-
Question 1
Correct
-
A patient suffering from primary pulmonary hypertension at the age of 50 is prescribed bosentan, an endothelin receptor antagonist. What is the role of endothelin in the body?
Your Answer: Vasoconstriction and bronchoconstriction
Explanation:Endothelin, which is produced by the vascular endothelium, is a potent vasoconstrictor and bronchoconstrictor with long-lasting effects. It is believed to play a role in the development of primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Understanding Endothelin and Its Role in Various Diseases
Endothelin is a potent vasoconstrictor and bronchoconstrictor that is secreted by the vascular endothelium. Initially, it is produced as a prohormone and later converted to ET-1 by the action of endothelin converting enzyme. Endothelin interacts with a G-protein linked to phospholipase C, leading to calcium release. This interaction is thought to be important in the pathogenesis of many diseases, including primary pulmonary hypertension, cardiac failure, hepatorenal syndrome, and Raynaud’s.
Endothelin is known to promote the release of angiotensin II, ADH, hypoxia, and mechanical shearing forces. On the other hand, it inhibits the release of nitric oxide and prostacyclin. Raised levels of endothelin are observed in primary pulmonary hypertension, myocardial infarction, heart failure, acute kidney injury, and asthma.
In recent years, endothelin antagonists have been used to treat primary pulmonary hypertension. Understanding the role of endothelin in various diseases can help in the development of new treatments and therapies.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 47-year-old patient is scheduled for an emergency laparotomy due to bowel perforation. While performing the procedure, the surgeon comes across the marginal artery of Drummond and decides to preserve it. Can you name the two arteries that combine to form the marginal artery of Drummond?
Your Answer: Superior mesenteric artery and inferior mesenteric artery
Explanation:The anastomosis known as the marginal artery of Drummond is created by the joining of the superior mesenteric artery and inferior mesenteric artery. This results in a continuous arterial circle that runs along the inner edge of the colon. The artery gives rise to straight vessels, also known as vasa recta, which supply the colon. The ileocolic, right colic, and middle colic branches of the SMA, as well as the left colic and sigmoid branches of the IMA, combine to form the marginal artery of Drummond. All other options are incorrect as they do not contribute to this particular artery.
The Superior Mesenteric Artery and its Branches
The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.
The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.
The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
An 80-year-old man visits his GP complaining of progressive breathlessness that has been worsening over the past 6 months. During the examination, the GP observes pitting oedema in the mid-shins. The patient has a medical history of type 2 diabetes mellitus and a myocardial infarction that occurred 5 years ago. The GP orders a blood test to investigate the cause of the patient's symptoms.
The blood test reveals a B-type natriuretic peptide (BNP) level of 907 pg/mL, which is significantly higher than the normal range (< 100). Can you identify the source of BNP secretion?Your Answer: Ventricular myocardium
Explanation:BNP is primarily secreted by the ventricular myocardium in response to stretching, making it a valuable indicator of heart failure. While it can be used for screening and prognostic scoring, it is not secreted by the atrial endocardium, distal convoluted tubule, pulmonary artery endothelium, or renal mesangial cells.
B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.
BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 50-year-old UK born patient with end-stage kidney failure arrives at the emergency department complaining of sharp chest pain that subsides when sitting forward. The patient has not undergone dialysis yet. Upon conducting an ECG, it is observed that there is a widespread 'saddle-shaped' ST elevation and PR depression, leading to a diagnosis of pericarditis. What could be the probable cause of this pericarditis?
Your Answer: Uraemia
Explanation:There is no indication of trauma in patients with advanced renal failure prior to dialysis initiation.
ECG results do not indicate a recent heart attack.
The patient’s age decreases the likelihood of malignancy.
Acute Pericarditis: Causes, Features, Investigations, and Management
Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.
The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.
Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.
Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.
In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
Which one of the following structures lies deepest in the popliteal fossa?
Your Answer: Tibial nerve
Correct Answer: Popliteal artery
Explanation:Starting from the surface and moving towards the depths, the common peroneal nerve emerges from the popliteal fossa adjacent to the inner edge of the biceps tendon. Subsequently, the tibial nerve runs alongside the popliteal vessels, first posteriorly and then medially. The popliteal vein is situated above the popliteal artery, which is the most internal structure in the fossa.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
A patient in their 60s develops complete heart block in hospital after experiencing a myocardial infarction. Their ECG displays a heart rate of 37 beats per minute and desynchronisation of atrial and ventricular contraction. What is the most probable coronary artery that is occluded in heart block during a myocardial infarction, indicating damage to the AV node?
Your Answer: RIght coronary artery
Explanation:The atrioventricular node is most likely supplied by the right coronary artery.
The left coronary artery gives rise to the left anterior descending and circumflex arteries.
An anterior myocardial infarction is caused by occlusion of the left anterior descending artery.
The coronary sinus is a venous structure that drains blood from the heart and returns it to the right atrium.
Understanding Coronary Circulation
Coronary circulation refers to the blood flow that supplies the heart with oxygen and nutrients. The arterial supply of the heart is divided into two main branches: the left coronary artery (LCA) and the right coronary artery (RCA). The LCA originates from the left aortic sinus, while the RCA originates from the right aortic sinus. The LCA further divides into two branches, the left anterior descending (LAD) and the circumflex artery, while the RCA supplies the posterior descending artery.
The LCA supplies the left ventricle, left atrium, and interventricular septum, while the RCA supplies the right ventricle and the inferior wall of the left ventricle. The SA node, which is responsible for initiating the heartbeat, is supplied by the RCA in 60% of individuals, while the AV node, which is responsible for regulating the heartbeat, is supplied by the RCA in 90% of individuals.
On the other hand, the venous drainage of the heart is through the coronary sinus, which drains into the right atrium. During diastole, the coronary arteries fill with blood, allowing for the delivery of oxygen and nutrients to the heart muscles. Understanding the coronary circulation is crucial in the diagnosis and management of various heart diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 24-year-old patient is brought to the emergency department after ingesting a bottle of insecticide and experiencing multiple episodes of vomiting. The suspected diagnosis is organophosphate poisoning and the patient is being treated with supportive measures and atropine. What potential side effect of atropine administration should be monitored for in this patient?
Your Answer: Hypohidrosis
Explanation:Hypohidrosis is a possible side-effect of Atropine.
Atropine is an anticholinergic drug that works by blocking the muscarinic acetylcholine receptor in a competitive manner. Its side-effects may include tachycardia, mydriasis, dry mouth, hypohidrosis, constipation, and urinary retention. It is important to note that the other listed side-effects are typically associated with muscarinic agonist drugs like pilocarpine.
Understanding Atropine and Its Uses
Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.
Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and swollen ankles over the past 10 months. She has a medical history of ischaemic heart disease, but an echocardiogram reveals normal valve function. During the examination, the doctor detects a low-pitched sound at the start of diastole, following S2. What is the probable reason for this sound?
Your Answer: Rapid movement of blood entering ventricles from atria
Explanation:S3 is an unusual sound that can be detected in certain heart failure patients. It is caused by the rapid movement and oscillation of blood into the ventricles.
Another abnormal heart sound, S4, is caused by forceful atrial contraction and occurs later in diastole.
While aortic regurgitation causes an early diastolic decrescendo murmur and mitral stenosis can cause a mid-diastolic rumble with an opening snap, these conditions are less likely as the echocardiogram reported normal valve function.
A patent ductus arteriosus typically causes a continuous murmur and would present earlier in life.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
You are shadowing a cardiologist during a clinic session and the first patient is an 80-year-old man who has come for his annual check-up. He reports experiencing swollen ankles, increased shortness of breath, and difficulty sleeping flat. He has a history of heart failure but has been stable for the past 10 years. He believes that his condition has worsened since starting a new medication, but he cannot recall the name of the drug. Unfortunately, the electronic medical records are down, and you cannot access his medication history. Which of the following medications is most likely responsible for his symptoms?
Your Answer: Hydralazine
Explanation:Hydralazine is unique among these drugs as it has been known to cause fluid retention by elevating the plasma concentration of renin. Conversely, the other drugs listed are recognized for their ability to reduce fluid overload and promote fluid elimination.
Hydralazine: An Antihypertensive with Limited Use
Hydralazine is an antihypertensive medication that is not commonly used nowadays. It is still prescribed for severe hypertension and hypertension in pregnancy. The drug works by increasing cGMP, which leads to smooth muscle relaxation. However, there are certain contraindications to its use, such as systemic lupus erythematosus and ischaemic heart disease/cerebrovascular disease.
Despite its potential benefits, hydralazine can cause adverse effects such as tachycardia, palpitations, flushing, fluid retention, headache, and drug-induced lupus. Therefore, it is not the first choice for treating hypertension in most cases. Overall, hydralazine is an older medication that has limited use due to its potential side effects and newer, more effective antihypertensive options available.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 68-year-old man comes to your clinic with a painful, swollen, and red cheek. During the examination, you notice an erythematous swelling above the mandible's angle on the left side. The swelling is warm and tender to the touch. The patient had a stroke eight weeks ago and has had difficulty swallowing since then. He is currently being fed through a percutaneous enteral gastrostomy tube, which has been in place for six weeks. You suspect that he has a parotid gland infection. What is the artery that passes through the parotid gland and usually bifurcates within it?
Your Answer: Internal carotid artery
Correct Answer: External carotid artery
Explanation:The external carotid artery runs through the parotid gland and divides into the superficial temporal artery and the maxillary artery. It gives rise to several branches, including the facial artery, superior thyroid artery, and lingual artery, which supply various structures in the face, thyroid gland, and tongue.
The internal carotid artery is one of the two main branches of the common carotid artery and supplies a significant portion of the brain and surrounding structures. Patients who have had strokes may experience dysphagia, which increases the risk of aspiration and may require feeding through a nasogastric tube or percutaneous enteral gastrostomy (PEG). Long-term PEG feeding may increase the risk of infective parotitis.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)