-
Question 1
Incorrect
-
Which one of the following structures does not pass posteriorly to the medial malleolus?
Your Answer: Tendon of flexor digitorum longus
Correct Answer: Tibialis anterior tendon
Explanation:Structures Passing Posterior to the Medial Malleolus
The medial malleolus is a bony prominence on the inner side of the ankle joint. Several important structures pass posterior to it, including the tibialis posterior tendon, flexor digitorum longus tendon, posterior tibial artery, tibial nerve, and tendon of flexor hallucis longus.
The tibialis posterior tendon is responsible for plantar flexion and inversion of the foot, while the flexor digitorum longus tendon helps to flex the toes. The posterior tibial artery supplies blood to the foot and ankle, while the tibial nerve provides sensation and motor function to the muscles of the lower leg and foot. Finally, the tendon of flexor hallucis longus helps to flex the big toe.
It is important to be aware of these structures when performing any procedures or surgeries in the area, as damage to them can result in significant complications. Understanding the anatomy of the ankle and foot can also help in the diagnosis and treatment of various conditions affecting these structures.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 2
Incorrect
-
A 23-year-old mother brings in her 6-week-old child worried about a 'growth' in the child's abdomen. The mother is a carrier for Cori's disease.
During the clinical examination, the healthcare provider observes hepatomegaly and a characteristic sign of Cori's disease.
What is the distinctive sign observed?Your Answer: Macroglossia
Correct Answer: Hypotonia
Explanation:Cori’s disease is characterized by muscle hypotonia as a prominent feature. However, the Finkelstein sign, which is present in De Quervain’s tenosynovitis, is not observed in Cori’s disease. Additionally, hyperventilation due to lactic acidosis is a distinguishing feature of von Gierke disease rather than Cori’s disease.
Inherited Metabolic Disorders: Types and Deficiencies
Inherited metabolic disorders are a group of genetic disorders that affect the body’s ability to process certain substances. These disorders can be categorized into different types based on the specific substance that is affected. One type is glycogen storage disease, which is caused by deficiencies in enzymes involved in glycogen metabolism. This can lead to the accumulation of glycogen in various organs, resulting in symptoms such as hypoglycemia, lactic acidosis, and hepatomegaly.
Another type is lysosomal storage disease, which is caused by deficiencies in enzymes involved in lysosomal metabolism. This can lead to the accumulation of various substances within lysosomes, resulting in symptoms such as hepatosplenomegaly, developmental delay, and optic atrophy. Examples of lysosomal storage diseases include Gaucher’s disease, Tay-Sachs disease, and Fabry disease.
Finally, mucopolysaccharidoses are a group of disorders caused by deficiencies in enzymes involved in the breakdown of glycosaminoglycans. This can lead to the accumulation of these substances in various organs, resulting in symptoms such as coarse facial features, short stature, and corneal clouding. Examples of mucopolysaccharidoses include Hurler syndrome and Hunter syndrome.
Overall, inherited metabolic disorders can have a wide range of symptoms and can affect various organs and systems in the body. Early diagnosis and treatment are important in managing these disorders and preventing complications.
-
This question is part of the following fields:
- General Principles
-
-
Question 3
Incorrect
-
A 25-year-old African lady has an open appendicectomy. She returns for a follow-up appointment 10 months later and upon abdominal inspection, a shiny dark protuberant scar tissue is observed covering the wound site, projecting beyond the skin incision. What is the most probable underlying process?
Your Answer:
Correct Answer: Keloid scar
Explanation:Keloid scars surpass the boundaries of the initial cut.
The Stages of Wound Healing and Common Problems with Scars
Wound healing is a complex process that involves several stages, including haemostasis, inflammation, regeneration, and remodeling. During haemostasis, the body forms a clot to stop bleeding. Inflammation occurs next, where immune cells migrate to the wound and release growth factors to stimulate the production of new tissue. Regeneration involves the formation of new blood vessels and the production of collagen to rebuild the damaged tissue. Finally, during remodeling, the body remodels the new tissue to form a scar.
However, several factors can affect the wound healing process, including vascular disease, shock, sepsis, and jaundice. Additionally, some scars may develop problems, such as hypertrophic scars, which contain excessive amounts of collagen within the scar and may develop contractures. Keloid scars are another type of problematic scar that extends beyond the boundaries of the original injury and does not regress over time.
Several drugs can also impair wound healing, including non-steroidal anti-inflammatory drugs, steroids, immunosuppressive agents, and anti-neoplastic drugs. Closure of the wound can occur through delayed primary closure or secondary closure, depending on the timing of the closure and the presence of granulation tissue.
In summary, wound healing is a complex process that involves several stages, and several factors can affect the process and lead to problematic scars. Understanding the stages of wound healing and common problems with scars can help healthcare professionals provide better care for patients with wounds.
-
This question is part of the following fields:
- General Principles
-
-
Question 4
Incorrect
-
A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?
Your Answer:
Correct Answer: Zona fasciculata
Explanation:The adrenal gland comprises two primary parts: the cortex and medulla.
The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.
The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Incorrect
-
A couple in their early thirties visit the doctor's office as they have been attempting to conceive for the past year. They are currently 4 days pregnant without realizing it. At what stage is the fertilized tissue?
Your Answer:
Correct Answer: Morula
Explanation:When the sperm penetrates the secondary oocyte, it triggers a series of changes. Before this, the LH surge prompts the breakdown of the germinal vesicle that surrounds the enlarged nucleus, leading to the completion of meiosis and the formation of the first polar body. After fertilization, the pronuclei form, followed by zygote formation, rapid cleavage, compaction, and polarization.
Around day 5, the blastocyst is formed, and implantation typically occurs on days 5-6. On day 1, the fertilized egg (zygote) is produced, and by late day 1, it reaches the 2-cell stage. By early day 2, it is at the 4-cell stage, and by early day 3, it reaches the 8-cell stage. By late day 3, it has progressed to the 16-cell stage, and on day 4, the morula is formed. Finally, on day 5, the blastocyst is formed.
Embryology is the study of the development of an organism from the moment of fertilization to birth. During the first week of embryonic development, the fertilized egg implants itself into the uterine wall. By the second week, the bilaminar disk is formed, consisting of two layers of cells. The primitive streak appears in the third week, marking the beginning of gastrulation and the formation of the notochord.
As the embryo enters its fourth week, limb buds begin to form, and the neural tube closes. The heart also begins to beat during this time. By week 10, the genitals are differentiated, and the embryo exhibits intermittent breathing movements. These early events in embryonic development are crucial for the formation of the body’s major organs and structures. Understanding the timeline of these events can provide insight into the complex process of human development.
-
This question is part of the following fields:
- General Principles
-
-
Question 6
Incorrect
-
A 42-year-old unemployed male who resides in a hostel is admitted to the medical ward after experiencing upper gastrointestinal bleeding. He has a history of alcohol detoxes and is known to the Alcohol and Drugs Services.
On the third day of his hospitalization, he becomes agitated and begins shouting about insects crawling on the walls in his room.
What is the probable reason for his current presentation?Your Answer:
Correct Answer: Delirium tremens
Explanation:Visual Hallucinations in Organic Psychosis
Visual hallucinations are a common occurrence in organic psychosis, particularly in cases of delirium. These hallucinations often take the form of animals and people. In cases of alcoholic delirium, the visual hallucinations tend to be small objects such as spider webs or hairs, which appear against a clear background like a white wall.
It is important to note that the psychotic experiences associated with delirium tremens can be mistaken for other psychotic illnesses like schizophrenia or mania. However, delirium is a medical emergency that requires immediate medical attention. Admission to a psychiatric hospital may not be the best course of action due to a lack of trained staff in emergency medicine.
In summary, visual hallucinations are a common symptom of organic psychosis, particularly in cases of delirium. These hallucinations can take many forms, including animals, people, and small objects. It is important to seek medical attention immediately if experiencing these symptoms, as delirium is a medical emergency that requires prompt treatment.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 7
Incorrect
-
You are working in the emergency department and are asked to take bloods from a 65-year-old man who has presented with shortness of breath and a cough. During the process of taking the patient's blood, you sustain a needlestick injury. Following your hospital's guidelines, you thoroughly irrigate the wound and inform occupational health. Upon reviewing the patient's medical records, you discover that they were diagnosed with HIV 6 years ago.
What is the primary factor that determines your risk of HIV transmission in this scenario?Your Answer:
Correct Answer: The viral load of the patient
Explanation:According to UK guidelines, it is no longer necessary to administer post-exposure prophylaxis after being exposed to a patient with an undetectable viral load in an occupational setting.
The risk of transmission is higher if the sharp object was used to access an artery or vein, if there is visible blood on the sharp, if the sharp is a hollow-bore blood-filled needle, or if the wound is deep.
Other factors listed do not impact the likelihood of HIV transmission.
Post-Exposure Prophylaxis for Viral Infections
Post-exposure prophylaxis (PEP) is a preventive treatment given to individuals who have been exposed to a viral infection. The type of PEP given depends on the virus and the clinical situation. For hepatitis A, either human normal immunoglobulin or the hepatitis A vaccine may be used. For hepatitis B, the PEP given depends on whether the source is known to be positive for HBsAg or not. If the person exposed is a known responder to the HBV vaccine, then a booster dose should be given. If they are a non-responder, they need to have hepatitis B immune globulin and a booster vaccine. For hepatitis C, monthly PCR is recommended, and if seroconversion occurs, interferon +/- ribavirin may be given. For HIV, a combination of oral antiretrovirals should be given as soon as possible for four weeks. The risk of HIV transmission depends on the incident and the current viral load of the patient. For varicella zoster, VZIG is recommended for IgG negative pregnant women or immunosuppressed individuals. The risk of transmission for single needlestick injuries varies depending on the virus, with hepatitis B having a higher risk than hepatitis C and HIV.
Overall, PEP is an important preventive measure for individuals who have been exposed to viral infections. It is crucial to determine the appropriate PEP based on the virus and the clinical situation to ensure the best possible outcome.
-
This question is part of the following fields:
- General Principles
-
-
Question 8
Incorrect
-
A man in his early 50s complains of experiencing numbness and pain in his right hand's thumb, index finger, and middle finger. Which nerve roots are most likely to be impacted?
Your Answer:
Correct Answer: C5-T1
Explanation:Carpal tunnel syndrome is a condition that occurs when the median nerve in the carpal tunnel is compressed. This can cause pain and pins and needles sensations in the thumb, index, and middle fingers. In some cases, the symptoms may even travel up the arm. Patients may shake their hand to alleviate the discomfort, especially at night. During an examination, weakness in thumb abduction and wasting of the thenar eminence may be observed. Tapping on the affected area may also cause paraesthesia, and flexing the wrist can trigger symptoms.
There are several potential causes of carpal tunnel syndrome, including idiopathic factors, pregnancy, oedema, lunate fractures, and rheumatoid arthritis. Electrophysiology tests may reveal prolongation of the action potential in both motor and sensory nerves. Treatment options may include a six-week trial of conservative measures such as wrist splints at night or corticosteroid injections. If symptoms persist or are severe, surgical decompression may be necessary, which involves dividing the flexor retinaculum.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 9
Incorrect
-
A 10-year-old girl is brought in by her father as she is having an acute exacerbation of her asthma. While you are giving her a salbutamol nebuliser, you notice signs that make you suspicious of abuse. What is the most common form of child abuse?
Your Answer:
Correct Answer: Neglect
Explanation:Understanding Child Abuse and the Legal Framework for Child Protection
Child abuse is a serious issue that can take many forms, including neglect, emotional abuse, physical abuse, and sexual abuse. Neglect occurs when a child’s basic needs, such as food, shelter, and medical care, are not met. Emotional abuse involves behaviors that harm a child’s self-esteem, such as constant criticism or belittling. Physical abuse involves any intentional harm to a child’s body, such as hitting or shaking. Sexual abuse involves any sexual activity with a child, including touching, penetration, or exposure to sexual content.
To protect children from abuse, the legal framework in the UK is governed by the Children’s Act of 1989 and 2004. These laws outline the responsibilities of local authorities, courts, and other agencies in safeguarding children from harm. The Children’s Act of 1989 established the principle that the welfare of the child is paramount and that children have the right to be protected from harm. The Act also created the role of the Independent Reviewing Officer (IRO), who is responsible for ensuring that the child’s welfare is being safeguarded.
The Children’s Act of 2004 built on the 1989 Act and introduced new measures to improve child protection. These included the creation of the Children and Family Court Advisory and Support Service (CAFCASS), which provides advice to courts on the welfare of children, and the establishment of Local Safeguarding Children Boards (LSCBs), which bring together local agencies to coordinate their efforts to protect children.
In summary, child abuse is a serious issue that can take many forms, and the legal framework in the UK is governed by the Children’s Act of 1989 and 2004. These laws aim to protect children from harm and outline the responsibilities of local authorities, courts, and other agencies in safeguarding children’s welfare.
-
This question is part of the following fields:
- General Principles
-
-
Question 10
Incorrect
-
A 54-year-old African American male is being consented for an endoscopic retrograde cholangiopancreatography (ERCP). He is very anxious about the procedure and requests for more information about the common complications of ERCP. He is concerned about peritonitis, which usually occurs secondary to a perforation of the bowel - a rare complication of ERCP. You reassure him that perforation of the bowel, although a very serious complication, is uncommon. However, they are other more common complications of ERCP that he should be aware of.
What is the most common complication of ERCP?Your Answer:
Correct Answer: Acute pancreatitis
Explanation:The most frequent complication of ERCP is acute pancreatitis, which occurs when the X-ray contrast material or cannula irritates the pancreatic duct. While other complications may arise from ERCP, they are not as prevalent as acute pancreatitis.
Acute pancreatitis is a condition that is primarily caused by gallstones and alcohol consumption in the UK. However, there are other factors that can contribute to the development of this condition. A popular mnemonic used to remember these factors is GET SMASHED, which stands for gallstones, ethanol, trauma, steroids, mumps, autoimmune diseases, scorpion venom, hypertriglyceridaemia, hyperchylomicronaemia, hypercalcaemia, hypothermia, ERCP, and certain drugs. It is important to note that pancreatitis is seven times more common in patients taking mesalazine than sulfasalazine. CT scans can show diffuse parenchymal enlargement with oedema and indistinct margins in patients with acute pancreatitis.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 11
Incorrect
-
A somatostatinoma patient with constantly elevated somatostatin levels experiences a significant decrease in the secretion of many endocrine hormones. Which hormone responsible for stimulating the pancreas and hepatic duct cells to secrete bicarbonate-rich fluid is affected when S cells are not stimulated?
Your Answer:
Correct Answer: Secretin
Explanation:Secretin is the correct answer as it is produced by S cells in the upper small intestine and stimulates the pancreas and hepatic duct cells to secrete bicarbonate-rich fluid. It also reduces gastric acid secretion and promotes the growth of pancreatic acinar cells. However, if there is a somatostatinoma present, there will be an excess of somatostatin which inhibits the production of secretin by S cells.
Cholecystokinin (CCK) is an incorrect answer as it is released by I-cells in the upper small intestine in response to fats and proteins. CCK stimulates the gallbladder and pancreas to contract and secrete bile enzymes into the duodenum.
Gastrin is an incorrect answer as it is produced by G cells in the stomach and stimulates the release of hydrochloric acid into the stomach.
Ghrelin is an incorrect answer as it is released to stimulate hunger, particularly before meals.
Overview of Gastrointestinal Hormones
Gastrointestinal hormones play a crucial role in the digestion and absorption of food. These hormones are secreted by various cells in the stomach and small intestine in response to different stimuli such as the presence of food, pH changes, and neural signals.
One of the major hormones involved in food digestion is gastrin, which is secreted by G cells in the antrum of the stomach. Gastrin increases acid secretion by gastric parietal cells, stimulates the secretion of pepsinogen and intrinsic factor, and increases gastric motility. Another hormone, cholecystokinin (CCK), is secreted by I cells in the upper small intestine in response to partially digested proteins and triglycerides. CCK increases the secretion of enzyme-rich fluid from the pancreas, contraction of the gallbladder, and relaxation of the sphincter of Oddi. It also decreases gastric emptying and induces satiety.
Secretin is another hormone secreted by S cells in the upper small intestine in response to acidic chyme and fatty acids. Secretin increases the secretion of bicarbonate-rich fluid from the pancreas and hepatic duct cells, decreases gastric acid secretion, and has a trophic effect on pancreatic acinar cells. Vasoactive intestinal peptide (VIP) is a neural hormone that stimulates secretion by the pancreas and intestines and inhibits acid secretion.
Finally, somatostatin is secreted by D cells in the pancreas and stomach in response to fat, bile salts, and glucose in the intestinal lumen. Somatostatin decreases acid and pepsin secretion, decreases gastrin secretion, decreases pancreatic enzyme secretion, and decreases insulin and glucagon secretion. It also inhibits the trophic effects of gastrin and stimulates gastric mucous production.
In summary, gastrointestinal hormones play a crucial role in regulating the digestive process and maintaining homeostasis in the gastrointestinal tract.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 12
Incorrect
-
You plan to conduct a study to determine if three different diets, each with varying sugar content, have varying effects on weight gain in individuals of different ages. Which statistical test would you use to show a significant difference between the diets?
Your Answer:
Correct Answer: ANOVA
Explanation:Understanding ANOVA: A Statistical Test for Comparing Multiple Group Means
ANOVA is a statistical test used to determine if there are significant differences between the means of multiple groups. Unlike the t-test, which only compares two means, ANOVA can compare more than two means. However, ANOVA assumes that the variable being tested is normally distributed. If this assumption is not met, nonparametric tests such as the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test can be used instead.
The ANOVA test works by comparing the variance of the means. It distinguishes between within-group variance, which is the variance of the sample mean, and between-group variance, which is the variance between the separate sample means. The null hypothesis assumes that the variance of all the means is the same, and that within-group variance is the same as between-group variance. The test is based on the ratio of these two variances, which is known as the F statistic.
In summary, ANOVA is a useful statistical test for comparing multiple group means. However, it is important to ensure that the variable being tested is normally distributed. If this assumption is not met, nonparametric tests can be used instead.
-
This question is part of the following fields:
- General Principles
-
-
Question 13
Incorrect
-
A 35-year-old man has arrived at the emergency department following a car crash. He is experiencing tachycardia and his blood pressure is rapidly decreasing from 90/60mmHg. He is feeling dizzy and disoriented, and is experiencing pain in his left upper quadrant and left shoulder. Which organ is most likely to have sustained damage?
Your Answer:
Correct Answer: Spleen
Explanation:The patient’s tachycardia and low blood pressure indicate internal bleeding due to trauma. Although he experiences pain in his upper left abdominal quadrant, it does not rule out the possibility of internal bleeding. However, it makes heart and lung injuries less likely as he would have also complained of chest pain. The pain in his left shoulder suggests that the left phrenic nerve has been affected, which indicates damage to the spleen rather than the liver, as it would have been on the right side. The spleen is commonly damaged in trauma and could explain the rapid drop in blood pressure.
Understanding the Anatomy of the Spleen
The spleen is a vital organ in the human body, serving as the largest lymphoid organ. It is located below the 9th-12th ribs and has a clenched fist shape. The spleen is an intraperitoneal organ, and its peritoneal attachments condense at the hilum, where the vessels enter the spleen. The blood supply of the spleen is from the splenic artery, which is derived from the coeliac axis, and the splenic vein, which is joined by the IMV and unites with the SMV.
The spleen is derived from mesenchymal tissue during embryology. It weighs between 75-150g and has several relations with other organs. The diaphragm is superior to the spleen, while the gastric impression is anterior, the kidney is posterior, and the colon is inferior. The hilum of the spleen is formed by the tail of the pancreas and splenic vessels. The spleen also forms the apex of the lesser sac, which contains short gastric vessels.
In conclusion, understanding the anatomy of the spleen is crucial in comprehending its functions and the role it plays in the human body. The spleen’s location, weight, and relations with other organs are essential in diagnosing and treating spleen-related conditions.
-
This question is part of the following fields:
- Gastrointestinal System
-
-
Question 14
Incorrect
-
A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?
Your Answer:
Correct Answer: Anterior tibial
Explanation:The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.
The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 12-day-old infant named Max is brought to the paediatric assessment unit due to yellowing of the skin that started 3 days ago. Max is currently in a bright and alert state and has not experienced any fever. The baby has been passing urine and stool normally, and the mother has not noticed any changes in this regard.
Apart from the jaundice, the mother has no other concerns, and Max has been thriving since birth. Max was born at term, is breastfed, and there are no other children in the house.
Hb: 140 g/L Male: (135-180) Female: (115 - 160)
Bilirubin: 30 µmol/L (3 - 17)
Upon further testing, it is revealed that Max's unconjugated bilirubin levels are 26 µmol/L. Based on these findings, what is the most likely cause of the jaundice in Max's case?Your Answer:
Correct Answer: Hepatic immaturity
Explanation:Neonatal jaundice caused by physiological factors is a result of the liver’s immaturity and the breakdown of fetal hemoglobin. To determine the cause of jaundice, both clinical symptoms and laboratory findings are crucial. In this case, the presence of isolated unconjugated hyperbilirubinemia without any clinical signs is indicative of physiological jaundice. This type of jaundice is common in the first few weeks of life and is caused by the immaturity of the liver and increased breakdown of hemoglobin. The fact that the baby is being breastfed also supports this diagnosis. Obstructive jaundice, on the other hand, would present with an obstructive picture and an elevated conjugated bilirubin level, which is not the case here. In MCQs, the history often provides clues, such as pale stools and dark urine.
Understanding Jaundice in Newborns
Jaundice is a common condition in newborns that occurs due to the accumulation of bilirubin in the blood. The severity and duration of jaundice can vary depending on the cause and age of the baby. Jaundice in the first 24 hours is always considered pathological and can be caused by conditions such as rhesus haemolytic disease, ABO haemolytic disease, hereditary spherocytosis, and glucose-6-phosphodehydrogenase deficiency.
Jaundice in the neonate from 2-14 days is usually physiological and affects up to 40% of babies. It is more commonly seen in breastfed babies and is due to a combination of factors such as more red blood cells, fragile red blood cells, and less developed liver function. However, if jaundice persists after 14 days (21 days if premature), a prolonged jaundice screen is performed to identify the cause. This includes tests for conjugated and unconjugated bilirubin, direct antiglobulin test, TFTs, FBC and blood film, urine for MC&S and reducing sugars, and U&Es and LFTs.
Prolonged jaundice can be caused by conditions such as biliary atresia, hypothyroidism, galactosaemia, urinary tract infection, breast milk jaundice, prematurity, and congenital infections like CMV and toxoplasmosis. Breast milk jaundice is more common in breastfed babies and is thought to be due to high concentrations of beta-glucuronidase, which increases the intestinal absorption of unconjugated bilirubin. It is important to identify the cause of prolonged jaundice as some conditions like biliary atresia require urgent surgical intervention, while others like hypothyroidism can lead to developmental delays if left untreated.
-
This question is part of the following fields:
- General Principles
-
-
Question 16
Incorrect
-
A 23-year-old male university student presents to the emergency department with lightheadedness and a fall an hour earlier, associated with loss of consciousness. He admits to being short of breath on exertion with chest pain for several months. The patient denies vomiting or haemoptysis. The symptoms are not exacerbated or relieved by any positional changes or during phases of respiration.
He has no relevant past medical history, is not on any regular medications, and has no documented drug allergies. There is no relevant family history. He is a non-smoker and drinks nine unite of alcohol a week. He denies any recent travel or drug use.
On examination, the patient appears to be comfortable at rest. His heart rate is 68/min, blood pressure 112/84 mmHg, oxygen saturation 99% on air, respiratory rate of 16 breaths per minute, temperature 36.7ºC.
An ejection systolic murmur is audible throughout the praecordium, loudest over the sternum bilaterally. No heaves or thrills are palpable, and there are no radiations. The murmur gets louder when the patient is asked to perform the Valsalva manoeuvre. The murmur is noted as grade II. Lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present. His body mass index is 20 kg/m².
His ECG taken on admission reveals sinus rhythm, with generalised deep Q waves and widespread T waves. There is evidence of left ventricular hypertrophy.
What is the most likely diagnosis?Your Answer:
Correct Answer: Hypertrophic obstructive cardiomyopathy
Explanation:The patient’s symptoms and findings suggest the possibility of hypertrophic obstructive cardiomyopathy (HOCM), which is characterized by exertional dyspnea, chest pain, syncope, and ejection systolic murmur that is louder during Valsalva maneuver and quieter during squatting. The ECG changes observed are also consistent with HOCM. Given the patient’s young age, it is crucial to rule out this diagnosis as HOCM is a leading cause of sudden cardiac death in young individuals.
Brugada syndrome, an autosomal dominant cause of sudden cardiac death in young people, may also present with unexplained falls. However, the absence of a family history of cardiac disease and the unlikely association with the murmur and ECG changes described make this diagnosis less likely. It is important to note that performing Valsalva maneuver in a patient with Brugada syndrome can be life-threatening due to the risk of arrhythmias such as ventricular fibrillation.
Chagas disease, a parasitic disease prevalent in South America, is caused by an insect bite and has a long dormant period before causing ventricular damage. However, the patient’s age and absence of exposure to the disease make this diagnosis less likely.
Myocardial infarction can cause central chest pain and ECG changes, but it is rare for it to present with falls. Moreover, the ECG changes observed are not typical of myocardial infarction. The patient’s young age and lack of cardiac risk factors also make this diagnosis less likely.
Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 19-year-old male is brought to the emergency room following ingestion of a significant quantity of cocaine. He is experiencing excessive sweating and heart palpitations. During the examination, his pupils are found to be dilated and he is exhibiting tachycardia and tachypnea.
From which spinal level do the preganglionic neurons of the system responsible for his symptoms originate?Your Answer:
Correct Answer: T1-L2/3
Explanation:The lateral horns of grey matter give rise to the preganglionic neurons of the sympathetic nervous system.
Understanding the Autonomic Nervous System
The autonomic nervous system is responsible for regulating involuntary functions in the body, such as heart rate, digestion, and sexual arousal. It is composed of two main components, the sympathetic and parasympathetic nervous systems, as well as a sensory division. The sympathetic division arises from the T1-L2/3 region of the spinal cord and synapses onto postganglionic neurons at paravertebral or prevertebral ganglia. The parasympathetic division arises from cranial nerves and the sacral spinal cord and synapses with postganglionic neurons at parasympathetic ganglia. The sensory division includes baroreceptors and chemoreceptors that monitor blood levels of oxygen, carbon dioxide, and glucose, as well as arterial pressure and the contents of the stomach and intestines.
The autonomic nervous system releases neurotransmitters such as noradrenaline and acetylcholine to achieve necessary functions and regulate homeostasis. The sympathetic nervous system causes fight or flight responses, while the parasympathetic nervous system causes rest and digest responses. Autonomic dysfunction refers to the abnormal functioning of any part of the autonomic nervous system, which can present in many forms and affect any of the autonomic systems. To assess a patient for autonomic dysfunction, a detailed history should be taken, and the patient should undergo a full neurological examination and further testing if necessary. Understanding the autonomic nervous system is crucial in diagnosing and treating autonomic dysfunction.
-
This question is part of the following fields:
- Neurological System
-
-
Question 18
Incorrect
-
A man in his early fifties comes to the clinic with symptoms of progressive paralysis and difficulty in swallowing. Upon examination, it is found that he has spastic paralysis in his arms and reduced knee reflexes. The diagnosis is confirmed as amyotrophic lateral sclerosis (ALS). What type of cell death is responsible for the combination of upper and lower motor neuron lesions seen in ALS?
Your Answer:
Correct Answer: Motor cortex neuronal cells and anterior horn cells
Explanation:Upper motor lesion signs are caused by damage to neuronal cells in the motor cortex, while lower motor lesion signs are caused by damage to anterior horn cells. This is why ALS, which involves damage to both areas, presents with mixed signs. If only one of these areas were damaged, it would result in only one type of motor neuron lesion sign. Multiple sclerosis often involves multiple lesions in the brain.
Motor neuron disease is a neurological condition that is not yet fully understood. It can manifest with both upper and lower motor neuron signs and is rare before the age of 40. There are different patterns of the disease, including amyotrophic lateral sclerosis, progressive muscular atrophy, and bulbar palsy. Some of the clues that may indicate a diagnosis of motor neuron disease include fasciculations, the absence of sensory signs or symptoms, a combination of lower and upper motor neuron signs, and wasting of small hand muscles or tibialis anterior.
Other features of motor neuron disease include the fact that it does not affect external ocular muscles and there are no cerebellar signs. Abdominal reflexes are usually preserved, and sphincter dysfunction is a late feature if present. The diagnosis of motor neuron disease is made based on clinical presentation, but nerve conduction studies can help exclude a neuropathy. Electromyography may show a reduced number of action potentials with increased amplitude. MRI is often used to rule out cervical cord compression and myelopathy as differential diagnoses. It is important to note that while vague sensory symptoms may occur early in the disease, sensory signs are typically absent.
-
This question is part of the following fields:
- Neurological System
-
-
Question 19
Incorrect
-
A 32-year-old woman visits her doctor for a regular examination. She is currently 34 weeks pregnant and plans to breastfeed her child. Breastmilk is known to contain various molecules that aid in reducing the incidence of infections in infants. Can you identify the type of antibody present in breastmilk that contributes to this effect?
Your Answer:
Correct Answer: IgA
Explanation:IgA is present in bodily secretions such as breast milk, saliva, tears, and mucus. It provides protection against common infections in newborns and is the only antibody found in significant levels in these secretions. IgG is the most common antibody in human serum and provides long-term immunity, but is not found in secretions. IgD is mainly found on immature B lymphocytes and is not present in secretions. IgM is the first antibody to appear in response to a new antigen, but is too large to pass through the placenta and is not found in secretions.
Immunoglobulins, also known as antibodies, are proteins produced by the immune system to help fight off infections and diseases. There are five types of immunoglobulins found in the body, each with their own unique characteristics.
IgG is the most abundant type of immunoglobulin in blood serum and plays a crucial role in enhancing phagocytosis of bacteria and viruses. It also fixes complement and can be passed to the fetal circulation.
IgA is the most commonly produced immunoglobulin in the body and is found in the secretions of digestive, respiratory, and urogenital tracts and systems. It provides localized protection on mucous membranes and is transported across the interior of the cell via transcytosis.
IgM is the first immunoglobulin to be secreted in response to an infection and fixes complement, but does not pass to the fetal circulation. It is also responsible for producing anti-A, B blood antibodies.
IgD’s role in the immune system is largely unknown, but it is involved in the activation of B cells.
IgE is the least abundant type of immunoglobulin in blood serum and is responsible for mediating type 1 hypersensitivity reactions. It provides immunity to parasites such as helminths and binds to Fc receptors found on the surface of mast cells and basophils.
-
This question is part of the following fields:
- General Principles
-
-
Question 20
Incorrect
-
A 45-year-old female presents to the neurology clinic with diplopia and headache. Upon examination, her visual acuity is 6/6, and there is pupillary dilatation. An MRI of her head reveals a post-communicating artery aneurysm. What cranial nerve palsy is probable in this patient?
Your Answer:
Correct Answer: Third nerve palsy
Explanation:A third nerve palsy may be caused by an aneurysm in the posterior communicating artery.
Understanding Third Nerve Palsy: Causes and Features
Third nerve palsy is a neurological condition that affects the third cranial nerve, which controls the movement of the eye and eyelid. The condition is characterized by the eye being deviated ‘down and out’, ptosis, and a dilated pupil. In some cases, it may be referred to as a ‘surgical’ third nerve palsy due to the dilation of the pupil.
There are several possible causes of third nerve palsy, including diabetes mellitus, vasculitis (such as temporal arteritis or SLE), uncal herniation through tentorium if raised ICP, posterior communicating artery aneurysm, and cavernous sinus thrombosis. In some cases, it may also be a false localizing sign. Weber’s syndrome, which is characterized by an ipsilateral third nerve palsy with contralateral hemiplegia, is caused by midbrain strokes. Other possible causes include amyloid and multiple sclerosis.
-
This question is part of the following fields:
- Neurological System
-
-
Question 21
Incorrect
-
A 55-year-old female is referred to the cardiologist by her GP due to experiencing postural dyspnoea and leg oedema for a few months. The cardiologist conducts an echocardiogram and finds out that her left ventricular ejection fraction is 34%. Based on her clinical presentation, she is diagnosed with congestive cardiac failure.
To alleviate her symptoms and improve her long-term prognosis, the patient is prescribed several medications. However, she visits the GP after two weeks, complaining of a dry, tickling cough that she attributes to one of her new medications.
Which medication is most likely causing this new symptom in the patient?Your Answer:
Correct Answer: Ramipril (ACE inhibitor)
Explanation:Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 38-year-old male presents to a neurology clinic with complaints of recent falls and slurred speech. During examination, he exhibits horizontal nystagmus, difficulty with repetitive hand movements, and an intention tremor. What area of the brain is most likely affected by his lesion?
Your Answer:
Correct Answer: Cerebellum
Explanation:Unconsciousness can be caused by lesions in the brainstem.
Cerebellar syndrome is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. When there is damage or injury to one side of the cerebellum, it can cause symptoms on the same side of the body. These symptoms can be remembered using the mnemonic DANISH, which stands for Dysdiadochokinesia, Dysmetria, Ataxia, Nystagmus, Intention tremour, Slurred staccato speech, and Hypotonia.
There are several possible causes of cerebellar syndrome, including genetic conditions like Friedreich’s ataxia and ataxic telangiectasia, neoplastic growths like cerebellar haemangioma, strokes, alcohol use, multiple sclerosis, hypothyroidism, and certain medications or toxins like phenytoin or lead poisoning. In some cases, cerebellar syndrome may be a paraneoplastic condition, meaning it is a secondary effect of an underlying cancer like lung cancer. It is important to identify the underlying cause of cerebellar syndrome in order to provide appropriate treatment and management.
-
This question is part of the following fields:
- Neurological System
-
-
Question 23
Incorrect
-
A 29-year-old woman has presented herself for review at an antenatal clinic upon discovering her pregnancy.
Your Answer:
Correct Answer: Warfarin
Explanation:Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
A 78-year-old lady is brought to the emergency department from a care home. She has been complaining of general malaise for several days and she now has photophobia and a painful neck. On examination, she is pyrexic and tachycardia. She is provisionally diagnosed with meningitis pending further investigations. What is the most likely causative organism?
Your Answer:
Correct Answer: Streptococcus pneumonia
Explanation:Individuals in the 60 years age group are susceptible to meningitis caused by Streptococcus pneumoniae, which is the most prevalent bacterial source of meningitis in the elderly. Lyme disease, on the other hand, is caused by Borrelia burgdorferi.
Meningitis is a serious medical condition that can be caused by various types of bacteria. The causes of meningitis differ depending on the age of the patient and their immune system. In neonates (0-3 months), the most common cause of meningitis is Group B Streptococcus, followed by E. coli and Listeria monocytogenes. In children aged 3 months to 6 years, Neisseria meningitidis, Streptococcus pneumoniae, and Haemophilus influenzae are the most common causes. For individuals aged 6 to 60 years, Neisseria meningitidis and Streptococcus pneumoniae are the primary causes. In those over 60 years old, Streptococcus pneumoniae, Neisseria meningitidis, and Listeria monocytogenes are the most common causes. For immunosuppressed individuals, Listeria monocytogenes is the primary cause of meningitis.
-
This question is part of the following fields:
- General Principles
-
-
Question 25
Incorrect
-
Which one of the following best describes the function of the p53 gene?
Your Answer:
Correct Answer: Encodes proteins which regulate the cell cycle
Explanation:Although p53 can induce cell cycle arrest to facilitate DNA repair, it does not directly participate in repairing DNA.
Understanding p53 and its Role in Cancer
p53 is a gene that helps suppress tumours and is located on chromosome 17p. It is frequently mutated in breast, colon, and lung cancer. The gene is believed to be essential in regulating the cell cycle, preventing cells from entering the S phase until DNA has been checked and repaired. Additionally, p53 may play a crucial role in apoptosis, the process of programmed cell death.
Li-Fraumeni syndrome is a rare genetic disorder that is inherited in an autosomal dominant pattern. It is characterised by the early onset of various cancers, including sarcoma, breast cancer, and leukaemia. The condition is caused by mutations in the p53 gene, which can lead to a loss of its tumour-suppressing function. Understanding the role of p53 in cancer can help researchers develop new treatments and therapies for those affected by the disease.
-
This question is part of the following fields:
- General Principles
-
-
Question 26
Incorrect
-
A middle-aged male patient with a history of schizophrenia and non-compliance with medication presents with delusions of alien possession. How would you characterize his delusions?
Your Answer:
Correct Answer: Delusions of control
Explanation:Schizophrenia Symptoms: Delusion of Control, Depersonalisation, and Delusions of Misidentification
Delusion of control, also known as passivity experience, is a primary symptom of schizophrenia identified by Schneider. This symptom is characterized by the belief that one’s body, mind, volition, or emotion is being controlled by another entity, being, or force. On the other hand, depersonalisation is the feeling of being disconnected from reality, often accompanied by derealisation.
Delusions of misidentification, another symptom of schizophrenia, can be divided into two types: Fregoli Syndrome and Capgras Syndrome. Fregoli Syndrome is the belief that someone whose appearance is unfamiliar is actually someone you know, while Capgras Syndrome is the belief that someone who looks familiar is an imposter.
Overall, these symptoms can significantly impact an individual’s perception of reality and their ability to function in daily life. It is important to seek professional help if experiencing any of these symptoms or suspecting someone else may be experiencing them.
-
This question is part of the following fields:
- Psychiatry
-
-
Question 27
Incorrect
-
A 65-year-old man with uncontrolled diabetes visits the ophthalmology clinic for his annual eye examination. During fundoscopy, the ophthalmologist observes fluffy white patches on the retina.
What is the underlying pathology indicated by this discovery?Your Answer:
Correct Answer: Retinal infarction
Explanation:Cotton wool spots in diabetic retinopathy indicate areas of retinal infarction.
Understanding Diabetic Retinopathy
Diabetic retinopathy is a leading cause of blindness in adults aged 35-65 years-old. The condition is caused by hyperglycaemia, which leads to abnormal metabolism in the retinal vessel walls, causing damage to endothelial cells and pericytes. This damage leads to increased vascular permeability, which causes exudates seen on fundoscopy. Pericyte dysfunction predisposes to the formation of microaneurysms, while neovascularization is caused by the production of growth factors in response to retinal ischaemia.
Patients with diabetic retinopathy are typically classified into those with non-proliferative diabetic retinopathy (NPDR), proliferative retinopathy (PDR), and maculopathy. NPDR is further classified into mild, moderate, and severe, depending on the presence of microaneurysms, blot haemorrhages, hard exudates, cotton wool spots, venous beading/looping, and intraretinal microvascular abnormalities. PDR is characterized by retinal neovascularization, which may lead to vitreous haemorrhage, and fibrous tissue forming anterior to the retinal disc. Maculopathy is based on location rather than severity and is more common in Type II DM.
Management of diabetic retinopathy involves optimizing glycaemic control, blood pressure, and hyperlipidemia, as well as regular review by ophthalmology. For maculopathy, intravitreal vascular endothelial growth factor (VEGF) inhibitors are used if there is a change in visual acuity. Non-proliferative retinopathy is managed through regular observation, while severe/very severe cases may require panretinal laser photocoagulation. Proliferative retinopathy is treated with panretinal laser photocoagulation, intravitreal VEGF inhibitors, and vitreoretinal surgery in severe or vitreous haemorrhage cases. Examples of VEGF inhibitors include ranibizumab, which has a strong evidence base for slowing the progression of proliferative diabetic retinopathy and improving visual acuity.
-
This question is part of the following fields:
- Neurological System
-
-
Question 28
Incorrect
-
A 25-year-old female patient is admitted to the surgical ward for an elective exploratory laparotomy to confirm the diagnosis of endometriosis. She has a history of pelvic inflammatory disease.
Upon laparoscopy, multiple chocolate cysts and ectopic endometrial tissue are found in the pelvis. However, the surgery results in damage to the structure that connects the left ovary to the lateral pelvic wall.
Which structure has been affected during the surgery?Your Answer:
Correct Answer: Suspensory ligament
Explanation:The suspensory ligament of the ovaries attaches the ovaries to the lateral pelvic wall. This ligament is used as a clinical landmark to differentiate between intraovarian and extraovarian pathology. The broad ligament, cardinal ligament, round ligament, and uterosacral ligament are incorrect options as they do not attach the ovaries to the lateral pelvic wall and have different functions in the female reproductive system.
Pelvic Ligaments and their Connections
Pelvic ligaments are structures that connect various organs within the female reproductive system to the pelvic wall. These ligaments play a crucial role in maintaining the position and stability of these organs. There are several types of pelvic ligaments, each with its own unique function and connection.
The broad ligament connects the uterus, fallopian tubes, and ovaries to the pelvic wall, specifically the ovaries. The round ligament connects the uterine fundus to the labia majora, but does not connect to any other structures. The cardinal ligament connects the cervix to the lateral pelvic wall and is responsible for supporting the uterine vessels. The suspensory ligament of the ovaries connects the ovaries to the lateral pelvic wall and supports the ovarian vessels. The ovarian ligament connects the ovaries to the uterus, but does not connect to any other structures. Finally, the uterosacral ligament connects the cervix and posterior vaginal dome to the sacrum, but does not connect to any other structures.
Overall, pelvic ligaments are essential for maintaining the proper position and function of the female reproductive organs. Understanding the connections between these ligaments and the structures they support is crucial for diagnosing and treating any issues that may arise.
-
This question is part of the following fields:
- Reproductive System
-
-
Question 29
Incorrect
-
Which one of the following is not closely related to the capitate bone?
Your Answer:
Correct Answer: Ulnar nerve
Explanation:The pisiform bone is in close proximity to both the ulnar nerve and artery. Additionally, the capitate bone is in articulation with the lunate, scaphoid, hamate, and trapezoid bones, indicating a close relationship between them.
The Capitate Bone: Largest of the Carpal Bones
The capitate bone is the largest of the carpal bones and is located centrally in the wrist. It has a rounded head that fits into the cavities of the lunate and scaphoid bones. The bone also has flatter articular surfaces for the hamate medially and the trapezoid laterally. At the distal end, the capitate bone primarily articulates with the middle metacarpal. Overall, the capitate bone plays an important role in the structure and function of the wrist joint.
-
This question is part of the following fields:
- Musculoskeletal System And Skin
-
-
Question 30
Incorrect
-
Where are the red hat pins most likely located based on the highest velocity measurements in different parts of a bovine heart during experimental research for a new drug for heart conduction disorders?
Your Answer:
Correct Answer: Purkinje fibres
Explanation:Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)