00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 40-year-old woman visits her GP after being treated at the Emergency Department...

    Correct

    • A 40-year-old woman visits her GP after being treated at the Emergency Department for a foreign body lodged in her throat for 2 days. Although the object has been removed, she is experiencing difficulty swallowing. Upon further questioning, she mentions altered sensation while swallowing, describing it as a sensation of 'not feeling like food is being swallowed' during meals.

      Which nerve or nerves are likely to have been affected?

      Your Answer: Internal laryngeal nerve

      Explanation:

      The internal laryngeal nerve is responsible for providing sensory information to the supraglottis and branches off from the superior laryngeal nerve. It is important to note that the cervical plexus, external laryngeal nerve, recurrent laryngeal nerve, and superior laryngeal nerve do not perform the same function as the internal laryngeal nerve.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      31.3
      Seconds
  • Question 2 - The pressure within the pleural space is positive with respect to atmospheric pressure,...

    Incorrect

    • The pressure within the pleural space is positive with respect to atmospheric pressure, in which of the following scenarios?

      Your Answer: At the end of inspiration

      Correct Answer: During a Valsalva manoeuvre

      Explanation:

      Extrinsic compression causes an increase in intrapleural pressure during a Valsalva manoeuvre.

      Understanding Pleural Pressure

      Pleural pressure refers to the pressure surrounding the lungs within the pleural space. The pleura is a thin membrane that invests the lungs and lines the walls of the thoracic cavity. The visceral pleura covers the lung, while the parietal pleura covers the chest wall. The two sides are continuous and meet at the hilum of the lung. The size of the lung is determined by the difference between the alveolar pressure and the pleural pressure, or the transpulmonary pressure.

      During quiet breathing, the pleural pressure is negative, meaning it is below atmospheric pressure. However, during active expiration, the abdominal muscles contract to force up the diaphragm, resulting in positive pleural pressure. This may temporarily collapse the bronchi and cause limitation of air flow.

      Gravity affects pleural pressure, with the pleural pressure at the base of the lung being greater (less negative) than at its apex in an upright individual. When lying on the back, the pleural pressure becomes greatest along the back. Alveolar pressure is uniform throughout the lung, so the top of the lung generally experiences a greater transpulmonary pressure and is therefore more expanded and less compliant than the bottom of the lung.

      In summary, understanding pleural pressure is important in understanding lung function and how it is affected by various factors such as gravity and muscle contraction.

    • This question is part of the following fields:

      • Respiratory System
      51.3
      Seconds
  • Question 3 - A 58-year-old man comes to the GP complaining of wheezing, coughing, and shortness...

    Correct

    • A 58-year-old man comes to the GP complaining of wheezing, coughing, and shortness of breath. He has a smoking history of 35 pack-years but has reduced his smoking recently.

      The GP orders spirometry, which confirms a diagnosis of chronic obstructive pulmonary disease. The results also show an elevated functional residual capacity.

      What is the method used to calculate this metric?

      Your Answer: Expiratory reserve volume + residual volume

      Explanation:

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      67.7
      Seconds
  • Question 4 - A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief...

    Incorrect

    • A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?

      Your Answer: Excessive ACTH secretion

      Correct Answer: Clubbing

      Explanation:

      Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.

      Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.

    • This question is part of the following fields:

      • Respiratory System
      19.3
      Seconds
  • Question 5 - A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of...

    Correct

    • A 59-year-old woman visits the respiratory clinic for spirometry testing. As part of the testing, what is the definition of functional residual capacity?

      Your Answer: Functional residual capacity = expiratory reserve volume + residual volume

      Explanation:

      To calculate the volume of air in the lungs after a normal relaxed expiration, one can use the formula for functional residual capacity (FRC), which is determined by the balance between the lungs’ tendency to recoil inwards and the chest wall’s tendency to pull outwards. FRC can be calculated by adding the expiratory reserve volume and the residual volume. In individuals with tetraplegia, decreases in FRC are primarily caused by a reduction in the outward pull of the chest wall, which occurs over time due to the inability to regularly expand the chest wall to large lung volumes. This reduction in FRC can increase the risk of atelectasis.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      31.3
      Seconds
  • Question 6 - A respiratory specialist is conducting a bronchoscopy to determine a suitable biopsy for...

    Correct

    • A respiratory specialist is conducting a bronchoscopy to determine a suitable biopsy for histological evaluation of suspected bronchial carcinoma in a pediatric patient.

      While performing the procedure, the bronchoscope is erroneously inserted through the diaphragm at the T10 level.

      Which structure is at the highest risk of being harmed as a result of this error?

      Your Answer: Oesophagus

      Explanation:

      The oesophagus passes through the diaphragm at the level of T10 along with the vagal trunk, which is the most likely structure to have been damaged. The aorta, on the other hand, perforates the diaphragm at T12 and supplies oxygenated blood to the lower body, while the azygous vein also perforates the diaphragm at T12 and drains the right side of the thorax into the superior vena cava.

      Structures Perforating the Diaphragm

      The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.

      To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.

    • This question is part of the following fields:

      • Respiratory System
      21.3
      Seconds
  • Question 7 - What is the accurate embryonic source of the stapes? ...

    Incorrect

    • What is the accurate embryonic source of the stapes?

      Your Answer: Third pharyngeal arch

      Correct Answer: Second pharyngeal arch

      Explanation:

      The stapes, which is a cartilaginous element in the ear, originates from the ectoderm covering the outer aspect of the second pharyngeal arch. This strip of ectoderm is located lateral to the metencephalic neural fold. Reicherts cartilage, which extends from the otic capsule to the midline on each side, is responsible for the formation of the stapes. The cartilages of the first and second pharyngeal arches articulate superior to the tubotympanic recess, with the malleus, incus, and stapes being formed from these cartilages. While the malleus is mostly formed from the first arch, the stapes is most likely to arise from the second arch.

      The Development and Contributions of Pharyngeal Arches

      During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.

      Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.

      Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.

    • This question is part of the following fields:

      • Respiratory System
      22.4
      Seconds
  • Question 8 - A 35-year-old female smoker presents with acute severe asthma.

    The patient's SaO2 levels...

    Incorrect

    • A 35-year-old female smoker presents with acute severe asthma.

      The patient's SaO2 levels are at 91% even with 15 L of oxygen, and her pO2 is at 8.2 kPa (10.5-13). There is widespread expiratory wheezing throughout her chest.

      The medical team administers IV hydrocortisone, 100% oxygen, and 5 mg of nebulised salbutamol and 500 micrograms of nebulised ipratropium, but there is little response. Nebulisers are repeated 'back-to-back,' but the patient remains tachypnoeic with wheezing, although there is good air entry.

      What should be the next step in the patient's management?

      Your Answer: Non-invasive ventilation

      Correct Answer: IV Magnesium

      Explanation:

      Acute Treatment of Asthma

      When dealing with acute asthma, the initial approach should be SOS, which stands for Salbutamol, Oxygen, and Steroids (IV). It is also important to organize a CXR to rule out pneumothorax. If the patient is experiencing bronchoconstriction, further efforts to treat it should be considered. If the patient is tiring or has a silent chest, ITU review may be necessary. Magnesium is recommended at a dose of 2 g over 30 minutes to promote bronchodilation, as low magnesium levels in bronchial smooth muscle can favor bronchoconstriction. IV theophylline may also be considered, but magnesium is typically preferred. While IV antibiotics may be necessary, promoting bronchodilation should be the initial focus. IV potassium may also be required as beta agonists can push down potassium levels. Oral prednisolone can wait, as IV hydrocortisone is already part of the SOS approach. Non-invasive ventilation is not recommended for the acute management of asthma.

    • This question is part of the following fields:

      • Respiratory System
      40.4
      Seconds
  • Question 9 - Which of the following physiological changes does not take place after a tracheostomy?...

    Incorrect

    • Which of the following physiological changes does not take place after a tracheostomy?

      Your Answer: Alveolar ventilation is increased.

      Correct Answer: Work of breathing is increased.

      Explanation:

      HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.

      Anatomy of the Trachea

      The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.

      In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.

      In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.

      Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.

    • This question is part of the following fields:

      • Respiratory System
      37.4
      Seconds
  • Question 10 - A 19-year-old male is admitted with acute asthma. He has been treated with...

    Correct

    • A 19-year-old male is admitted with acute asthma. He has been treated with steroid, bronchodilators and 15 l/min of oxygen.

      His pulse rate is 125/min, oxygen saturation 89%, respiratory rate 24/min, blood pressure 140/88 mmHg and he has a peak flow rate of 150 l/min. On auscultation of his chest, he has bilateral wheezes.

      Arterial blood gas (ABG) result taken on 15 l/min oxygen shows:

      pH 7.42 (7.36-7.44)
      PaO2 8.4 kPa (11.3-12.6)
      PaCO2 5.3 kPa (4.7-6.0)
      Standard HCO3 19 mmol/L (20-28)
      Base excess −4 (+/-2)
      Oxygen saturation 89%

      What is the most appropriate action for this man?

      Your Answer: Call ITU to consider intubation

      Explanation:

      Urgent Need for Ventilation in Life-Threatening Asthma

      This patient is experiencing life-threatening asthma with a dangerously low oxygen saturation level of less than 92%. Despite having a normal PaCO2 level, the degree of hypoxia is inappropriate and requires immediate consideration for ventilation. The arterial blood gas (ABG) result is consistent with the clinical presentation, making a venous blood sample unnecessary. Additionally, the ABG and bedside oxygen saturation readings are identical, indicating an arterialised sample.

      It is crucial to note that in cases of acute asthma, reducing the amount of oxygen below the maximum available is not recommended. Hypoxia can be fatal and must be addressed promptly. Therefore, urgent intervention is necessary to ensure the patient’s safety and well-being.

    • This question is part of the following fields:

      • Respiratory System
      31.7
      Seconds
  • Question 11 - A patient in her 50s undergoes spirometry, during which she is instructed to...

    Incorrect

    • A patient in her 50s undergoes spirometry, during which she is instructed to perform a maximum forced exhalation following a maximum inhalation. The volume of exhaled air is measured. What is the term used to describe the difference between this volume and her total lung capacity?

      Your Answer: Vital capacity

      Correct Answer: Residual volume

      Explanation:

      The total lung capacity can be calculated by adding the vital capacity and residual volume. The expiratory reserve volume refers to the amount of air that can be exhaled after a normal breath compared to a maximal exhalation. The functional residual capacity is the amount of air remaining in the lungs after a normal exhalation. The inspiratory reserve volume is the difference between the amount of air in the lungs after a normal breath and a maximal inhalation. The residual volume is the amount of air left in the lungs after a maximal exhalation, which is the difference between the total lung capacity and vital capacity. The vital capacity is the maximum amount of air that can be inhaled and exhaled, measured by the volume of air exhaled after a maximal inhalation.

      Understanding Lung Volumes in Respiratory Physiology

      In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.

      Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.

      Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.

      Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.

      Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.

      Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.

    • This question is part of the following fields:

      • Respiratory System
      23.7
      Seconds
  • Question 12 - A 53-year-old man arrives at the Emergency Department with jaundice and a distended...

    Correct

    • A 53-year-old man arrives at the Emergency Department with jaundice and a distended abdomen. He has a history of alcoholism and has been hospitalized before for acute alcohol withdrawal. During the examination, you observe spider naevi on his upper chest wall and detect a shifting dullness on abdominal percussion, indicating ascites. Further imaging and investigation reveal portal vein hypertension and cirrhosis.

      Where does this vessel start?

      Your Answer: L1

      Explanation:

      Portal hypertension is commonly caused by liver cirrhosis, often due to alcohol abuse. The causes of this condition can be categorized as pre-hepatic, hepatic, or post-hepatic, depending on the location of the underlying pathology. The primary factors contributing to portal hypertension are increased vascular resistance in the portal venous system and elevated blood flow in the portal veins. The portal vein originates at the transpyloric plane, which is situated at the level of the body of L1. Other significant structures found at this location include the neck of the pancreas, the spleen, the duodenojejunal flexure, and the superior mesenteric artery.

      The Transpyloric Plane and its Anatomical Landmarks

      The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.

      Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.

      In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.

      Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.

    • This question is part of the following fields:

      • Respiratory System
      32.8
      Seconds
  • Question 13 - An 80-year-old woman visits her doctor complaining of a persistent cough. She has...

    Correct

    • An 80-year-old woman visits her doctor complaining of a persistent cough. She has been smoking 20 cigarettes a day for the past 30 years and is worried that this might be the reason for her symptom. The doctor diagnoses her with chronic obstructive pulmonary disease (COPD) which is likely caused by chronic bronchitis. Can you provide the definition of chronic bronchitis?

      Your Answer: Chronic productive cough for at least 3 months in at least 2 years

      Explanation:

      Chronic bronchitis is characterized by a persistent cough with sputum production for a minimum of 3 months in two consecutive years, after excluding other causes of chronic cough. Emphysema, on the other hand, is defined by the enlargement of air spaces beyond the terminal bronchioles. None of the remaining options are considered as definitions of COPD.

      COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.

    • This question is part of the following fields:

      • Respiratory System
      22.9
      Seconds
  • Question 14 - A 25-year-old man who is an avid cyclist has been admitted to the...

    Correct

    • A 25-year-old man who is an avid cyclist has been admitted to the hospital with a severe asthma attack. He is currently in the hospital for two days and is able to speak in complete sentences. His bedside oxygen saturation is at 98%, and he has a heart rate of 58 bpm, blood pressure of 110/68 mmHg, and a respiratory rate of 14 bpm. He is not experiencing any fever. Upon physical examination, there are no notable findings. The blood gas results show a PaO2 of 5.4 kPa (11.3-12.6), PaCO2 of 6.0 kPa (4.7-6.0), pH of 7.38 (7.36-7.44), and HCO3 of 27 mmol/L (20-28). What could be the possible explanation for these results?

      Your Answer: Venous sample

      Explanation:

      Suspecting Venous Blood Sample with Low PaO2 and Good Oxygen Saturation

      A low PaO2 level accompanied by a good oxygen saturation reading may indicate that the blood sample was taken from a vein rather than an artery. This suspicion is further supported if the patient appears to be in good health. It is unlikely that a faulty pulse oximeter is the cause of the discrepancy in readings. Therefore, it is important to consider the possibility of a venous blood sample when interpreting these results. Proper identification of the type of blood sample is crucial in accurately diagnosing and treating the patient’s condition.

    • This question is part of the following fields:

      • Respiratory System
      36.9
      Seconds
  • Question 15 - An 83-year-old man is on the stroke ward after suffering a total anterior...

    Correct

    • An 83-year-old man is on the stroke ward after suffering a total anterior circulation stroke of the left hemisphere. He is receiving assistance from the physiotherapists to mobilize, but the speech and language team has determined that he has an unsafe swallow. On the 6th day of his hospital stay, he begins to feel unwell.

      Upon examination, his temperature is 38.4ºC, heart rate of 112/min, respiratory rate of 18, and his blood pressure is 100/76 mmHg. Aspiration pneumonia is suspected. Which area of the body is most likely affected?

      Your Answer: Right middle lobe

      Explanation:

      Aspiration pneumonia is a common occurrence in stroke patients during the recovery phase, with a higher likelihood of affecting the right lung due to the steeper course of the right bronchus. This type of pneumonia is often caused by unsafe swallowing and can lead to prolonged hospital stays and increased mortality rates. The right middle and lower lobes are the most susceptible to aspirated gastric contents, while the right upper lobe is less likely due to gravity. It’s important to consider aspiration pneumonia as a differential diagnosis when assessing stroke patients, especially those with severe pathology.

      Aspiration pneumonia is a type of pneumonia that occurs when foreign substances, such as food or saliva, enter the bronchial tree. This can lead to inflammation and a chemical pneumonitis, as well as the introduction of bacterial pathogens. The condition is often caused by an impaired swallowing mechanism, which can be a result of neurological disease or injury, intoxication, or medical procedures such as intubation. Risk factors for aspiration pneumonia include poor dental hygiene, swallowing difficulties, prolonged hospitalization or surgery, impaired consciousness, and impaired mucociliary clearance. The right middle and lower lung lobes are typically the most affected areas. The bacteria involved in aspiration pneumonia can be aerobic or anaerobic, with examples including Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae, Pseudomonas aeruginosa, Klebsiella, Bacteroides, Prevotella, Fusobacterium, and Peptostreptococcus.

    • This question is part of the following fields:

      • Respiratory System
      57.9
      Seconds
  • Question 16 - A 14-year-old boy comes to the clinic complaining of ear pain. He mentions...

    Incorrect

    • A 14-year-old boy comes to the clinic complaining of ear pain. He mentions having some crusty discharge at the entrance of his ear canal when he woke up this morning. He denies any hearing loss, dizziness, or other symptoms. He swims twice a week. Upon examination, he has no fever. The auricle of his ear appears red, and pressing on the tragus causes discomfort. Otoscopy reveals an erythematous canal with a small amount of yellow discharge. The superior edge of the tympanic membrane is also red, but there is no bulging or fluid in the middle ear. Which bone articulates with the bone that is typically seen pressing against the tympanic membrane?

      Your Answer: Malleus

      Correct Answer: Incus

      Explanation:

      The middle bone of the 3 ossicles is known as the incus. During otoscopy, the malleus can be observed in contact with the tympanic membrane and it connects with the incus medially.

      The ossicles, which are the 3 bones in the middle ear, are arranged from lateral to medial as follows:
      Malleus: This is the most lateral of the ossicles. The handle and lateral process of the malleus attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus connects with the incus. The term ‘malleus’ is derived from the Latin word for ‘hammer’.
      Incus: The incus is positioned between and connects with the other two ossicles. The body of the incus connects with the malleus, while the long limb of the bone connects with the stapes. The term ‘incus’ is derived from the Latin word for ‘anvil’.

      Anatomy of the Ear

      The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.

    • This question is part of the following fields:

      • Respiratory System
      29.4
      Seconds
  • Question 17 - A 29-year-old cyclist is brought to the emergency department by air ambulance following...

    Correct

    • A 29-year-old cyclist is brought to the emergency department by air ambulance following a car collision. She was intubated at the scene and currently has a Glasgow Coma Score of 8. Where is the control and regulation of the respiratory centers located?

      Your Answer: Brainstem

      Explanation:

      The brainstem houses the respiratory centres, which are responsible for regulating various aspects of breathing. These centres are located in the upper pons, lower pons and medulla oblongata.

      The thalamus plays a role in sensory, motor and cognitive functions, and its axons connect with the cerebral cortex. The cerebellum coordinates voluntary movements and helps maintain balance and posture. The parietal lobe processes sensory information, including discrimination and body orientation. The primary visual cortex is located in the occipital lobe.

      The Control of Ventilation in the Human Body

      The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.

      The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.

      Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.

      Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.

    • This question is part of the following fields:

      • Respiratory System
      25.4
      Seconds
  • Question 18 - A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking....

    Correct

    • A 68-year-old woman has been diagnosed with laryngeal cancer and has quit smoking. Surgery is planned to remove the cancer through a laryngectomy. What vertebral level/levels will the organ be located during the procedure?

      Your Answer: C3 to C6

      Explanation:

      The larynx is situated in the front of the neck at the level of the C3-C6 vertebrae. This is the correct location for accessing the larynx during a laryngectomy. The larynx is not located at the C1-C2 level, as these are the atlas bones. It is also not located at the C2-C3 level, which is where the hyoid bone can be found. The C7 level is where the isthmus of the thyroid gland is located, not the larynx.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      30.1
      Seconds
  • Question 19 - A patient is being anaesthetised for a minor bowel surgery. Sarah, a second...

    Correct

    • A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.

      Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?

      Your Answer: C3-C6

      Explanation:

      The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      13.5
      Seconds
  • Question 20 - A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives...

    Correct

    • A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives at the hospital complaining of worsening shortness of breath and a productive cough. As part of the initial evaluation, a chest X-ray is requested.

      What radiographic feature would you anticipate observing on her chest X-ray?

      Your Answer: Flattened diaphragm

      Explanation:

      The diaphragm of patients with COPD often appears flattened on a chest X-ray due to the chronic expiratory airflow obstruction causing dynamic hyperinflation of the lungs. Pleural effusions are commonly associated with infection, malignancy, or heart failure, while empyema is a result of pus accumulation in the pleural space caused by an infection.

      Understanding COPD: Symptoms and Diagnosis

      Chronic obstructive pulmonary disease (COPD) is a common medical condition that includes chronic bronchitis and emphysema. Smoking is the leading cause of COPD, and patients with mild disease may only need occasional use of a bronchodilator, while severe cases may result in frequent hospital admissions due to exacerbations. Symptoms of COPD include a productive cough, dyspnea, wheezing, and in severe cases, right-sided heart failure leading to peripheral edema.

      To diagnose COPD, doctors may recommend post-bronchodilator spirometry to demonstrate airflow obstruction, a chest x-ray to check for hyperinflation, bullae, and flat hemidiaphragm, and to exclude lung cancer. A full blood count may also be necessary to exclude secondary polycythemia, and body mass index (BMI) calculation is important. The severity of COPD is categorized using the FEV1, with a ratio of less than 70% indicating airflow obstruction. The grading system has changed following the 2010 NICE guidelines, with Stage 1 – mild now including patients with an FEV1 greater than 80% predicted but with a post-bronchodilator FEV1/FVC ratio of less than 0.7. Measuring peak expiratory flow is of limited value in COPD, as it may underestimate the degree of airflow obstruction.

      In summary, COPD is a common condition caused by smoking that can result in a range of symptoms and severity. Diagnosis involves various tests to check for airflow obstruction, exclude lung cancer, and determine the severity of the disease.

    • This question is part of the following fields:

      • Respiratory System
      20.1
      Seconds
  • Question 21 - A 42-year-old man from Turkey visits his doctor complaining of chronic breathlessness and...

    Incorrect

    • A 42-year-old man from Turkey visits his doctor complaining of chronic breathlessness and a dry cough that has been worsening over the past 7 months. He has no significant medical history except for an allergy to penicillin. He is a non-smoker and does not consume alcohol. He works as a taxi driver and lives alone, but he is an avid collector of exotic pigeons and enjoys a cup of coffee every morning. The doctor suspects that his symptoms may be due to exposure to what causes pigeon fancier's lung?

      Your Answer: Mycobacterium avium

      Correct Answer: Avian proteins

      Explanation:

      Bird fanciers’ lung is caused by avian proteins found in bird droppings, which can lead to hypersensitivity pneumonitis. This is a type of pulmonary disorder that results from an inflammatory reaction to inhaling an allergen, which can be organic or inorganic particles such as animal or plant proteins, certain chemicals, or microbes. Similarly, other types of lung diseases such as tobacco worker’s lung, farmer’s lung, and hot tub lung are also caused by exposure to specific allergens in the environment.

      Extrinsic allergic alveolitis, also known as hypersensitivity pneumonitis, is a condition that occurs when the lungs are damaged due to hypersensitivity to inhaled organic particles. This damage is thought to be caused by immune-complex mediated tissue damage, although delayed hypersensitivity may also play a role. Examples of this condition include bird fanciers’ lung, farmers lung, malt workers’ lung, and mushroom workers’ lung. Symptoms can be acute or chronic and include dyspnoea, dry cough, fever, lethargy, and weight loss. Diagnosis is made through imaging, bronchoalveolar lavage, and serologic assays for specific IgG antibodies. Management involves avoiding the triggering factors and oral glucocorticoids.

    • This question is part of the following fields:

      • Respiratory System
      34.6
      Seconds
  • Question 22 - A 28-year-old man is found on his bathroom floor next to needles and...

    Correct

    • A 28-year-old man is found on his bathroom floor next to needles and syringes and is brought into the hospital. He has a Glasgow coma score of 10 and a bedside oxygen saturation of 88%. On physical examination, he has pinpoint pupils and needle track marks on his left arm. His arterial blood gases are as follows: PaO2 7.4 kPa (11.3-12.6), PaCO2 9.6 kPa (4.7-6.0), pH 7.32 (7.36-7.44), and HCO3 25 mmol/L (20-28). What do these results indicate?

      Your Answer: Acute type II respiratory failure

      Explanation:

      Opiate Overdose

      Opiate overdose is a common occurrence that can lead to slowed breathing, inadequate oxygen saturation, and CO2 retention. This classic picture of opiate overdose can be reversed with the use of naloxone. The condition is often caused by the use of illicit drugs and can have serious consequences if left untreated.

    • This question is part of the following fields:

      • Respiratory System
      57.6
      Seconds
  • Question 23 - A 30-year-old woman comes to see her GP with persistent tinnitus and hearing...

    Incorrect

    • A 30-year-old woman comes to see her GP with persistent tinnitus and hearing loss in both ears. This is her first time experiencing these symptoms, but she mentions that her older sister has had similar issues. During the examination, the doctor notices a pinkish hue to her eardrums. Audiometry tests confirm that she has conductive deafness. What is the most probable diagnosis?

      Your Answer: Meniere's disease

      Correct Answer: Otosclerosis

      Explanation:

      Nausea and vomiting often accompany migraines, which are characterized by severe headaches that can last for hours or even days. Other symptoms may include sensitivity to light and sound, as well as visual disturbances such as flashing lights or blind spots. Migraines can be triggered by a variety of factors, including stress, certain foods, hormonal changes, and changes in sleep patterns. Treatment options may include medication, lifestyle changes, and alternative therapies.

      Understanding Otosclerosis: A Progressive Conductive Deafness

      Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.

      The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.

      Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.

      Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.

    • This question is part of the following fields:

      • Respiratory System
      30.7
      Seconds
  • Question 24 - A 10-year-old girl has been diagnosed with asthma. Her father asks you about...

    Correct

    • A 10-year-old girl has been diagnosed with asthma. Her father asks you about the cause of her symptoms. What is the best response?

      Inflammation of the lining of the bronchioles causes obstruction of the flow of air out from the lungs. This inflammation is reversible so symptoms of asthma may be intermittent. There may also be increased mucus production and bronchial muscle constriction.

      Your Answer: Reversible inflammation of the lining of the small airways causing them to become narrower

      Explanation:

      The bronchioles’ lining inflammation obstructs the outflow of air from the lungs, leading to asthma symptoms that may come and go. Additionally, there could be heightened mucus production and constriction of bronchial muscles.

      Asthma is a common respiratory disorder that affects both children and adults. It is characterized by chronic inflammation of the airways, resulting in reversible bronchospasm and airway obstruction. While asthma can develop at any age, it typically presents in childhood and may improve or resolve with age. However, it can also persist into adulthood and cause significant morbidity, with around 1,000 deaths per year in the UK.

      Several risk factors can increase the likelihood of developing asthma, including a personal or family history of atopy, antenatal factors such as maternal smoking or viral infections, low birth weight, not being breastfed, exposure to allergens and air pollution, and the hygiene hypothesis. Patients with asthma may also suffer from other atopic conditions such as eczema and hay fever, and some may be sensitive to aspirin. Occupational asthma is also a concern for those exposed to allergens in the workplace.

      Symptoms of asthma include coughing, dyspnea, wheezing, and chest tightness, with coughing often worse at night. Signs may include expiratory wheezing on auscultation and reduced peak expiratory flow rate. Diagnosis is typically made through spirometry, which measures the volume and speed of air during exhalation and inhalation.

      Management of asthma typically involves the use of inhalers to deliver drug therapy directly to the airways. Short-acting beta-agonists such as salbutamol are the first-line treatment for relieving symptoms, while inhaled corticosteroids like beclometasone dipropionate and fluticasone propionate are used for daily maintenance therapy. Long-acting beta-agonists like salmeterol and leukotriene receptor antagonists like montelukast may also be used in combination with other medications. Maintenance and reliever therapy (MART) is a newer approach that combines ICS and a fast-acting LABA in a single inhaler for both daily maintenance and symptom relief. Recent guidelines recommend offering a leukotriene receptor antagonist instead of a LABA for patients on SABA + ICS whose asthma is not well controlled, and considering MART for those with poorly controlled asthma.

    • This question is part of the following fields:

      • Respiratory System
      55.1
      Seconds
  • Question 25 - Which of the following organisms is not a common cause of respiratory tract...

    Incorrect

    • Which of the following organisms is not a common cause of respiratory tract infections in elderly patients, with cystic fibrosis?

      Your Answer: Burkholderia cepacia

      Correct Answer: Strongyloides stercoralis

      Explanation:

      Understanding Cystic Fibrosis

      Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.

      CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.

      Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.

    • This question is part of the following fields:

      • Respiratory System
      21.9
      Seconds
  • Question 26 - A 60-year-old diabetic patient presents to the clinic with a chief complaint of...

    Incorrect

    • A 60-year-old diabetic patient presents to the clinic with a chief complaint of hearing loss. After conducting a Webber’s and Rinne’s test, the following results were obtained:

      - Webber’s test: lateralizes to the left ear
      - Rinne’s test (left ear): bone conduction > air conduction
      - Rinne’s test (right ear): air conduction > bone conduction

      Based on these findings, what is the probable cause of the patient's hearing loss?

      Your Answer: Diabetic sensory neuropathy

      Correct Answer: Otitis media with effusion

      Explanation:

      The Weber test lateralises to the side with bone conduction > air conduction, indicating conductive hearing loss on that side. The options given include acoustic neuroma (sensorineural hearing loss), otitis media with effusion (conductive hearing loss), temporal lobe epilepsy (no conductive hearing loss), and Meniere’s disease (vertigo, tinnitus, and fluctuating hearing loss). The correct answer is otitis media with effusion.

      Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness

      Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.

      Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.

      The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.

      Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.

    • This question is part of the following fields:

      • Respiratory System
      20
      Seconds
  • Question 27 - A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain,...

    Incorrect

    • A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain, chronic sinusitis, and haemoptysis for the past 3 days. During the examination, the doctor observes a saddle-shaped nose and a necrotic, purpuric, and blistering plaque on his wrist. The patient reports that he had a small blister a few weeks ago, which has now progressed to this. The blood test results suggest a possible diagnosis of granulomatosis with polyangiitis, and the patient is referred for a renal biopsy. What biopsy findings would confirm the suspected diagnosis?

      Your Answer: Lobular accentuation of enlarged glomeruli with mesangial hypercellularity

      Correct Answer: Epithelial crescents in Bowman's capsule

      Explanation:

      Glomerulonephritis is a condition that affects the kidneys and can present with various pathological changes. In rapidly progressive glomerulonephritis, patients may present with respiratory tract symptoms and cutaneous manifestations of vasculitis. Renal biopsy will show epithelial crescents in Bowman’s capsule, indicating severe glomerular injury. Mesangioproliferative glomerulonephritis is characterized by a diffuse increase in mesangial cells and is not associated with respiratory tract symptoms or cutaneous manifestations of vasculitis. Membranoproliferative glomerulonephritis involves deposits in the intraglomerular mesangium and is associated with activation of the complement pathway and glomerular damage. It is unlikely to be the diagnosis in the scenario as it is not associated with vasculitis symptoms. A normal nephron architecture would not explain the patient’s symptoms and is an incorrect answer.

      Granulomatosis with Polyangiitis: An Autoimmune Condition

      Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.

      To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.

      The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.

    • This question is part of the following fields:

      • Respiratory System
      62.1
      Seconds
  • Question 28 - A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During...

    Correct

    • A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?

      Your Answer: Suprascapular nerve

      Explanation:

      The Suprascapular Nerve and its Function

      The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.

      If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.

    • This question is part of the following fields:

      • Respiratory System
      9.6
      Seconds
  • Question 29 - A 29-year-old man visits his GP with a complaint of a persistent cough....

    Correct

    • A 29-year-old man visits his GP with a complaint of a persistent cough. He reports coughing up large amounts of yellow sputum and occasionally blood on a daily basis for the past few years. Lately, he has noticed that his clothes seem loose on him and he frequently feels fatigued.

      What is the most probable underlying condition responsible for this patient's symptoms?

      Your Answer: Kartagener's syndrome

      Explanation:

      Kartagener’s syndrome is a condition that can lead to bronchiectasis due to a defect in the cilia, which impairs the lungs’ ability to clear mucus. Bronchiectasis is diagnosed when a person produces large amounts of sputum daily, experiences haemoptysis, and loses weight. While other conditions may cause tiredness, weight loss, or haemoptysis, they are not typically associated with bronchiectasis.

      Understanding Kartagener’s Syndrome

      Kartagener’s syndrome, also known as primary ciliary dyskinesia, is a rare genetic disorder that was first described in 1933. It is often associated with dextrocardia, which can be detected through quiet heart sounds and small volume complexes in lateral leads during examinations. The pathogenesis of Kartagener’s syndrome is caused by a dynein arm defect, which results in immotile cilia.

      The features of Kartagener’s syndrome include dextrocardia or complete situs inversus, bronchiectasis, recurrent sinusitis, and subfertility. The latter is due to diminished sperm motility and defective ciliary action in the fallopian tubes. It is important to note that Kartagener’s syndrome is a rare disorder, and diagnosis can be challenging. However, early detection and management can help improve the quality of life for those affected by this condition.

    • This question is part of the following fields:

      • Respiratory System
      35.3
      Seconds
  • Question 30 - What is the term used to describe the area between the vocal cords?...

    Incorrect

    • What is the term used to describe the area between the vocal cords?

      Your Answer: Glottis

      Correct Answer: Rima glottidis

      Explanation:

      The narrowest part of the laryngeal cavity is known as the rima glottidis.

      Anatomy of the Larynx

      The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.

      The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.

      The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.

      The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.

      Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.

    • This question is part of the following fields:

      • Respiratory System
      20.7
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Respiratory System (17/30) 57%
Passmed