydipsia, and hypokalaemia. The least common cause of polyuria is diabetes insipidus, which occurs in less than 1 in 10,000 cases. It is important to note that while these frequencies may not align with exam questions, understanding the potential causes of polyuria can aid in diagnosis and treatment.

    • This question is part of the following fields:

      • Renal System
      47.8
      Seconds
  • Question 18 - A 69-year-old man is admitted to the medical assessment unit with reduced urine...

    Incorrect

    • A 69-year-old man is admitted to the medical assessment unit with reduced urine output and nausea. He has a complex medical history, including heart failure, hypercholesterolemia, hypertension, type 1 diabetes mellitus, and hypothyroidism. Among his regular medications are bisoprolol, furosemide, simvastatin, insulin, and levothyroxine. The medical team suspects that he is currently experiencing an acute kidney injury.

      Which of his usual medications should be discontinued?

      Your Answer: Simvastatin

      Correct Answer: Furosemide

      Explanation:

      In cases of AKI, it is advisable to discontinue the use of diuretics as they may aggravate renal function. Loop diuretics like Furosemide should be stopped. Additionally, drugs that have the potential to harm the kidneys, such as aminoglycoside antibiotics (e.g. gentamicin), non-steroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitors (e.g. ramipril), angiotensin II receptor antagonists (e.g. losartan), and diuretics, should also be discontinued.

      Fortunately, the remaining drugs are generally safe to continue as they are not typically considered nephrotoxic. Insulin, a peptide hormone drug used in treating type 1 and type 2 diabetes mellitus, is cleared from the body through enzymatic breakdown in the liver and kidneys and is not usually harmful to the kidneys.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      58.3
      Seconds
  • Question 19 - A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent...

    Incorrect

    • A 79-year-old male is admitted to hospital with dehydration. Blood tests are sent to assess his renal function. The results are below. He is diagnosed with an acute kidney injury.

      Na+ 143 mmol/l
      K+ 4.8 mmol/l
      Urea 32 mmol/l
      Creatinine 383 mmol/l
      eGFR 15 ml/min

      What electrolyte should be monitored closely?

      Your Answer: Sodium

      Correct Answer: Potassium

      Explanation:

      The nephron plays a crucial role in maintaining the balance of electrolytes in the bloodstream, particularly potassium and hydrogen ions, which are regulated in the distal convoluted tubule (DCT) and collecting duct (CD).

      Dehydration-induced acute kidney injury (AKI) is considered a pre-renal cause that reduces the glomerular filtration rate (GFR). In response, the kidney attempts to reabsorb as much fluid as possible to compensate for the body’s fluid depletion. As a result, minimal filtrate reaches the DCT and CD, leading to reduced potassium excretion. High levels of potassium can be extremely hazardous, especially due to its impact on the myocardium. Therefore, monitoring potassium levels is crucial in such situations, which can be done quickly through a venous blood gas (VBG) test.

      Hyperkalaemia is a condition where there is an excess of potassium in the blood. The levels of potassium in the plasma are regulated by various factors such as aldosterone, insulin levels, and acid-base balance. When there is metabolic acidosis, hyperkalaemia can occur as hydrogen and potassium ions compete with each other for exchange with sodium ions across cell membranes and in the distal tubule. The ECG changes that can be seen in hyperkalaemia include tall-tented T waves, small P waves, widened QRS leading to a sinusoidal pattern, and asystole.

      There are several causes of hyperkalaemia, including acute kidney injury, drugs such as potassium sparing diuretics, ACE inhibitors, angiotensin 2 receptor blockers, spironolactone, ciclosporin, and heparin, metabolic acidosis, Addison’s disease, rhabdomyolysis, and massive blood transfusion. Foods that are high in potassium include salt substitutes, bananas, oranges, kiwi fruit, avocado, spinach, and tomatoes.

      It is important to note that beta-blockers can interfere with potassium transport into cells and potentially cause hyperkalaemia in renal failure patients. In contrast, beta-agonists such as Salbutamol are sometimes used as emergency treatment. Additionally, both unfractionated and low-molecular weight heparin can cause hyperkalaemia by inhibiting aldosterone secretion.

    • This question is part of the following fields:

      • Renal System
      16.7
      Seconds
  • Question 20 - John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a...

    Incorrect

    • John, 72-years-old, visits his GP with concerns of frequent urination accompanied by a burning sensation and interrupted flow of urine that have persisted for approximately 5 months. During a digital rectal examination, his GP detects an enlarged prostate without nodules and his PSA levels are moderately elevated. The diagnosis is BPH. Which zone of the prostate experiences enlargement in BPH?

      Your Answer: Peripheral zone

      Correct Answer: Transitional zone

      Explanation:

      The periurethral gland area of the prostate gland does not have a distinct functional or histological identity. It is composed of cells from various regions of the prostate that are linked to different medical conditions. This part of the prostate does not typically experience enlargement and lacks glandular elements. Instead, it consists solely of fibrous tissue and smooth muscle cells, as its name implies.

      Benign prostatic hyperplasia (BPH) is a common condition that affects older men, with around 50% of 50-year-old men showing evidence of BPH and 30% experiencing symptoms. The risk of BPH increases with age, with around 80% of 80-year-old men having evidence of the condition. Ethnicity also plays a role, with black men having a higher risk than white or Asian men. BPH typically presents with lower urinary tract symptoms (LUTS), which can be categorised into obstructive (voiding) symptoms and irritative (storage) symptoms. Complications of BPH can include urinary tract infections, retention, and obstructive uropathy.

      Assessment of BPH may involve dipstick urine testing, U&Es, and PSA testing if obstructive symptoms are present or if the patient is concerned about prostate cancer. A urinary frequency-volume chart and the International Prostate Symptom Score (IPSS) can also be used to assess the severity of LUTS and their impact on quality of life. Management options for BPH include watchful waiting, alpha-1 antagonists, 5 alpha-reductase inhibitors, combination therapy, and surgery. Alpha-1 antagonists are considered first-line for moderate-to-severe voiding symptoms and can improve symptoms in around 70% of men, but may cause adverse effects such as dizziness and dry mouth. 5 alpha-reductase inhibitors may slow disease progression and reduce prostate volume, but can cause adverse effects such as erectile dysfunction and reduced libido. Combination therapy may be used for bothersome moderate-to-severe voiding symptoms and prostatic enlargement. Antimuscarinic drugs may be tried for persistent storage symptoms. Surgery, such as transurethral resection of the prostate (TURP), may also be an option.

    • This question is part of the following fields:

      • Renal System
      21.1
      Seconds
  • Question 21 - A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent...

    Incorrect

    • A 6-year-old girl is referred to the child assessment unit (CAU) for recurrent urinary tract infections. The paediatric consultant on CAU orders a group of investigations to find out the underlying cause.

      What are the risk factors for UTIs in children, as the paediatrics trainee has asked the medical student?

      Your Answer: Long urethra

      Correct Answer: Posterior urethral valves

      Explanation:

      The risk of urinary tract infection is higher in individuals with posterior urethral valves.

      Posterior urethral valves are a frequent cause of blockage in the lower urinary tract in males. They can be detected during prenatal ultrasound screenings. Due to the high pressure required for bladder emptying during fetal development, the child may experience damage to the renal parenchyma, resulting in renal impairment in 70% of boys upon diagnosis. Treatment involves the use of a bladder catheter, and endoscopic valvotomy is the preferred definitive treatment. Cystoscopic and renal follow-up is necessary.

    • This question is part of the following fields:

      • Renal System
      26.1
      Seconds
  • Question 22 - A 28-year-old rugby player complains of polyuria and polydipsia. He reports being hospitalized...

    Correct

    • A 28-year-old rugby player complains of polyuria and polydipsia. He reports being hospitalized 5 months ago due to a head injury sustained while playing rugby. Central diabetes insipidus is confirmed through biochemistry and a water-deprivation test. A pituitary MRI reveals a thickened pituitary stalk, supporting the diagnosis. What is the appropriate medication for this patient?

      Your Answer: Desmopressin

      Explanation:

      Desmopressin is an effective treatment for central diabetes insipidus, which is a rare condition caused by damage or dysfunction of the posterior pituitary gland resulting in a lack of ADH production. Carbimazole is used to treat hyperthyroidism, while goserelin is used to treat prostate cancer. Indapamide, a thiazide-like diuretic, is used to manage hypertension and heart failure.

      Diabetes insipidus is a medical condition that can be caused by either a decreased secretion of antidiuretic hormone (ADH) from the pituitary gland (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be caused by various factors such as head injury, pituitary surgery, and infiltrative diseases like sarcoidosis. On the other hand, nephrogenic DI can be caused by genetic factors, electrolyte imbalances, and certain medications like lithium and demeclocycline. The common symptoms of DI are excessive urination and thirst. Diagnosis is made through a water deprivation test and checking the osmolality of the urine. Treatment options include thiazides and a low salt/protein diet for nephrogenic DI, while central DI can be treated with desmopressin.

    • This question is part of the following fields:

      • Renal System
      18.3
      Seconds
  • Question 23 - A 72-year-old man with confirmed heart failure visits the community cardiology clinic and...

    Incorrect

    • A 72-year-old man with confirmed heart failure visits the community cardiology clinic and complains of ankle swelling as his most bothersome symptom. He expresses reluctance to begin another diuretic due to a previous hospitalization for weakness, nausea, and abdominal cramps after starting one. The cardiologist proposes initiating an aldosterone receptor antagonist. What medication is the cardiologist recommending?

      Your Answer: Mannitol (osmotic diuretic)

      Correct Answer: Spironolactone (potassium-sparing diuretic)

      Explanation:

      Spironolactone is a medication that works as an aldosterone antagonist in the cortical collecting duct. It is used to treat various conditions such as ascites, hypertension, heart failure, nephrotic syndrome, and Conn’s syndrome. In patients with cirrhosis, spironolactone is often prescribed in relatively large doses of 100 or 200 mg to counteract secondary hyperaldosteronism. It is also used as a NICE ‘step 4’ treatment for hypertension. In addition, spironolactone has been shown to reduce all-cause mortality in patients with NYHA III + IV heart failure who are already taking an ACE inhibitor, according to the RALES study.

      However, spironolactone can cause adverse effects such as hyperkalaemia and gynaecomastia, although the latter is less common with eplerenone. It is important to monitor potassium levels in patients taking spironolactone to prevent hyperkalaemia, which can lead to serious complications such as cardiac arrhythmias. Overall, spironolactone is a useful medication for treating various conditions, but its potential adverse effects should be carefully considered and monitored.

    • This question is part of the following fields:

      • Renal System
      27.7
      Seconds
  • Question 24 - A 42-year-old woman comes to the clinic for a follow-up on her ambulatory...

    Incorrect

    • A 42-year-old woman comes to the clinic for a follow-up on her ambulatory blood pressure test results. The test shows an average blood pressure of 150/92 mmHg. You suggest starting antihypertensive medication and recommend ACE inhibitors as the first-line treatment for her age group. These medications work by inhibiting the action of angiotensin-converting-enzyme, which converts angiotensin I to angiotensin II. Renin catalyzes the hydrolysis of angiotensinogen to produce angiotensin I. Where in the body is renin produced?

      Your Answer: Liver

      Correct Answer: Kidneys

      Explanation:

      Renin, which is produced in the kidneys’ juxtaglomerular cells, plays a crucial role in the renin-angiotensin-aldosterone system by converting angiotensinogen into angiotensin I. Angiotensin-converting-enzyme, which is primarily located in the lungs, converts angiotensin I to angiotensin II. The adrenal cortex produces aldosterone, a vital compound in the system, while the liver produces angiotensinogen. The pancreas, on the other hand, has no involvement in this system and produces insulin, glucagon, and other hormones and enzymes. Based on the World Health Organisation’s hypertension classification, the patient in question has mild hypertension, and according to current NICE guidelines, individuals under 55 years old with mild hypertension should receive lifestyle advice and be prescribed ACE inhibitors.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      22.1
      Seconds
  • Question 25 - A 75-year-old man has been diagnosed with glomerulonephritis. He has a medical history...

    Correct

    • A 75-year-old man has been diagnosed with glomerulonephritis. He has a medical history of systemic lupus erythematosus and chronic heart failure. Currently, he is taking statins, paracetamol, ramipril, prednisolone, and verapamil. Which of these medications will need to be discontinued due to his recent diagnosis?

      Your Answer: Ramipril

      Explanation:

      When a patient is experiencing acute kidney injury (AKI), it is important to discontinue certain medications that can exacerbate the condition. These medications include ACE inhibitors/ARBs, NSAIDs, and diuretics, which can all have a negative impact on glomerular filtration rate and pressure. A helpful mnemonic to remember these nephrotoxic drugs is DAMN (Diuretics, ACE inhibitors/ARBs, Metformin, NSAIDs). However, medications such as paracetamol, prednisolone, and statins are usually safe to continue during AKI as they do not significantly affect renal function.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      22.1
      Seconds
  • Question 26 - A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract...

    Incorrect

    • A 65-year-old woman is admitted to the ICU with a multidrug-resistant urinary tract infection. She has a medical history of type 2 diabetes, hypertension, and a previous cerebrovascular accident. After three days, she experiences an altered sensorium and her urine output has been 100 ml over the past 12 hours. Her creatinine level has increased from 1 mg/dl to almost 5 mg/dl, and her blood pressure is currently 180/100 mmHg. The patient is currently taking amikacin, insulin, atorvastatin, atenolol, ramipril, and clopidogrel.

      Which medication, other than ramipril, should be discontinued for this patient?

      Your Answer: Clopidogrel

      Correct Answer: Amikacin

      Explanation:

      The patient’s symptoms suggest that they may be experiencing acute kidney injury (AKI) as a result of a severe urinary tract infection and potential sepsis. It is important to note that ACE inhibitors such as ramipril should not be used in cases of AKI, and aminoglycosides like amikacin should also be discontinued. Beta-blockers like atenolol, on the other hand, are generally safe to use in AKI patients and may be preferred over ACE inhibitors and ARBs as antihypertensives. While statins like atorvastatin are generally safe in AKI, they can rarely cause rhabdomyolysis, which can worsen renal function and lead to renal failure. Therefore, patients who experience muscle pain should be evaluated further to rule out the possibility of rhabdomyolysis.

      Acute kidney injury (AKI) is a condition where there is a reduction in renal function following an insult to the kidneys. It was previously known as acute renal failure and can result in long-term impaired kidney function or even death. AKI can be caused by prerenal, intrinsic, or postrenal factors. Patients with chronic kidney disease, other organ failure/chronic disease, a history of AKI, or who have used drugs with nephrotoxic potential are at an increased risk of developing AKI. To prevent AKI, patients at risk may be given IV fluids or have certain medications temporarily stopped.

      The kidneys are responsible for maintaining fluid balance and homeostasis, so a reduced urine output or fluid overload may indicate AKI. Symptoms may not be present in early stages, but as renal failure progresses, patients may experience arrhythmias, pulmonary and peripheral edema, or features of uraemia. Blood tests such as urea and electrolytes can be used to detect AKI, and urinalysis and imaging may also be necessary.

      Management of AKI is largely supportive, with careful fluid balance and medication review. Loop diuretics and low-dose dopamine are not recommended, but hyperkalaemia needs prompt treatment to avoid life-threatening arrhythmias. Renal replacement therapy may be necessary in severe cases. Patients with suspected AKI secondary to urinary obstruction require prompt review by a urologist, and specialist input from a nephrologist is required for cases where the cause is unknown or the AKI is severe.

    • This question is part of the following fields:

      • Renal System
      37
      Seconds
  • Question 27 - A seven-year-old boy is being investigated for recurrent urinary tract infections. Imaging reveals...

    Incorrect

    • A seven-year-old boy is being investigated for recurrent urinary tract infections. Imaging reveals abnormal fusion of the inferior poles of both kidneys, leading to a diagnosis of horseshoe kidney. During fetal development, what structure traps horseshoe kidneys as they ascend anteriorly?

      Your Answer: Superior mesenteric artery

      Correct Answer: Inferior mesenteric artery

      Explanation:

      During fetal development, horseshoe kidneys become trapped under the inferior mesenteric artery as they ascend from the pelvis, resulting in their remaining low in the abdomen. This can lead to complications such as renal stones, infections, and hydronephrosis, including urteropelvic junction obstruction.

      Understanding Horseshoe Kidney Abnormality

      Horseshoe kidney is a condition that occurs during the embryonic development of the kidneys, where the lower poles of the kidneys fuse together, resulting in a U-shaped kidney. This abnormality is relatively common, affecting approximately 1 in 500 people in the general population. However, it is more prevalent in individuals with Turner’s syndrome, affecting 1 in 20 individuals with the condition.

      The fused kidney is typically located lower than normal due to the root of the inferior mesenteric artery, which prevents the anterior ascent. Despite this abnormality, most people with horseshoe kidney do not experience any symptoms. It is important to note that this condition does not typically require treatment unless complications arise. Understanding this condition can help individuals with horseshoe kidney and their healthcare providers manage any potential health concerns.

    • This question is part of the following fields:

      • Renal System
      28.8
      Seconds
  • Question 28 - A 58-year-old man is diagnosed with benign prostatic hyperplasia and is prescribed finasteride....

    Correct

    • A 58-year-old man is diagnosed with benign prostatic hyperplasia and is prescribed finasteride. He is informed that the drug works by inhibiting the conversion of testosterone to dihydrotestosterone, thereby preventing further enlargement of the prostate. What is the mechanism of action of finasteride?

      Your Answer: 5-alpha reductase inhibitor

      Explanation:

      The enzyme 5-alpha-reductase is responsible for converting testosterone into dihydrotestosterone (DHT) in the testes and prostate. DHT is a more active form of testosterone. Finasteride is a medication that inhibits 5-alpha-reductase, preventing the conversion of testosterone to DHT. This can help prevent further growth of the prostate and is why finasteride is used clinically.

      Alpha-1 agonist is an incorrect answer as it refers to adrenergic receptors and does not affect the conversion of testosterone to DHT. These drugs are used for benign prostate hyperplasia to relax smooth muscles in the bladder, reducing urinary symptoms. Tamsulosin is an example of an alpha-1 agonist.

      Androgen antagonist is also incorrect as these drugs block the action of testosterone and DHT by preventing their attachment to receptors. They do not affect the conversion of testosterone to DHT.

      Gonadotrophin-releasing hormone modulators are also an incorrect answer. These drugs affect the hypothalamus and the production of gonadotrophs, such as luteinizing hormone. They do not affect the conversion of testosterone to DHT.

      The renin-angiotensin-aldosterone system is a complex system that regulates blood pressure and fluid balance in the body. The adrenal cortex is divided into three zones, each producing different hormones. The zona glomerulosa produces mineralocorticoids, mainly aldosterone, which helps regulate sodium and potassium levels in the body. Renin is an enzyme released by the renal juxtaglomerular cells in response to reduced renal perfusion, hyponatremia, and sympathetic nerve stimulation. It hydrolyses angiotensinogen to form angiotensin I, which is then converted to angiotensin II by angiotensin-converting enzyme in the lungs. Angiotensin II has various actions, including causing vasoconstriction, stimulating thirst, and increasing proximal tubule Na+/H+ activity. It also stimulates aldosterone and ADH release, which causes retention of Na+ in exchange for K+/H+ in the distal tubule.

    • This question is part of the following fields:

      • Renal System
      16.9
      Seconds
  • Question 29 - A 45-year-old woman visits her doctor for a follow-up appointment after commencing metformin...

    Incorrect

    • A 45-year-old woman visits her doctor for a follow-up appointment after commencing metformin treatment half a year ago. She expresses worry about the potential long-term impact of diabetes on her kidneys, based on information she read online.

      What is the primary mechanism through which kidney damage occurs in this demographic of patients?

      Your Answer: Antigen-antibody complex deposition

      Correct Answer: Non-enzymatic glycosylation

      Explanation:

      The non-enzymatic glycosylation of the basement membrane is responsible for the complications of diabetes nephropathy.

      Understanding Diabetic Nephropathy: The Common Cause of End-Stage Renal Disease

      Diabetic nephropathy is the leading cause of end-stage renal disease in the western world. It affects approximately 33% of patients with type 1 diabetes mellitus by the age of 40 years, and around 5-10% of patients with type 1 diabetes mellitus develop end-stage renal disease. The pathophysiology of diabetic nephropathy is not fully understood, but changes to the haemodynamics of the glomerulus, such as increased glomerular capillary pressure, and non-enzymatic glycosylation of the basement membrane are thought to play a key role. Histological changes include basement membrane thickening, capillary obliteration, mesangial widening, and the development of nodular hyaline areas in the glomeruli, known as Kimmelstiel-Wilson nodules.

      There are both modifiable and non-modifiable risk factors for developing diabetic nephropathy. Modifiable risk factors include hypertension, hyperlipidaemia, smoking, poor glycaemic control, and raised dietary protein. On the other hand, non-modifiable risk factors include male sex, duration of diabetes, and genetic predisposition, such as ACE gene polymorphisms. Understanding these risk factors and the pathophysiology of diabetic nephropathy is crucial in the prevention and management of this condition.

    • This question is part of the following fields:

      • Renal System
      24.1
      Seconds
  • Question 30 - A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical...

    Incorrect

    • A 50-year-old male is undergoing evaluation for persistent proteinuria. He has a medical history of relapsed multiple myeloma. A renal biopsy is performed, and the Congo red stain with light microscopy shows apple-green birefringence under polarised light.

      What is the probable diagnosis?

      Your Answer: Focal segmental glomerulosclerosis

      Correct Answer: Amyloidosis

      Explanation:

      Understanding Amyloidosis

      Amyloidosis is a medical condition that occurs when an insoluble fibrillar protein called amyloid accumulates outside the cells. This protein is derived from various precursor proteins and contains non-fibrillary components such as amyloid-P component, apolipoprotein E, and heparan sulphate proteoglycans. The accumulation of amyloid fibrils can lead to tissue or organ dysfunction.

      Amyloidosis can be classified as systemic or localized, and further characterized by the type of precursor protein involved. For instance, in myeloma, the precursor protein is immunoglobulin light chain fragments, which is abbreviated as AL (A for amyloid and L for light chain fragments).

      To diagnose amyloidosis, doctors may use Congo red staining, which shows apple-green birefringence, or a serum amyloid precursor (SAP) scan. Biopsy of skin, rectal mucosa, or abdominal fat may also be necessary. Understanding amyloidosis is crucial for early detection and treatment of the condition.

    • This question is part of the following fields:

      • Renal System
      27.4
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Renal System (11/30) 37%
Passmed