00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 25-year-old man experiences a blunt head trauma and presents with a GCS...

    Incorrect

    • A 25-year-old man experiences a blunt head trauma and presents with a GCS of 7 upon admission. What is the primary factor influencing cerebral blood flow in this scenario?

      Your Answer: Systemic blood pressure

      Correct Answer: Intracranial pressure

      Explanation:

      Cerebral blood flow can be impacted by both hypoxaemia and acidosis, but in cases of trauma, the likelihood of increased intracranial pressure is much higher, particularly when the Glasgow Coma Scale (GCS) is low. This can have a negative impact on cerebral blood flow.

      Understanding Cerebral Blood Flow and Angiography

      Cerebral blood flow is regulated by the central nervous system, which can adjust its own blood supply. Various factors can affect cerebral pressure, including CNS metabolism, trauma, pressure, and systemic carbon dioxide levels. The most potent mediator is PaCO2, while acidosis and hypoxemia can also increase cerebral blood flow to a lesser degree. In patients with head injuries, increased intracranial pressure can impair blood flow. The Monro-Kelly Doctrine governs intracerebral pressure, which considers the brain as a closed box, and changes in pressure are offset by the loss of cerebrospinal fluid. However, when this is no longer possible, intracranial pressure rises.

      Cerebral angiography is an invasive test that involves injecting contrast media into the carotid artery using a catheter. Radiographs are taken as the dye works its way through the cerebral circulation. This test can be used to identify bleeding aneurysms, vasospasm, and arteriovenous malformations, as well as differentiate embolism from large artery thrombosis. Understanding cerebral blood flow and angiography is crucial in diagnosing and treating various neurological conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      11.4
      Seconds
  • Question 2 - A teenage boy suddenly collapses outside his home. He is found to be...

    Incorrect

    • A teenage boy suddenly collapses outside his home. He is found to be in cardiac arrest and unfortunately passed away in the hospital. Posthumously, he is diagnosed with arrhythmogenic right ventricular cardiomyopathy. What alterations would this condition bring about in the heart?

      Your Answer: Asymmetrical thickening of the ventricle and septum

      Correct Answer: Myocardium replaced by fatty and fibrofatty tissue

      Explanation:

      Arrhythmogenic right ventricular cardiomyopathy is characterized by the replacement of the right ventricular myocardium with fatty and fibrofatty tissue. Hypertrophic obstructive cardiomyopathy, which is the leading cause of sudden cardiac death, is associated with asymmetrical thickening of the septum. Left ventricular hypertrophy can be caused by hypertension, aortic valve stenosis, hypertrophic cardiomyopathy, and athletic training. While arrhythmogenic right ventricular cardiomyopathy can cause ventricular dilation in later stages, it is not transient. Transient ballooning would suggest a diagnosis of Takotsubo cardiomyopathy, which is triggered by acute stress.

      Arrhythmogenic right ventricular cardiomyopathy (ARVC), also known as arrhythmogenic right ventricular dysplasia or ARVD, is a type of inherited cardiovascular disease that can lead to sudden cardiac death or syncope. It is considered the second most common cause of sudden cardiac death in young individuals, following hypertrophic cardiomyopathy. The disease is inherited in an autosomal dominant pattern with variable expression, and it is characterized by the replacement of the right ventricular myocardium with fatty and fibrofatty tissue. Approximately 50% of patients with ARVC have a mutation in one of the several genes that encode components of desmosome.

      The presentation of ARVC may include palpitations, syncope, or sudden cardiac death. ECG abnormalities in V1-3, such as T wave inversion, are typically observed. An epsilon wave, which is best described as a terminal notch in the QRS complex, is found in about 50% of those with ARVC. Echo changes may show an enlarged, hypokinetic right ventricle with a thin free wall, although these changes may be subtle in the early stages. Magnetic resonance imaging is useful in showing fibrofatty tissue.

      Management of ARVC may involve the use of drugs such as sotalol, which is the most widely used antiarrhythmic. Catheter ablation may also be used to prevent ventricular tachycardia, and an implantable cardioverter-defibrillator may be recommended. Naxos disease is an autosomal recessive variant of ARVC that is characterized by a triad of ARVC, palmoplantar keratosis, and woolly hair.

    • This question is part of the following fields:

      • Cardiovascular System
      19.2
      Seconds
  • Question 3 - A 40-year-old man undergoes a routine health check and his ECG reveals a...

    Incorrect

    • A 40-year-old man undergoes a routine health check and his ECG reveals a prolonged QT segment. He has no medical history and is not taking any medication. His father and grandfather both died from sudden cardiac arrest in their early 30s.

      What arrhythmias are most likely to occur as a result of this ECG abnormality?

      Your Answer:

      Correct Answer: Torsades de pointes

      Explanation:

      Torsades de pointes is the most common consequence of Long QT syndrome, which can also result in polymorphic ventricular tachycardia.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 4 - A 68-year-old man comes to his GP for a medication review. His medical...

    Incorrect

    • A 68-year-old man comes to his GP for a medication review. His medical record shows that he has vertebral artery stenosis, which greatly elevates his chances of experiencing a stroke in the posterior circulation.

      Can you identify the location where the impacted arteries converge to create the basilar artery?

      Your Answer:

      Correct Answer: Base of the pons

      Explanation:

      The basilar artery is formed by the union of the vertebral arteries at the base of the pons, which is the most appropriate answer. If a patient has stenosis in their vertebral artery, it can increase the risk of a posterior circulation stroke by reducing perfusion to the brain or causing an arterial embolus.

      The anterior aspect of the spinal cord is not the most appropriate answer as it is supplied by the anterior spinal arteries, which branch off the vertebral arteries and descend past the anterior aspect of the brainstem to supply the spinal cord’s anterior aspects.

      The region anterior to the cavernous sinus is not the most appropriate answer. The internal carotid arteries pass anterior to the cavernous sinus before branching off to anastomose with the circle of Willis, mainly contributing to the anterior circulation of the brain.

      The pontomesencephalic junction is not the most appropriate answer. The superior cerebellar arteries branch off from the distal basilar artery at the pontomesencephalic junction.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 5 - A newborn male delivered at 38 weeks gestation presents with severe cyanosis within...

    Incorrect

    • A newborn male delivered at 38 weeks gestation presents with severe cyanosis within the first hour of life. He experiences worsening respiratory distress and is unable to feed properly. The infant is immediately transferred to the neonatal intensive care unit for supportive care. The mother did not receive any prenatal care and the baby was delivered via an uncomplicated spontaneous vaginal delivery.

      During physical examination, the neonate appears lethargic and cyanotic. His vital signs are as follows: respiratory rate 60/min, oxygen saturation 82% (on 65% oxygen), heart rate 155/min, blood pressure 98/68 mmHg. Cardiac auscultation reveals a loud S2 heart sound.

      A chest x-ray shows an 'eggs on a string' appearance of the cardiac silhouette. An electrocardiogram (ECG) indicates right ventricular dominance. Further diagnostic testing with echocardiography confirms a congenital heart defect.

      What is the most likely embryological pathology underlying this neonate's congenital heart defect?

      Your Answer:

      Correct Answer: Failure of the aorticopulmonary septum to spiral

      Explanation:

      Transposition of great vessels is caused by the failure of the aorticopulmonary septum to spiral during early life, resulting in a cyanotic heart disease. The classic X-ray description and clinical findings support this diagnosis. Other cyanotic heart defects, such as tricuspid atresia and Tetralogy of Fallot, have different clinical features and X-ray findings. Non-cyanotic heart defects, such as atrial septal defect, have a defect in the interatrial septum. Aortic coarctation is characterized by a narrowing near the insertion of ductus arteriosus.

      Understanding Transposition of the Great Arteries

      Transposition of the great arteries (TGA) is a type of congenital heart disease that results in cyanosis. This condition occurs when the aorticopulmonary septum fails to spiral during septation, causing the aorta to leave the right ventricle and the pulmonary trunk to leave the left ventricle. Infants born to diabetic mothers are at a higher risk of developing TGA.

      The clinical features of TGA include cyanosis, tachypnea, a loud single S2, and a prominent right ventricular impulse. Chest x-rays may show an egg-on-side appearance. To manage TGA, prostaglandins can be used to maintain the ductus arteriosus. However, surgical correction is the definitive treatment for this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 6 - A 45-year-old woman has varicose veins originating from the short saphenous vein. During...

    Incorrect

    • A 45-year-old woman has varicose veins originating from the short saphenous vein. During mobilization of the vein near its origin, which structure is at the highest risk of injury?

      Your Answer:

      Correct Answer: Sural nerve

      Explanation:

      Litigation often arises from damage to the sural nerve, which is closely associated with this structure. While the other structures may also sustain injuries, the likelihood of such occurrences is comparatively lower.

      Anatomy of the Popliteal Fossa

      The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.

      The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.

      Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 7 - A person in their 60s is prescribed clopidogrel following a transient ischaemic attack....

    Incorrect

    • A person in their 60s is prescribed clopidogrel following a transient ischaemic attack. What is the mechanism of action of clopidogrel as an antiplatelet medication?

      Clopidogrel is prescribed to prevent blood clots from forming by inhibiting platelet aggregation. It works by irreversibly binding to the P2Y12 receptor on the platelet surface, which prevents the activation of the glycoprotein IIb/IIIa complex. This complex is responsible for the final common pathway of platelet aggregation, so by inhibiting its activation, clopidogrel reduces the risk of thrombotic events such as stroke or myocardial infarction.

      Your Answer:

      Correct Answer: ADP receptor antagonist

      Explanation:

      Clopidogrel works by blocking ADP receptors, which prevents platelet activation and the formation of blood clots.

      Aspirin and other NSAIDs inhibit the COX-1 enzyme, leading to a decrease in prostaglandins and thromboxane, which helps to prevent blood clots.

      Antiplatelet medications like abciximab and eptifibatide work by blocking glycoprotein IIb/IIIa receptors on platelets, which prevents platelet adhesion and activation.

      Increasing thrombomodulin expression and prostacyclin levels would have the opposite effect and increase blood coagulability and platelet production.

      Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease

      Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.

      Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you...

    Incorrect

    • As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you witness the ligation of blood vessels supplying the parathyroid glands. The ENT consultant requests you to identify the arteries responsible for supplying oxygenated blood to the parathyroid gland. Can you correctly name these arteries?

      Your Answer:

      Correct Answer: Superior and inferior thyroid arteries

      Explanation:

      The superior and inferior thyroid arteries provide oxygenated blood supply to the parathyroid glands. The existence of inferior parathyroid arteries and superior parathyroid arteries is not supported by anatomical evidence. While a middle thyroid artery may exist in some individuals, it is a rare variation that is not relevant to the question at hand.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A patient in their 60s is diagnosed with first-degree heart block which is...

    Incorrect

    • A patient in their 60s is diagnosed with first-degree heart block which is shown on their ECG by an elongated PR interval. The PR interval relates to a particular period in the electrical conductance of the heart.

      What factors could lead to a decrease in the PR interval?

      Your Answer:

      Correct Answer: Increased conduction velocity across the AV node

      Explanation:

      An increase in sympathetic activation leads to a faster heart rate by enhancing the conduction velocity of the AV node. The PR interval represents the time between the onset of atrial depolarization (P wave) and the onset of ventricular depolarization (beginning of QRS complex). While atrial conduction occurs at a speed of 1m/s, the AV node only conducts at 0.05m/s. Consequently, the AV node is the limiting factor, and a reduction in the PR interval is determined by the conduction velocity across the AV node.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A 56-year-old man visits his GP complaining of congestive heart failure, angina, and...

    Incorrect

    • A 56-year-old man visits his GP complaining of congestive heart failure, angina, and exertional syncope. During the examination, the doctor observes a forceful apex beat and a systolic ejection murmur at the upper right sternal border.

      What condition is most likely causing these symptoms?

      Your Answer:

      Correct Answer: Aortic stenosis

      Explanation:

      Symptoms and Diagnosis of Heart Valve Disorders

      Heart valve disorders can cause a range of symptoms depending on the type and severity of the condition. Aortic stenosis, for example, can lead to obstruction of left ventricular emptying, resulting in slow rising carotid pulse and a palpated murmur that may radiate to the neck. Aortic valve replacement is necessary for symptomatic patients to prevent death within three years or those with severe valve narrowing on ECHO. On the other hand, aortic regurgitation may not show any symptoms for many years until dyspnoea and fatigue set in. A blowing early diastolic murmur is typically found at the left sternal edge, and a mid-diastolic murmur may also be present over the apex of the heart.

      Mitral regurgitation, whether acute or chronic, can cause pulmonary oedema, exertional dyspnoea, and lethargy. A pansystolic murmur is audible at the apex. Mitral stenosis, meanwhile, initially presents with exertional dyspnoea, but haemoptysis and a productive cough may also occur. A rumbling mid-diastolic murmur is indicative of mitral stenosis. Finally, a prolapsing mitral valve is common in young women and is usually asymptomatic, although atypical chest pain may be present. Overall, proper diagnosis and treatment of heart valve disorders are crucial to prevent complications and improve quality of life.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - A 70-year-old male patient with a history of rheumatic heart disease presents to...

    Incorrect

    • A 70-year-old male patient with a history of rheumatic heart disease presents to the Emergency Room (ER) with complaints of paroxysmal nocturnal dyspnoea, shortness of breath on exertion, and orthopnoea. During physical examination, bilateral pitting oedema and malar flush are observed. On auscultation, bibasal crepitations and a grade IV/VI mid-diastolic rumbling murmur following an opening snap are heard, loudest in the left 5th intercostal space midclavicular line with radiation to the axilla.

      The patient is stabilized and scheduled for echocardiography to confirm the underlying pathology. Additionally, Swan-Ganz catheterization is performed to measure the mean pulmonary capillary wedge pressure (PCWP). What are the most likely findings?

      Your Answer:

      Correct Answer: Mitral stenosis, raised PCWP

      Explanation:

      Mitral stenosis results in an elevation of left atrial pressure, which in turn causes an increase in pulmonary capillary wedge pressure (PCWP). This is a typical manifestation of acute heart failure associated with mitral stenosis, which is commonly caused by rheumatic fever. PCWP serves as an indirect indicator of left atrial pressure, with a normal range of 6-12 mmHg. However, in the presence of mitral stenosis, left atrial pressure is elevated, leading to an increase in PCWP.

      Understanding Pulmonary Capillary Wedge Pressure

      Pulmonary capillary wedge pressure (PCWP) is a measurement taken using a Swan-Ganz catheter with a balloon tip that is inserted into the pulmonary artery. The pressure measured is similar to that of the left atrium, which is typically between 6-12 mmHg. The primary purpose of measuring PCWP is to determine whether pulmonary edema is caused by heart failure or acute respiratory distress syndrome.

      In modern intensive care units, non-invasive techniques have replaced PCWP measurement. However, it remains an important diagnostic tool in certain situations. By measuring the pressure in the pulmonary artery, doctors can determine whether the left side of the heart is functioning properly or if there is a problem with the lungs. This information can help guide treatment decisions and improve patient outcomes. Overall, understanding PCWP is an important aspect of managing patients with respiratory and cardiovascular conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - A toddler is brought to the hospital at 18 months of age with...

    Incorrect

    • A toddler is brought to the hospital at 18 months of age with symptoms of increased work of breathing and difficulty while feeding. On examination, a continuous 'machinery' murmur is heard and is loudest at the left sternal edge. The cardiologist prescribes a dose of indomethacin. What is the mechanism of action of indomethacin?

      The baby was born prematurely at 36 weeks via an emergency cesarean section. Despite the early delivery, the baby appeared healthy and was given a dose of Vitamin K soon after birth. The mother lived in a cottage up in the mountains and was discharged the next day with her happy, healthy baby. However, six weeks later, the baby was brought back to the hospital with concerning symptoms.

      Your Answer:

      Correct Answer: Prostaglandin synthase inhibitor

      Explanation:

      Indomethacin is a medication that hinders the production of prostaglandins in infants with patent ductus arteriosus by inhibiting the activity of COX enzymes. On the other hand, bosentan, an endothelin receptor antagonist, is utilized to treat pulmonary hypertension by blocking the vasoconstricting effect of endothelin, leading to vasodilation. Although endothelin causes vasoconstriction by acting on endothelin receptors, it is not employed in managing PDA. Adenosine receptor antagonists like theophylline and caffeine are also not utilized in PDA management.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A 40-year-old woman comes to the clinic complaining of increasing fatigue and shortness...

    Incorrect

    • A 40-year-old woman comes to the clinic complaining of increasing fatigue and shortness of breath during physical activity over the past 6 months. She has no significant medical history and is not taking any medications.

      During the examination, the lungs are clear upon auscultation, but a loud P2 heart sound is detected. An X-ray of the chest reveals enlarged shadows of the pulmonary artery.

      What could be the underlying cause of this condition?

      Your Answer:

      Correct Answer: Endothelin

      Explanation:

      The cause of pulmonary vasoconstriction in primary pulmonary hypertension is endothelin, which is why antagonists are used to treat the condition. This is supported by the symptoms and diagnostic findings in a woman between the ages of 20 and 50. Other options such as bradykinin, iloprost, and nitric oxide are not vasoconstrictors and do not play a role in the development of pulmonary hypertension.

      Understanding Endothelin and Its Role in Various Diseases

      Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.

      Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.

      In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A patient with a history of peripheral vascular disease visits their GP with...

    Incorrect

    • A patient with a history of peripheral vascular disease visits their GP with essential hypertension. Which of the following medications could worsen their peripheral vascular symptoms?

      Your Answer:

      Correct Answer: Atenolol

      Explanation:

      Patients with peripheral vascular disease may experience worsened symptoms when taking beta-blockers, and caution should be exercised when prescribing this medication. Additionally, those with Raynaud disease may also experience aggravated symptoms. Monitoring for signs of progressive arterial obstruction is recommended.

      Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.

      Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.

      Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 22-year-old male arrives at the emergency department complaining of palpitations and feeling...

    Incorrect

    • A 22-year-old male arrives at the emergency department complaining of palpitations and feeling lightheaded. The electrocardiogram reveals supraventricular tachycardia, and the registrar administers adenosine to try and correct the abnormal rhythm.

      What is the mechanism of action of adenosine?

      Your Answer:

      Correct Answer: A1 receptor agonist

      Explanation:

      Adenosine is an agonist of the A1 receptor in the AV node, which inhibits adenylyl cyclase and reduces cAMP levels. This leads to hyperpolarisation by increasing potassium outflow, effectively preventing supraventricular tachycardia from continuing. It is important to note that adenosine is not an alpha receptor antagonist, beta-2 receptor agonist, or beta receptor antagonist.

      Adenosine is commonly used to stop supraventricular tachycardias. Its effects are boosted by dipyridamole, an antiplatelet agent, but blocked by theophyllines. However, asthmatics should avoid it due to the risk of bronchospasm. Adenosine works by causing a temporary heart block in the AV node. It activates the A1 receptor in the atrioventricular node, which inhibits adenylyl cyclase, reducing cAMP and causing hyperpolarization by increasing outward potassium flux. Adenosine has a very short half-life of about 8-10 seconds and should be infused through a large-caliber cannula.

      Adenosine can cause chest pain, bronchospasm, and transient flushing. It can also enhance conduction down accessory pathways, leading to an increased ventricular rate in conditions such as WPW syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 54-year-old man visits the clinic with a complaint of experiencing shortness of...

    Incorrect

    • A 54-year-old man visits the clinic with a complaint of experiencing shortness of breath during physical activity. He denies any chest pain or coughing and has never smoked. During cardiac auscultation, an ejection systolic murmur is detected. Although a valvular defect is suspected as the cause of his symptoms, echocardiography reveals an atrial septal defect (ASD) instead. An ASD allows blood to flow between the left and right atria. During fetal development, what structure connects the left and right atria?

      Your Answer:

      Correct Answer: Foramen ovale

      Explanation:

      The foramen ovale is an opening in the wall between the two upper chambers of the heart that allows blood to flow from the right atrium to the left atrium. Normally, this opening closes shortly after birth. However, if it remains open, it can result in a condition called patent foramen ovale, which is an abnormal connection between the two atria. This can lead to an atrial septal defect, where blood flows from the left atrium to the right atrium. This condition may be detected early if there are symptoms or a heart murmur is heard, but it can also go unnoticed until later in life.

      During fetal development, the ductus venosus is a blood vessel that connects the umbilical vein to the inferior vena cava, allowing oxygenated blood to bypass the liver. After birth, this vessel usually closes and becomes the ligamentum venosum.

      The ductus arteriosus is another fetal blood vessel that connects the pulmonary artery to the aorta, allowing blood to bypass the non-functioning lungs. This vessel typically closes after birth and becomes the ligamentum arteriosum. If it remains open, it can result in a patent ductus arteriosus.

      The coronary sinus is a vein that receives blood from the heart’s coronary veins and drains into the right atrium.

      The mitral valve is a valve that separates the left atrium and the left ventricle of the heart.

      The umbilical vein carries oxygenated blood from the placenta to the fetus during development. After birth, it typically closes and becomes the round ligament of the liver.

      Understanding Patent Foramen Ovale

      Patent foramen ovale (PFO) is a condition that affects approximately 20% of the population. It is characterized by the presence of a small hole in the heart that may allow an embolus, such as one from deep vein thrombosis, to pass from the right side of the heart to the left side. This can lead to a stroke, which is known as a paradoxical embolus.

      Aside from its association with stroke, PFO has also been linked to migraine. Studies have shown that some patients experience an improvement in their migraine symptoms after undergoing PFO closure.

      The management of PFO in patients who have had a stroke is still a topic of debate. Treatment options include antiplatelet therapy, anticoagulant therapy, or PFO closure. It is important for patients with PFO to work closely with their healthcare provider to determine the best course of action for their individual needs.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - A 68-year-old female complains of fatigue and occasional palpitations. During one of these...

    Incorrect

    • A 68-year-old female complains of fatigue and occasional palpitations. During one of these episodes, an ECG shows atrial fibrillation that resolves within half an hour. What would be the most suitable subsequent investigation for this patient?

      Your Answer:

      Correct Answer: Thyroid function tests

      Explanation:

      Diagnosis and Potential Causes of Paroxysmal Atrial Fibrillation

      Paroxysmal atrial fibrillation (AF) can have various underlying causes, including thyrotoxicosis, mitral stenosis, ischaemic heart disease, and alcohol consumption. Therefore, it is crucial to conduct thyroid function tests to aid in the diagnosis of AF, as it can be challenging to identify based solely on clinical symptoms. Additionally, an echocardiogram should be requested to evaluate the function of the left ventricle and valves, which would typically be performed by a cardiologist. However, coronary angiography is unlikely to be necessary.

      Conversely, a full blood count, calcium, erythrocyte sedimentation rate (ESR), or lipid profile would not be useful in determining the nature of AF or its potential treatment. It is essential to consider the various causes of AF to determine the most effective course of treatment. The sources cited in this article provide further information on the diagnosis and management of AF.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - A 7-year-old girl with Down Syndrome presents to her General Practitioner (GP) with...

    Incorrect

    • A 7-year-old girl with Down Syndrome presents to her General Practitioner (GP) with complaints of getting tired easily while playing with her friends and experiencing shortness of breath. The mother informs the GP that the patient was born with an uncorrected cardiac defect. On examination, the GP observes clubbing and plethora.

      What is the probable reason for the patient's current symptoms?

      Your Answer:

      Correct Answer: Eisenmenger syndrome

      Explanation:

      The presence of clubbing, cyanosis, and easy fatigue in this patient suggests Eisenmenger syndrome, which can occur as a result of an uncorrected VSD commonly seen in individuals with Down syndrome. The increased pulmonary blood flow caused by the VSD can lead to pulmonary hypertension and vascular remodeling, resulting in RV hypertrophy and a reversal of the shunt. In contrast, coarctation of the aorta typically presents with hypertension and pulse discrepancies, but not clubbing or plethora. Ebstein abnormality, caused by prenatal exposure to lithium, can cause fatigue and early tiring, but does not typically result in clubbing. Transposition of the great vessels would likely have been fatal without correction, making it an unlikely diagnosis in this case.

      Understanding Eisenmenger’s Syndrome

      Eisenmenger’s syndrome is a medical condition that occurs when a congenital heart defect leads to pulmonary hypertension, causing a reversal of a left-to-right shunt. This happens when the left-to-right shunt is not corrected, leading to the remodeling of the pulmonary microvasculature, which eventually obstructs pulmonary blood and causes pulmonary hypertension. The condition is commonly associated with ventricular septal defect, atrial septal defect, and patent ductus arteriosus.

      The original murmur may disappear, and patients may experience cyanosis, clubbing, right ventricular failure, haemoptysis, and embolism. Management of Eisenmenger’s syndrome requires heart-lung transplantation. It is essential to diagnose and treat the condition early to prevent complications and improve the patient’s quality of life. Understanding the causes, symptoms, and management of Eisenmenger’s syndrome is crucial for healthcare professionals to provide appropriate care and support to patients with this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A 87-year-old man is currently admitted to the medical ward and experiences an...

    Incorrect

    • A 87-year-old man is currently admitted to the medical ward and experiences an abnormal heart rhythm. The doctor on call is consulted and finds that the patient is feeling light-headed but denies any chest pain, sweating, nausea, or palpitations. The patient's vital signs are as follows: pulse rate of 165 beats per minute, respiratory rate of 16 breaths per minute, blood pressure of 165/92 mmHg, body temperature of 37.8 º C, and oxygen saturation of 97% on air.

      Upon reviewing the patient's electrocardiogram (ECG), the doctor on call identifies a polymorphic pattern and recommends treatment with magnesium sulfate to prevent the patient from going into ventricular fibrillation. The doctor also notes that the patient's previous ECG showed QT prolongation, which was missed by the intern doctor. The patient has a medical history of type 2 diabetes mellitus, hypertension, heart failure, and chronic kidney disease.

      What electrolyte abnormality is most likely responsible for this patient's abnormal heart rhythm?

      Your Answer:

      Correct Answer: Hypocalcemia

      Explanation:

      Torsades to pointes, a type of polymorphic ventricular tachycardia, can be a fatal arrhythmia that is often characterized by a shifting sinusoidal waveform on an ECG. This condition is associated with hypocalcemia, which can lead to QT interval prolongation. On the other hand, hypercalcemia is associated with QT interval shortening and may also cause a prolonged QRS interval.

      Hyponatremia and hypernatremia typically do not result in ECG changes, but can cause various symptoms such as confusion, weakness, and seizures. Hyperkalemia, another life-threatening electrolyte imbalance, often causes tall tented T waves, small p waves, and a wide QRS interval on an ECG. Hypokalemia, on the other hand, can lead to QT interval prolongation and increase the risk of Torsades to pointes.

      Physicians should be aware that hypercalcemia may indicate the presence of primary hyperparathyroidism or malignancy, and should investigate further for any signs of cancer in affected patients.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 25-year-old man comes to the clinic complaining of shortness of breath during...

    Incorrect

    • A 25-year-old man comes to the clinic complaining of shortness of breath during physical activity. He has no significant medical history but mentions that his mother passed away while playing netball at the age of 28. During the physical exam, the doctor detects an ejection systolic murmur when listening to his heart. The intensity of the murmur decreases when the patient squats. An echocardiogram is ordered to further investigate.

      What findings may be observed on the echocardiogram of this patient?

      Your Answer:

      Correct Answer: Systolic anterior motion (SAM)

      Explanation:

      The presence of asymmetric septal hypertrophy and systolic anterior movement (SAM) of the anterior leaflet of the mitral valve on echocardiogram or cMR strongly suggests the diagnosis of hypertrophic obstructive cardiomyopathy (HOCM) in this patient. This is further supported by his symptoms of exertional dyspnoea and family history of sudden cardiac death, possibly related to HOCM. The observation of SAM on echocardiogram is a common finding in patients with HOCM.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (0/2) 0%
Passmed