-
Question 1
Correct
-
As the pregnancy progresses, at what stage does the foetus typically begin producing surfactant?
A mother has been informed that she will have to deliver her baby prematurely due to complications in the pregnancy. To decrease the chances of neonatal distress syndrome, doctors have administered steroids to stimulate surfactant production in the foetus. They clarify that the foetus is already generating its own surfactant, and these steroids will enhance the process.Your Answer: Week 22
Explanation:Lung development in humans begins at week 4 with the formation of the respiratory diverticulum. By week 10, the lungs start to grow as tertiary bronchial buds form. Terminal bronchioles begin to form around week 18. The saccular stage of lung development, which marks the earliest viability for a human fetus, occurs at around 22-24 weeks when type 2 alveolar cells start producing surfactant. By week 30, the primary alveoli form as the mesenchyme surrounding the lungs becomes highly vascular.
The Importance of Pulmonary Surfactant in Breathing
Pulmonary surfactant is a substance composed of phospholipids, carbohydrates, and proteins that is released by type 2 pneumocytes. Its main component, dipalmitoyl phosphatidylcholine (DPPC), plays a crucial role in reducing alveolar surface tension. This substance is first detectable around 28 weeks and increases in concentration as the alveoli decrease in size. This helps prevent the alveoli from collapsing and reduces the muscular force needed to expand the lungs, ultimately decreasing the work of breathing. Additionally, pulmonary surfactant lowers the elastic recoil at low lung volumes, preventing the alveoli from collapsing at the end of each expiration. Overall, pulmonary surfactant is essential in maintaining proper lung function and preventing respiratory distress.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 35-year-old pregnant woman undergoes an ABG test. What is the anticipated outcome for a healthy pregnant woman?
Your Answer: Compensated metabolic acidosis
Correct Answer: Compensated respiratory alkalosis
Explanation:During pregnancy, a woman’s increased tidal volume leads to a decrease in carbon dioxide levels, resulting in alkalosis. This is because carbon dioxide generates acid, and reduced levels of it lead to a decrease in acid. The kidneys eventually adapt to this change by reducing the amount of alkaline bicarbonate in the body. Therefore, pregnancy causes a compensated respiratory alkalosis.
If a woman’s bicarbonate levels remain normal, she would have simple respiratory alkalosis.
On the other hand, if a woman produces excess acid, she would have metabolic acidosis, which is the opposite of what occurs during pregnancy.
Arterial Blood Gas Interpretation: A 5-Step Approach
Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).
The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.
To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Correct
-
How many fissures can be found in the right lung?
At what age do these fissures typically develop?Your Answer: Two
Explanation:The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Correct
-
A 65-year-old patient presents at the lung cancer clinic for their initial assessment. Their general practitioner referred them due to a persistent cough lasting 5 months and a weight loss of one stone in a month. The patient has quit smoking recently but used to smoke 20-30 cigarettes daily for 30 years. No asbestos exposure is reported.
A circular lesion was detected in the right upper lobe during a recent chest x-ray. A subsequent computed tomography (CT) scan indicated that this lung lesion is indicative of a primary lesion.
What is the most probable sub-type of lung cancer in this case?Your Answer: Adenocarcinoma
Explanation:Adenocarcinoma has become the most prevalent form of lung cancer, as per the given scenario. This type of cancer accounts for approximately one-third of all cases and can occur in both smokers and non-smokers. Therefore, the most probable answer to the question is adenocarcinoma. Mesothelioma, on the other hand, is a rare and incurable cancer that is almost exclusively linked to asbestos exposure and affects the pleura. It would not present as an upper lobe mass, but rather as a loss of lung volume or pleural opacity. Alveolar cell carcinoma, which is less common than adenocarcinoma, would likely cause significant sputum production.
Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 16-year-old girl presents to the Emergency department with her mother. The mother reports that her daughter has been experiencing worsening breathlessness and facial puffiness for the past 30 minutes. Apart from eczema, the girl has been healthy and is currently taking oral contraceptives. On examination, the girl appears to be in distress, with laboured breathing and stridor but no wheezing. What is the probable cause of her breathlessness?
Your Answer: Asthma
Correct Answer: Angio-oedema
Explanation:Noisy Breathing and Atopy in Adolescents
The presence of noisy breathing in an adolescent may indicate the possibility of stridor, which can be caused by an allergic reaction even in an otherwise healthy individual. The history of atopy, or a tendency to develop allergic reactions, further supports the diagnosis of angio-oedema. The sudden onset of symptoms also adds to the likelihood of this diagnosis.
While asthma is a possible differential diagnosis, it typically presents with expiratory wheezing. However, if the chest is silent, it may indicate a severe and life-threatening form of asthma. Therefore, it is important to consider all possible causes of noisy breathing and atopy in adolescents to ensure prompt and appropriate treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 58-year-old man comes to the GP complaining of wheezing, coughing, and shortness of breath. He has a smoking history of 35 pack-years but has reduced his smoking recently.
The GP orders spirometry, which confirms a diagnosis of chronic obstructive pulmonary disease. The results also show an elevated functional residual capacity.
What is the method used to calculate this metric?Your Answer: Tidal volume + inspiratory reserve volume
Correct Answer: Expiratory reserve volume + residual volume
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Correct
-
A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst, and recent weight loss of around 5 kilograms in the last 2 months. The patient reports feeling extremely tired, although he acknowledges that work has been stressful lately, and his eating habits have been poor. The patient has a medical history of cystic fibrosis, with a Pseudomonas aeruginosa flare-up last year that required a brief hospital stay.
What could be the probable reason for this patient's clinical presentation?Your Answer: Diabetes mellitus
Explanation:Cystic fibrosis can lead to the development of a unique type of diabetes mellitus known as cystic fibrosis-related diabetes mellitus. This is caused by the destruction of pancreatic islets due to abnormal chloride channel function, which leads to thickened bodily secretions that damage the exocrine pancreas over time. As a result, there is a gradual reduction in islet cell function and relative insulin deficiency, which can cause symptoms such as polydipsia, polyuria, fatigue, and weight loss.
It is important to note that this type of diabetes is distinct from type 1 or type 2 diabetes. Additionally, it is not associated with other conditions such as diabetes insipidus, primary hyperparathyroidism, or prostatitis, which have their own unique symptoms and causes.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Correct
-
You are on call for the pediatric ward at night and are urgently called to a child who is choking on a piece of hot dog visible in their oropharynx. The child is in extremis with saturations of 87% and there is no effective cough.
What is the most appropriate immediate management for this pediatric patient?Your Answer: Back blows
Explanation:Resuscitation Council (UK) Recommendations for Choking Emergencies
When faced with a choking emergency, the Resuscitation Council (UK) recommends a specific course of action. If the patient is able to cough effectively, encourage them to do so. If not, but they are conscious, try five back blows followed by five abdominal thrusts (Heimlich manoeuvre) and repeat if necessary. However, if the patient becomes unconscious, begin CPR immediately. It is important to note that a finger sweep is no longer recommended as it can push the obstruction further into the airway. Additionally, high flow oxygen is necessary for breathing, but nasopharyngeal airways will not help in this situation. Removal with forceps is also not recommended as it can be hazardous. If the Heimlich manoeuvre fails, a cricothyroidotomy should be considered. While this procedure is recommended in the US and UK, it is not encouraged in some countries like Australia due to the risk of internal injury from over-vigorous use.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing central chest pain that radiates to his back, neck, and left shoulder. He reports feeling feverish and states that sitting forward relieves the pain while lying down worsens it. The patient also mentions a recent hospitalization for a heart attack three weeks ago. During auscultation at the left sternal border, a scratchy sound is heard while the patient leans forward and holds his breath. His ECG shows widespread ST-segment saddle elevation and PR-segment depression. Can you identify the nerve responsible for his shoulder pain?
Your Answer: Phrenic nerve
Explanation:The referred pain to the shoulder in this case is likely caused by Dressler’s syndrome, a type of pericarditis that occurs after a heart attack. The scratchy sound heard during auscultation is a pericardial friction rub, which is a common characteristic of pericarditis. The phrenic nerve, which supplies the pericardium, travels from the neck down through the thoracic cavity and can cause referred pain to the shoulder in cases of pericarditis.
The axillary nerve is responsible for innervating the teres minor and deltoid muscles, and dysfunction of this nerve can result in loss of sensation or movement in the shoulder area.
While the accessory nerve does innervate muscles in the neck that attach to the shoulder, it has a purely motor function and is not responsible for sensory input. Additionally, the referred pain in this case is not typical of musculoskeletal pain, but rather a result of pericarditis.
Injuries involving the long thoracic nerve often result in winging of the scapula and are commonly caused by axillary surgery.
Although the vagus nerve does supply parasympathetic innervation to the heart, it is not responsible for the referred pain in this case, as the pericardium is innervated by the phrenic nerve.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Correct
-
A 59-year-old man comes to you with a dry cough that has been going on for three months and recent episodes of haemoptysis. He stopped smoking five years ago and has had two bouts of pneumonia in his left lower lobe in the last year. On examination, he is apyrexial and there are no notable findings.
What would be your first step in investigating this patient?Your Answer: Chest x ray
Explanation:Diagnosis of Bronchial Carcinoma
The patient’s medical history indicates the possibility of bronchial carcinoma. The most appropriate initial investigation to confirm this diagnosis is a chest x-ray. Other tests such as blood cultures may not be useful for an apyrexial patient. However, additional investigations may be considered after the chest x-ray. It is important to prioritize the chest x-ray as the first line investigation to detect any abnormalities in the lungs. Proper diagnosis is crucial for timely treatment and management of bronchial carcinoma.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
Which of the following muscles is not innervated by the ansa cervicalis?
Your Answer: None of the above
Correct Answer: Mylohyoid
Explanation:The muscles of the ansa cervicalis are: GenioHyoid, ThyroidHyoid, Superior Omohyoid, SternoThyroid, SternoHyoid, and Inferior Omohyoid. The mylohyoid muscle is innervated by the mylohyoid branch of the inferior alveolar nerve. A mnemonic to remember these muscles is GHost THought SOmeone Stupid Shot Irene.
The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 35-year-old patient has been experiencing breathing difficulties for the past year. He finds it challenging to climb small hills, has developed a persistent cough, and has had two chest infections that were treated effectively by his doctor. He has never smoked, and his mother had comparable symptoms when she was his age. Based on his spirometry results, which indicate an FEV1/FVC ratio of 60%, his doctor suspects that his symptoms are caused by a genetic disorder. What is the molecular mechanism that underlies his probable condition?
Your Answer: Increased efficacy of neutrophil elastase
Correct Answer: Failure to break down neutrophil elastase
Explanation:The patient’s medical history suggests that they may be suffering from alpha-1 antitrypsin deficiency.
When there is a shortage of alpha-1 antitrypsin, neutrophil elastase is not inhibited and can break down proteins in the lung interstitium. Although neutrophil elastase is a crucial part of the innate immune system, its unregulated activity can lead to excessive breakdown of extracellular proteins like elastin, collagen, fibronectin, and fibrin. This results in reduced pulmonary elasticity, which can cause emphysema and COPD.
Alpha-1 antitrypsin (A1AT) deficiency is a genetic condition that occurs when the liver does not produce enough of a protein called protease inhibitor (Pi). This protein is responsible for protecting cells from enzymes like neutrophil elastase. A1AT deficiency is inherited in an autosomal recessive or co-dominant manner and is located on chromosome 14. The alleles are classified by their electrophoretic mobility, with M being normal, S being slow, and Z being very slow. The normal genotype is PiMM, while heterozygous individuals have PiMZ. Homozygous PiSS individuals have 50% normal A1AT levels, while homozygous PiZZ individuals have only 10% normal A1AT levels.
A1AT deficiency is most commonly associated with panacinar emphysema, which is a type of chronic obstructive pulmonary disease (COPD). This is especially true for patients with the PiZZ genotype. Emphysema is more likely to occur in non-smokers with A1AT deficiency, but they may still pass on the gene to their children. In addition to lung problems, A1AT deficiency can also cause liver issues such as cirrhosis and hepatocellular carcinoma in adults, and cholestasis in children.
Diagnosis of A1AT deficiency involves measuring A1AT concentrations and performing spirometry to assess lung function. Management of the condition includes avoiding smoking and receiving supportive care such as bronchodilators and physiotherapy. Intravenous alpha1-antitrypsin protein concentrates may also be used. In severe cases, lung volume reduction surgery or lung transplantation may be necessary.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Correct
-
What is the accurate embryonic source of the stapes?
Your Answer: Second pharyngeal arch
Explanation:The stapes, which is a cartilaginous element in the ear, originates from the ectoderm covering the outer aspect of the second pharyngeal arch. This strip of ectoderm is located lateral to the metencephalic neural fold. Reicherts cartilage, which extends from the otic capsule to the midline on each side, is responsible for the formation of the stapes. The cartilages of the first and second pharyngeal arches articulate superior to the tubotympanic recess, with the malleus, incus, and stapes being formed from these cartilages. While the malleus is mostly formed from the first arch, the stapes is most likely to arise from the second arch.
The Development and Contributions of Pharyngeal Arches
During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.
Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.
Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Correct
-
A 26-year-old man is brought to the emergency department after being rescued at sea following a sailing accident. He is currently unresponsive with a Glasgow Coma Score of 9 (E2 V3 M4).
His vital signs include a heart rate of 110 beats per minute, blood pressure of 110/76 mmHg, oxygen saturation of 93%, and temperature of 34.8 ºC. An ECG is unremarkable and venous blood indicates type 2 respiratory failure. The patient's oxygen dissociation curve shows a leftward shift.
What is the cause of the leftward shift in this 26-year-old patient's oxygen dissociation curve?Your Answer: Hypothermia
Explanation:The only answer that causes a leftward shift in the oxygen dissociation curve is hypothermia. When tissues undergo aerobic respiration, they generate heat, which changes the shape of the haemoglobin molecule and reduces its affinity for oxygen. This results in the release of oxygen at respiring tissues. In contrast, lower temperatures in the lungs cause a leftward shift in the oxygen dissociation curve, which increases the binding of oxygen to haemoglobin.
Hypercapnia is not the correct answer because it causes a rightward shift in the oxygen dissociation curve. Hypercapnia lowers blood pH, which changes the shape of haemoglobin and reduces its affinity for oxygen.
Hypoxaemia is not the correct answer because the partial pressure of oxygen does not affect the oxygen dissociation curve. The partial pressure of oxygen does not change the affinity of haemoglobin for oxygen.
Increased concentration of 2,3-diphosphoglycerate (2,3-DPG) is not the correct answer because higher concentrations of 2,3-DPG reduce haemoglobin’s affinity for oxygen, causing a right shift in the oxygen dissociation curve.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Correct
-
A 25-year-old patient is undergoing routine pulmonary function testing to assess her chronic condition. The results are compared to a standardised predicted value and presented in the table below:
FEV1 75% of predicted
FVC 70% of predicted
FEV1/FVC 105%
What is the probable condition that this patient is suffering from, which can account for the above findings?Your Answer: Neuromuscular disorder
Explanation:The patient’s pulmonary function tests indicate a restrictive pattern, as both FEV1 and FVC are reduced. This suggests a possible neuromuscular disorder, as all other options would result in an obstructive pattern on the tests. Asthma, bronchiectasis, and COPD are unlikely diagnoses for a 20-year-old and would not match the test results. Pneumonia may affect the patient’s ability to perform the tests, but it is typically an acute condition that requires immediate treatment with antibiotics.
Understanding Pulmonary Function Tests
Pulmonary function tests are a useful tool in determining whether a respiratory disease is obstructive or restrictive. These tests measure various aspects of lung function, such as forced expiratory volume in one second (FEV1) and forced vital capacity (FVC). By analyzing the results of these tests, doctors can diagnose and monitor conditions such as asthma, COPD, pulmonary fibrosis, and neuromuscular disorders.
In obstructive lung diseases, such as asthma and COPD, the FEV1 is significantly reduced, while the FVC may be reduced or normal. The FEV1% (FEV1/FVC) is also reduced. On the other hand, in restrictive lung diseases, such as pulmonary fibrosis and asbestosis, the FEV1 is reduced, but the FVC is significantly reduced. The FEV1% (FEV1/FVC) may be normal or increased.
It is important to note that there are many conditions that can affect lung function, and pulmonary function tests are just one tool in diagnosing and managing respiratory diseases. However, understanding the results of these tests can provide valuable information for both patients and healthcare providers.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Correct
-
A 16-year-old male presents to the emergency department with a 48-hour history of tachypnea and tachycardia. His blood glucose level is 18mmol/l. While breathing 40% oxygen, an arterial blood sample is taken. The results show a PaO2 of 22kPa, pH of 7.35, PaCO2 of 3.5kPa, and HCO3- of 18.6 mmol/l. How should these blood gas results be interpreted?
Your Answer: Metabolic acidosis with full respiratory compensation
Explanation:The patient’s blood gas analysis shows a lower oxygen pressure by about 10kPa than the percentage of oxygen. The PaCo2 level is 3.5, indicating respiratory alkalosis or compensation for metabolic acidosis. The HCO3- level is 18.6, which suggests metabolic acidosis or metabolic compensation for respiratory alkalosis. These results indicate that the patient has metabolic acidosis with complete respiratory compensation. Additionally, the patient’s high blood glucose level suggests that the metabolic acidosis is due to diabetic ketoacidosis.
Arterial Blood Gas Interpretation: A 5-Step Approach
Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).
The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.
To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 49-year-old woman of African descent visits her primary care physician with concerns about a lump in her neck that has been present for a week. She reports no significant increase in size and denies any pain or difficulty swallowing. The patient has no notable medical history, except for a visit to the eye doctor last year for a red-eye that required treatment with topical steroid drops. During the examination, the doctor observes some red, tender nodules on the patient's shin, which the patient says come and go and do not cause much discomfort. A chest x-ray reveals bilateral hilar lymphadenopathy with no other significant findings. What is typically linked to this patient's condition?
Your Answer: Exposure to silica
Correct Answer: Elevated angiotensin-converting enzyme levels
Explanation:Sarcoidosis is likely in this patient based on their symptoms and examination findings, including a neck lump, tender nodules on the shin, and a history of red-eye. Bilateral lymphadenopathy on chest X-ray further supports the diagnosis, as does the presence of elevated angiotensin-converting enzyme levels, which are commonly seen in sarcoidosis. Hypercalcemia, fatigue, and uveitis are also associated with sarcoidosis, while exposure to silica is not supported by this patient’s presentation.
Investigating Sarcoidosis
Sarcoidosis is a disease that does not have a single diagnostic test, and therefore, diagnosis is mainly based on clinical observations. Although ACE levels may be used to monitor disease activity, they are not reliable in diagnosing sarcoidosis due to their low sensitivity and specificity. Routine blood tests may show hypercalcemia and a raised ESR.
A chest x-ray is a common investigation for sarcoidosis and may reveal different stages of the disease. Stage 0 is normal, stage 1 shows bilateral hilar lymphadenopathy (BHL), stage 2 shows BHL and interstitial infiltrates, stage 3 shows diffuse interstitial infiltrates only, and stage 4 shows diffuse fibrosis. Other investigations, such as spirometry, may show a restrictive defect, while a tissue biopsy may reveal non-caseating granulomas. However, the Kveim test, which involves injecting part of the spleen from a patient with known sarcoidosis under the skin, is no longer performed due to concerns about cross-infection.
In addition, a gallium-67 scan is not routinely used to investigate sarcoidosis. CT scans may also be used to investigate sarcoidosis, and they may show diffuse areas of nodularity predominantly in a peribronchial distribution with patchy areas of consolidation, particularly in the upper lobes. Ground glass opacities may also be present, but there are no gross reticular changes to suggest fibrosis.
Overall, investigating sarcoidosis involves a combination of clinical observations, blood tests, chest x-rays, and other investigations such as spirometry and tissue biopsy. CT scans may also be used to provide more detailed information about the disease.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Incorrect
-
A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.
The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.
What is the most likely condition based on this patient's clinical presentation?Your Answer: Otitis media
Correct Answer: Cholesteatoma
Explanation:Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.
Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.
Understanding Cholesteatoma
Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.
The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.
During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.
Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.
In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Correct
-
A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.
What specific lung volume would accurately describe the clinician's observation?Your Answer: Tidal volume (TV)
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
A 60-year-old diabetic patient presents to the clinic with a chief complaint of hearing loss. After conducting a Webber’s and Rinne’s test, the following results were obtained:
- Webber’s test: lateralizes to the left ear
- Rinne’s test (left ear): bone conduction > air conduction
- Rinne’s test (right ear): air conduction > bone conduction
Based on these findings, what is the probable cause of the patient's hearing loss?Your Answer: Acoustic neuroma
Correct Answer: Otitis media with effusion
Explanation:The Weber test lateralises to the side with bone conduction > air conduction, indicating conductive hearing loss on that side. The options given include acoustic neuroma (sensorineural hearing loss), otitis media with effusion (conductive hearing loss), temporal lobe epilepsy (no conductive hearing loss), and Meniere’s disease (vertigo, tinnitus, and fluctuating hearing loss). The correct answer is otitis media with effusion.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Correct
-
A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?
Your Answer: Clubbing
Explanation:Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Correct
-
A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales one. In which of the following lung regions is the ball expected to settle?
Your Answer: Right lower lobe
Explanation:Due to the angle of the right main bronchus from the trachea, small objects are more likely to get stuck in the most dependent part of the right lung. This makes the right lung the preferred location for most objects to enter.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 29-year-old male is injured by a gunshot to his right chest resulting in a right haemothorax that requires a thoracotomy. During the procedure, the surgeons opt to use a vascular clamp to secure the hilum of the right lung. What structure will be positioned most anteriorly at this location?
Your Answer: Pulmonary artery
Correct Answer: Phrenic nerve
Explanation:At the base of the right lung, the phrenic nerve is located in the anterior position.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Correct
-
A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has been admitted and treated for infective exacerbations of COPD three times in the past year. Despite his respiratory issues, he continues to smoke. He is currently receiving only short-acting beta2-agonist therapy. During his COPD patient review with the nurse practitioner at his local general practice, spirometry results reveal a drop in his FEV1 from 65% to 58%.
What is the most effective approach to manage his condition and prevent further decline in his FEV1?Your Answer: Smoking cessation
Explanation:The most effective intervention to slow the decrease in FEV1 experienced by patients with COPD is to stop smoking. If the patient has no asthmatic/steroid-responsive features, the next step in management would be to add a long-acting beta2-agonist (LABA) and a long-acting muscarinic antagonist. If the patient has asthmatic/steroid-responsive features, the next step would be to add a LABA and an inhaled corticosteroid. Oral theophylline is only considered if inhaled therapy is not possible, and oral prednisolone is only used during acute infective exacerbations of COPD to help with inflammation and is not a long-term solution to slow the reduction of FEV1.
The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.
Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.
If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.
NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.
Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Incorrect
-
A 67-year-old woman presents to the clinic with a gradual onset of dyspnea on exertion over the past 6 months. She has a medical history of severe COPD and is currently receiving long-term oxygen therapy. During the examination, you observe pitting edema up to the mid-thighs, an elevated JVP with a prominent V wave, a precordial heave, and a loud P2. What is the most probable mechanism involved in this diagnosis?
Your Answer: Pulmonary veins vasoconstriction due to hypoxia
Correct Answer: Pulmonary arteries vasoconstriction due to hypoxia
Explanation:Hypoxia causes vasoconstriction of pulmonary arteries, leading to a diagnosis of right heart failure secondary to hypoxic lung disease, also known as cor pulmonale.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Correct
-
A 55-year-old man presents to his doctor with complaints of vertigo, which worsens when he rolls over in bed. The doctor diagnoses him with benign paroxysmal positional vertigo.
What treatment options are available to alleviate the symptoms of this condition?Your Answer: Epley manoeuvre
Explanation:The Epley manoeuvre is a treatment for BPPV, while the Dix-Hallpike manoeuvre is used for diagnosis. The Epley manoeuvre aims to move fluid in the inner ear to dislodge otoliths, while the Dix-Hallpike manoeuvre involves observing the patient for nystagmus when swiftly lowered from a sitting to supine position. Tinel’s sign is positive in those with carpal tunnel syndrome, where tapping the median nerve over the flexor retinaculum causes paraesthesia. The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.
Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.
Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Correct
-
A 3-year-old male toddler of Asian descent is referred to a paediatrician by his GP due to recurrent respiratory infections and failure to thrive. The doctor orders a sweat test, which comes back positive. What are the potential complications associated with the likely diagnosis?
Your Answer: Steatorrhea
Explanation:Cystic fibrosis can lead to steatorrhea, which is caused by the malabsorption of fat in the intestines. This is a common symptom of the disease and requires specialist management. While patients with CF may have a slightly increased risk of sensorineural hearing loss, this is mainly due to the side effects of certain drugs used to treat the disease. Melaena, which is the passage of dark faeces due to partially digested blood from the upper gastrointestinal system, is a rare symptom in patients with CF. There is no association between CF and intellectual disability. Although some studies suggest an increased incidence of pulmonary emboli in patients with CF, the associated risk is small and mainly due to the use of central venous catheters and liver dysfunction or vitamin K deficiency.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Incorrect
-
Which of the following laryngeal tumors is unlikely to spread to the cervical lymph nodes?
Your Answer: Aryepiglottic fold
Correct Answer: Glottic
Explanation:The area of the vocal cords lacks lymphatic drainage, making it a lymphatic boundary. The upper portion above the vocal cords drains to the deep cervical nodes through vessels that penetrate the thyrohyoid membrane. The lower portion below the vocal cords drains to the pre-laryngeal, pre-tracheal, and inferior deep cervical nodes. The aryepiglottic and vestibular folds have a significant lymphatic drainage and are prone to early metastasis.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives at the hospital complaining of worsening shortness of breath and a productive cough. As part of the initial evaluation, a chest X-ray is requested.
What radiographic feature would you anticipate observing on her chest X-ray?Your Answer: Pleural effusion
Correct Answer: Flattened diaphragm
Explanation:The diaphragm of patients with COPD often appears flattened on a chest X-ray due to the chronic expiratory airflow obstruction causing dynamic hyperinflation of the lungs. Pleural effusions are commonly associated with infection, malignancy, or heart failure, while empyema is a result of pus accumulation in the pleural space caused by an infection.
Understanding COPD: Symptoms and Diagnosis
Chronic obstructive pulmonary disease (COPD) is a common medical condition that includes chronic bronchitis and emphysema. Smoking is the leading cause of COPD, and patients with mild disease may only need occasional use of a bronchodilator, while severe cases may result in frequent hospital admissions due to exacerbations. Symptoms of COPD include a productive cough, dyspnea, wheezing, and in severe cases, right-sided heart failure leading to peripheral edema.
To diagnose COPD, doctors may recommend post-bronchodilator spirometry to demonstrate airflow obstruction, a chest x-ray to check for hyperinflation, bullae, and flat hemidiaphragm, and to exclude lung cancer. A full blood count may also be necessary to exclude secondary polycythemia, and body mass index (BMI) calculation is important. The severity of COPD is categorized using the FEV1, with a ratio of less than 70% indicating airflow obstruction. The grading system has changed following the 2010 NICE guidelines, with Stage 1 – mild now including patients with an FEV1 greater than 80% predicted but with a post-bronchodilator FEV1/FVC ratio of less than 0.7. Measuring peak expiratory flow is of limited value in COPD, as it may underestimate the degree of airflow obstruction.
In summary, COPD is a common condition caused by smoking that can result in a range of symptoms and severity. Diagnosis involves various tests to check for airflow obstruction, exclude lung cancer, and determine the severity of the disease.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
A 65-year-old man with a 45-pack-year history arrives at the hospital complaining of increased difficulty breathing and cachexia. Upon examination, a chest X-ray reveals an elevated left hemidiaphragm, enlarged hilar lymph nodes, and a significant opacification. Which structure is most likely to have been affected?
Your Answer: Left hemidiaphragm
Correct Answer: Left phrenic nerve
Explanation:It is unlikely that direct injury would result in the elevation of the left hemidiaphragm, especially since there is no history of trauma or surgery. However, damage to the long thoracic nerve could cause winging of the scapula due to weakened serratus anterior muscle. On the other hand, injury to the thoracodorsal nerve, which innervates the latissimus dorsi muscle, can lead to weakened shoulder adduction and is a common complication of axillary surgery.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)