-
Question 1
Incorrect
-
A 7-year-old boy is brought to the doctor by his father with a complaint of frequent urination and excessive thirst. Upon conducting a fasting blood glucose test, the results are found to be abnormally high. The doctor suspects type 1 diabetes and initiates first-line injectable therapy.
What characteristic of this medication should be noted?Your Answer: Decreases cellular uptake of potassium
Correct Answer: Decreases serum potassium
Explanation:Insulin stimulates the Na+/K+ ATPase pump, which leads to a decrease in serum potassium levels. This is the primary treatment for type 1 diabetes, where the pancreas no longer produces insulin, causing high blood sugar levels. Injectable insulin allows glucose to enter cells, and insulin also increases cellular uptake of potassium while decreasing serum potassium levels. Insulin also stimulates muscle protein synthesis, reducing muscle protein loss. Insulin is secreted in response to hyperglycaemia, where high blood sugar levels trigger the beta cells of the pancreas to release insulin in healthy individuals.
Insulin is a hormone produced by the pancreas that plays a crucial role in regulating the metabolism of carbohydrates and fats in the body. It works by causing cells in the liver, muscles, and fat tissue to absorb glucose from the bloodstream, which is then stored as glycogen in the liver and muscles or as triglycerides in fat cells. The human insulin protein is made up of 51 amino acids and is a dimer of an A-chain and a B-chain linked together by disulfide bonds. Pro-insulin is first formed in the rough endoplasmic reticulum of pancreatic beta cells and then cleaved to form insulin and C-peptide. Insulin is stored in secretory granules and released in response to high levels of glucose in the blood. In addition to its role in glucose metabolism, insulin also inhibits lipolysis, reduces muscle protein loss, and increases cellular uptake of potassium through stimulation of the Na+/K+ ATPase pump.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 2
Incorrect
-
A 57-year-old man with a history of type 2 diabetes visits his GP for a check-up and is prescribed a new medication, a glucagon-like peptide (GLP-1) analogue. Where is this hormone typically secreted from in the body?
Your Answer: Duodenum
Correct Answer: Ileum
Explanation:When comparing the effects of oral glucose and IV glucose on insulin release, it was found that oral glucose resulted in a higher insulin release. This suggests that the response of the gut plays a role in insulin release. Incretins are a group of hormones produced in the gastrointestinal tract that stimulate insulin release from β-cells, even before blood glucose levels become elevated.
There are two main types of incretins: gastric inhibitory peptide (GIP), which is released from the duodenum and is glucose-dependent, and glucagon-like peptide (GLP-1), which is produced in the distal ileum.
The glucagon gene is processed differently in the brain and intestines than in the pancreas. In the brain and intestines, GLP1&2 are released, which function as appetite suppressants. In the pancreas, they increase insulin release and β-cell proliferation.
Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 3
Incorrect
-
A 14-year-old boy is brought to the clinic by his mother due to concerns about his height compared to other boys his age. The boy also shares that he often receives comments about his appearance, with some likening him to a toy doll. What can be inferred about the pattern of hormone release that he may be lacking?
Your Answer: Secreted throughout the day
Correct Answer: It is released in a pulsatile manner
Explanation:The doll-like appearance of the boy in his presentation suggests that he may be suffering from growth hormone deficiency, which can cause short stature, forehead prominence, and maxillary hypoplasia. The hypothalamus controls the release of growth hormone through the pulsatile release of growth hormone releasing hormone. Therefore, measuring GHRH levels is not a useful method for investigating growth hormone deficiency.
Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 4
Incorrect
-
A 67-year-old male presents to the respiratory clinic for the management of his COPD. He has a history of multiple courses of prednisolone, but has recently experienced significant weight gain, facial redness, and elevated blood pressure of 180/96 mmHg. The physician suspects Cushing syndrome due to exogenous steroid use and decides to discontinue the prescription. What is the specific region of the adrenal gland responsible for producing glucocorticoids?
Your Answer: Zona reticularis
Correct Answer: Zona fasciculata
Explanation:Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 5
Correct
-
A 47-year-old female has been diagnosed with Grave's disease, experiencing weight loss, heat intolerance, and a tremor that is affecting her job as a waitress. Despite being prescribed carbimazole, she is unhappy with the results after 3 days. What other medication options are available for symptom management?
Your Answer: Beta blockers
Explanation:To alleviate symptoms, beta blockers like propranolol can be used to block the sympathetic effects on the heart. Guanethidine can also be administered to reduce catecholamine release. Statins and calcium channel blockers are not effective in treating the patient’s symptoms. Although benzodiazepines have anxiolytic and sedative properties, they may not be the most suitable option in this case.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 6
Correct
-
A 67-year-old man has visited the doctor with concerns about his blood glucose levels. He has type 1 diabetes and also suffers from chronic obstructive pulmonary disease (COPD). Following a recent bout of pneumonia, he has been experiencing difficulty in managing his blood sugars. You suspect that one of his newly prescribed medications may be contributing to this issue. Which medication could be causing acute problems with diabetic control?
Your Answer: Prednisolone
Explanation:The use of corticosteroids, such as prednisolone, can have a negative impact on diabetic control due to their anti-insulin effects. This can cause an increase in glucagon levels, leading to elevated blood sugar levels. While this effect is usually temporary and should resolve on its own, higher doses of insulin may be necessary during treatment. Prednisolone is often prescribed to manage exacerbations of COPD.
Amoxicillin, a penicillin antibiotic, can be prescribed alongside prednisolone to treat infective asthma exacerbations. Its bactericidal effects are unlikely to affect diabetes control.
Carbocisteine is a mucolytic medication commonly used for long-term management of COPD and bronchiectasis. It helps to thin sputum in the lungs, making it easier to cough up and preventing colonization. It is not known to worsen diabetes control.
Doxycycline, a tetracycline antibiotic, is commonly used to treat COPD exacerbations. However, it does not typically affect blood sugar control and is unlikely to be a contributing factor in this case.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 7
Correct
-
These results were obtained on a 30-year-old male who has presented with tiredness:
Free T4 9.3 pmol/L (9.8-23.1)
TSH 49.31 mU/L (0.35-5.50)
What signs might be expected in this case?Your Answer: Slow relaxation of biceps reflex
Explanation:Diagnosis and Symptoms of Hypothyroidism
Hypothyroidism is diagnosed through blood tests that show low levels of T4 and elevated levels of TSH. Physical examination may reveal slow relaxation of tendon jerks, bradycardia, and goitre. A bruit over a goitre is associated with Graves’ thyrotoxicosis, while palmar erythema and fine tremor occur in thyrotoxicosis. In addition to these common symptoms, hypothyroidism may also present with rarer features such as cerebellar features, compression neuropathies, hypothermia, and macrocytic anaemia. It is important to diagnose and treat hypothyroidism promptly to prevent further complications.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 8
Correct
-
Sarah is a 15-year-old female who presented to the clinic with concerns about her development. She has not grown as expected and remains shorter than most of the girls in her class. She also notes that she has not started her period yet, which is affecting her confidence.
On examination, she is 150cm tall and has no breast development. Pubic hair is sparse and axillary hair is absent. The uterus and ovaries are not palpable. A cleft palate is noted on examination of the mouth. When cranial nerve I was examined, she was unable to detect the smell of the odours sampled.
Blood tests show low levels of estrogen, follicular stimulating hormone (FSH) and luteinizing hormone (LH). Liver function tests were normal. Blood glucose reading was 5.6mmol/L. Iron studies were unremarkable.
What is the likely cause for her symptoms?Your Answer: Kallmann syndrome
Explanation:The patient’s symptoms of delayed puberty and underdeveloped secondary sexual characteristics, along with a cleft palate and anosmia, suggest Kallmann syndrome. This condition is characterized by hypogonadotropic hypogonadism, as evidenced by low-normal levels of LH and FSH, as well as low testosterone levels. Kallmann syndrome is an X-linked inherited disorder caused by the failure of gonadotrophin-releasing hormone-producing neurons to migrate properly during fetal development.
While Klinefelter syndrome can also cause delayed puberty and small testes, it is associated with hypergonadotropic hypogonadism, which is characterized by elevated levels of FSH and LH but low testosterone levels. Anosmia is not typically a symptom of Klinefelter syndrome.
Hemochromatosis, a condition in which iron accumulates in the body, can also cause hypogonadotropic hypogonadism by affecting the hypothalamus. However, this is unlikely in this case as the patient’s iron studies were normal and anosmia is not a common symptom of hemochromatosis.
Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.
Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 9
Incorrect
-
A 49-year-old man visits the clinic with complaints of muscle cramps and constipation that have been present for a week. He appears to be in good health otherwise. Upon conducting a serum potassium test, you discover that his levels are below the normal range. Your next step is to determine the underlying cause of his hypokalaemia. Which of the following medical conditions is commonly linked to low potassium levels?
Your Answer: Adrenal hypoplasia
Correct Answer: Cushing's syndrome
Explanation:Cushing’s syndrome is the correct answer as it causes excess cortisol which can exhibit mineralocorticoid activity and lead to hypokalaemia. The kidneys play a major role in maintaining potassium balance, but other factors such as insulin, catecholamines, and aldosterone also influence potassium levels. The other options listed (congenital adrenal hypoplasia, Addison’s, rhabdomyolysis, metabolic acidosis) all cause hyperkalaemia. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, leading to hyperkalaemia. Acidosis and rhabdomyolysis also cause hyperkalaemia. Symptoms of hypokalaemia include fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and rarely paralysis.
Causes of Cushing’s Syndrome
Cushing’s syndrome is a condition that can be caused by both endogenous and exogenous factors. However, it is important to note that exogenous causes, such as the use of glucocorticoid therapy, are more common than endogenous ones. The condition can be classified into two categories: ACTH dependent and ACTH independent causes.
ACTH dependent causes of Cushing’s syndrome include Cushing’s disease, which is caused by a pituitary tumor secreting ACTH and producing adrenal hyperplasia. Ectopic ACTH production, which is caused by small cell lung cancer, is another ACTH dependent cause. On the other hand, ACTH independent causes include iatrogenic factors such as steroid use, adrenal adenoma, adrenal carcinoma, Carney complex, and micronodular adrenal dysplasia.
In some cases, a condition called Pseudo-Cushing’s can mimic Cushing’s syndrome. This is often caused by alcohol excess or severe depression and can cause false positive results in dexamethasone suppression tests or 24-hour urinary free cortisol tests. To differentiate between Cushing’s syndrome and Pseudo-Cushing’s, an insulin stress test may be used.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 10
Incorrect
-
A 15-year-old male arrives at the emergency department with intense abdominal pain and a decreased Glasgow coma score (GCS). Over the past few weeks, he has been experiencing excessive urination, abnormal thirst, and weight loss. Laboratory results reveal:
Ketones 4.2 mmol/L (<0.6 mmol/L)
Glucose 20 mmol/L
pH 7.25
What is the probable cause of the acidosis and hyperketonemia in this case?Your Answer: Uncontrolled proteolysis
Correct Answer: Uncontrolled lipolysis
Explanation:The likely cause of the patient’s condition is diabetic ketoacidosis, which is a result of uncontrolled lipolysis. This process leads to an excess of free fatty acids that are eventually converted into ketone bodies. It is important to note that proteolysis, the breakdown of proteins into smaller polypeptides, does not yield ketone bodies and is not the cause of this condition. While glycogenolysis and gluconeogenesis are increased due to the lack of insulin and rise of glucagon, they do not result in acidosis or elevated levels of ketone bodies. It is ketogenesis, not ketolysis, that leads to the increased levels of ketone bodies.
Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.
Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 11
Correct
-
A 15-year-old male arrives at the emergency department with complaints of abdominal pain, nausea, and shortness of breath. He has a history of insulin-dependent diabetes and is diagnosed with diabetic ketoacidosis after undergoing tests. During treatment, which electrolyte should you be particularly cautious of, as it may become depleted in the body despite appearing normal in plasma concentrations?
Your Answer: Potassium
Explanation:Insulin normally helps to move potassium into cells, but in a state of ketoacidosis, there is a lack of insulin to perform this function. As a result, potassium leaks out of cells. Additionally, high levels of glucose in the blood lead to glycosuria in the urine, causing potassium loss through the kidneys.
Even though patients in a ketoacidotic state may have normal levels of potassium in their blood, their overall potassium levels in the body are often depleted. When insulin is administered to these patients, it can cause a dangerous drop in potassium levels as the minimal amount of potassium left in the body is driven into cells.
Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.
Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 12
Incorrect
-
A 59-year-old man with a known history of type-2 diabetes comes for a check-up. He is currently on metformin only for his diabetes and reports compliance with the prescribed regimen.
His HbA1c is 63 mmol/mol (target = 53mmol/mol) and the patient and clinician agree to initiate a sulfonylurea along with his metformin.
What is the primary mode of action of the new treatment?Your Answer: Inhibits sodium-glucose co-transporter-2 in the proximal convoluted tubule of the nephron to stop glucose reabsorption, meaning it is excreted in urine
Correct Answer: Increases stimulation of insulin secretion by pancreatic B-cells and decreases hepatic clearance of insulin
Explanation:Sulfonylureas are a type of oral hypoglycemic agent that stimulate insulin secretion by pancreatic B-cells and reduce the clearance of insulin by the liver. They are known as insulin secretagogues.
Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).
While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.
It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 13
Incorrect
-
A 32-year-old male is referred to the endocrine clinic due to a change in his shoe size and numbness in his hand. He reports increased sweating and oily skin. The endocrinologist suspects pituitary gland pathology and orders an MRI. What is the most abundant secretory cell type in the anterior pituitary gland?
Your Answer: Corticotrophs
Correct Answer: Somatotrophs
Explanation:Understanding Growth Hormone and Its Functions
Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.
GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.
In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 14
Incorrect
-
A 23-year-old woman is experiencing renal colic and is being evaluated for possible MEN IIa. What is the most common parathyroid gland abnormality associated with this condition?
Your Answer: Adenoma
Correct Answer: Hyperplasia
Explanation:Medullary thyroid cancer, hypercalcaemia, and phaeochromocytoma are associated with multiple endocrine neoplasia type IIa. The most frequent occurrence in this condition is medullary thyroid cancer, while hyperplasia is the most common lesion in the parathyroid glands. In contrast, parathyroid adenoma is the most common lesion in MEN I.
Understanding Multiple Endocrine Neoplasia
Multiple endocrine neoplasia (MEN) is an autosomal dominant disorder that affects the endocrine system. There are three main types of MEN, each with its own set of associated features. MEN type I is characterized by the 3 P’s: parathyroid hyperplasia leading to hyperparathyroidism, pituitary tumors, and pancreatic tumors such as insulinomas and gastrinomas. MEN type IIa is associated with the 2 P’s: parathyroid hyperplasia leading to hyperparathyroidism and phaeochromocytoma, as well as medullary thyroid cancer. MEN type IIb is characterized by phaeochromocytoma, medullary thyroid cancer, and a marfanoid body habitus.
The most common presentation of MEN is hypercalcaemia, which is often seen in MEN type I due to parathyroid hyperplasia. MEN type IIa and IIb are both associated with medullary thyroid cancer, which is caused by mutations in the RET oncogene. MEN type I is caused by mutations in the MEN1 gene. Understanding the different types of MEN and their associated features is important for early diagnosis and management of this rare but potentially serious condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 15
Correct
-
A 20-year-old man was admitted to hospital with a 5 day history of vomiting, fever and chills. He developed a purpuric rash on his lower limbs and abdomen. During examination, the patient was found to have a pulse rate of 100 beats per minute and a systolic blood pressure of 70mmHg. A spinal tap was performed for CSF microscopy and a CT scan revealed adrenal haemorrhage. Based on the CT scan, the doctor suspected Waterhouse-Friderichsen syndrome. What is the most common bacterial cause of this syndrome?
Your Answer: Neisseria meningitidis
Explanation:The most frequent cause of Waterhouse-Friderichsen syndrome is Neisseria meningitidis. This syndrome is characterized by adrenal gland failure caused by bleeding into the adrenal gland. Although any organism that can induce disseminated intravascular coagulation can lead to adrenal haemorrhage, neisseria meningitidis is the most common cause and therefore the answer.
Understanding Waterhouse-Friderichsen Syndrome
Waterhouse-Friderichsen syndrome is a condition that occurs when the adrenal glands fail due to a previous adrenal haemorrhage caused by a severe bacterial infection. The most common cause of this condition is Neisseria meningitidis, but it can also be caused by other bacteria such as Haemophilus influenzae, Pseudomonas aeruginosa, Escherichia coli, and Streptococcus pneumoniae.
The symptoms of Waterhouse-Friderichsen syndrome are similar to those of hypoadrenalism, including lethargy, weakness, anorexia, nausea and vomiting, and weight loss. Other symptoms may include hyperpigmentation, especially in the palmar creases, vitiligo, and loss of pubic hair in women. In severe cases, a crisis may occur, which can lead to collapse, shock, and pyrexia.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 16
Incorrect
-
A 23-year-old female patient visits her GP clinic due to her struggle with weight loss. Her BMI is almost 40 kg/m², which is severely impacting her mental and physical well-being. Despite following a strict diet and exercise routine, she has not seen any significant improvement. The GP decides to prescribe orlistat as an anti-obesity medication.
What is the mechanism of action of orlistat in promoting weight loss?Your Answer: Suppresses appetite through reduced uptake of serotonin
Correct Answer: Reduces fat digestion by inhibiting lipase
Explanation:Orlistat functions by inhibiting gastric and pancreatic lipase, which reduces the digestion of fat.
2,4-Dinitrophenol (DNP) induces mitochondrial uncoupling and can result in weight loss without calorie reduction. However, it is hazardous when used improperly and is not prescribed outside of the US.
Weight gain can be caused by increased insulin secretion.
Orlistat reduces fat digestion by inhibiting lipase, which decreases the amount of fat that can be absorbed. This can result in light-colored, floating stools due to the high fat content.
Liraglutide is a medication that slows gastric emptying to increase satiety and is primarily prescribed as an adjunct in type 2 diabetics.
Serotonin reuptake inhibitors are not utilized for weight loss.
Obesity can be managed through a step-wise approach that includes conservative, medical, and surgical options. The first step is usually conservative, which involves implementing changes in diet and exercise. If this is not effective, medical options such as Orlistat may be considered. Orlistat is a pancreatic lipase inhibitor that is used to treat obesity. However, it can cause adverse effects such as faecal urgency/incontinence and flatulence. A lower dose version of Orlistat is now available without prescription, known as ‘Alli’. The National Institute for Health and Care Excellence (NICE) has defined criteria for the use of Orlistat. It should only be prescribed as part of an overall plan for managing obesity in adults who have a BMI of 28 kg/m^2 or more with associated risk factors, or a BMI of 30 kg/m^2 or more, and continued weight loss of at least 5% at 3 months. Orlistat is typically used for less than one year.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 17
Correct
-
A 72-year-old woman presents to the emergency department with right hip pain following a fall at home. She is unable to bear weight and her right leg appears externally rotated and shorter. Her medical history includes osteoarthritis in her knee, type 2 diabetes mellitus, and hypertension. She is currently being tapered off prednisolone for polymyalgia rheumatica which was diagnosed 2 years ago. Which medication in her regimen may have contributed to her increased risk?
Your Answer: Prednisolone
Explanation:Patients who take systemic corticosteroids over a long period of time are at a higher risk of developing osteoporosis and experiencing fractures. In this case, the patient’s hip fracture may have been caused by her pre-existing osteoporosis.
Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 18
Incorrect
-
Cortisol is mainly synthesized by which of the following?
Your Answer: Zona reticularis of the adrenal
Correct Answer: Zona fasciculata of the adrenal
Explanation:The adrenal gland’s zona fasciculata produces cortisol, with a relative glucocorticoid activity of 1. Prednisolone has a relative glucocorticoid activity of 4, while dexamethasone has a relative glucocorticoid activity of 25.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 19
Incorrect
-
A 35-year-old male presents with gynaecomastia. He is later diagnosed with a testicular germ cell tumour.
What is the underlying mechanism that causes this type of cancer to present with gynaecomastia?Your Answer: Testicular tumours cause testicular involution and a reduced testosterone level which leads to the proliferation of breast tissue
Correct Answer: Testicular tumours secrete beta-HCG, which increases oestrogen levels, promoting the proliferation of breast tissue
Explanation:Gynaecomastia can be caused by testicular cancer, specifically seminoma that secretes beta-HCG. This hormone acts as a tumour marker for testicular germ cell cancer and increases oestrogen levels, leading to an imbalance of oestrogen to androgen ratio. This imbalance promotes the growth of breast tissue, resulting in gynaecomastia.
Alpha-fetoprotein is another tumour marker for testicular cancer, but it does not affect oestrogen levels or breast glandular tissue. It is important to note that gynaecomastia is a separate condition from metastatic testicular cancer in the breast.
Testicular involution, or shrinkage of the testes, is not a common symptom of testicular cancer. Instead, patients typically present with a painless swelling or nodule in the testis.
Elevated testosterone levels are not associated with testicular cancer, as they would prevent the growth of breast tissue and gynaecomastia.
Understanding Gynaecomastia: Causes and Drug Triggers
Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.
Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.
Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.
In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 20
Correct
-
A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to the emergency department with altered mental status. His daughter reports that he has been complaining of increased thirst and urination over the past few days and has been skipping his insulin injections. On examination, he is dehydrated with a GCS of 3. His vital signs are recorded, and he is intubated and given ventilatory support. An arterial blood gas shows mild metabolic acidosis and his capillary blood glucose is undetectable. What is the next most appropriate step in his treatment?
Your Answer: 0.9% sodium chloride
Explanation:In the ABCDE approach, the patient should be promptly given sodium chloride to restore their intravascular volume and maintain circulatory function. However, insulin is not recommended as an initial treatment for HHS. This is because glucose in the intravascular space helps maintain circulating volume, which is crucial for dehydrated patients. Administering insulin before fluid resuscitation can cause a reduction in intravascular volume and worsen hypotension. It may also worsen pre-existing hypokalaemia by driving potassium into the intracellular space. Potassium chloride should be administered only after fluid resuscitation and guided by potassium levels obtained from an arterial blood gas. Thiamine supplementation is not indicated at the moment as urgent resuscitation should be the priority.
Hyperosmolar hyperglycaemic state (HHS) is a serious medical emergency that can be challenging to manage and has a high mortality rate of up to 20%. It is typically seen in elderly patients with type 2 diabetes mellitus (T2DM) and is caused by hyperglycaemia leading to osmotic diuresis, severe dehydration, and electrolyte imbalances. HHS develops gradually over several days, resulting in extreme dehydration and metabolic disturbances. Symptoms include polyuria, polydipsia, lethargy, nausea, vomiting, altered consciousness, and focal neurological deficits. Diagnosis is based on hypovolaemia, marked hyperglycaemia, significantly raised serum osmolarity, and no significant hyperketonaemia or acidosis.
Management of HHS involves fluid replacement with IV 0.9% sodium chloride solution at a rate of 0.5-1 L/hour, depending on clinical assessment. Potassium levels should be monitored and added to fluids as needed. Insulin should not be given unless blood glucose stops falling while giving IV fluids. Patients are at risk of thrombosis due to hyperviscosity, so venous thromboembolism prophylaxis is recommended. Complications of HHS include vascular complications such as myocardial infarction and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 21
Incorrect
-
A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her thyroid function test outcomes. The results are as follows:
- Elevated TSH
- Decreased FT4
- Decreased FT3
- Positive Anti-TPO
What is the association of her condition with any of the following options?Your Answer: Sudden cardiac arrest
Correct Answer: MALT lymphoma
Explanation:The development of Hashimoto’s thyroiditis is linked to
Understanding Hashimoto’s Thyroiditis
Hashimoto’s thyroiditis is a chronic autoimmune disorder that affects the thyroid gland. It is more common in women and is typically associated with hypothyroidism, although there may be a temporary period of thyrotoxicosis during the acute phase. The condition is characterized by a firm, non-tender goitre and the presence of anti-thyroid peroxidase (TPO) and anti-thyroglobulin (Tg) antibodies.
Hashimoto’s thyroiditis is often associated with other autoimmune conditions such as coeliac disease, type 1 diabetes mellitus, and vitiligo. Additionally, there is an increased risk of developing MALT lymphoma with this condition. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, as shown in the Venn diagram. Understanding the features and associations of Hashimoto’s thyroiditis can aid in its diagnosis and management.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 22
Incorrect
-
A 12-year-old girl is being informed about the typical changes that occur during puberty by her doctor. The doctor explains that there are three main changes that usually happen before menarche. What is the order in which these changes occur?
Your Answer: Growth of axillary hair, growth of pubic hair, breast buds
Correct Answer: Breast buds, growth of pubic hair, growth of axillary hair
Explanation:The onset of menarche is preceded by three sequential physical changes: the development of breast buds, growth of pubic hair, and growth of axillary hair. These changes are brought about by the hormone estrogen, which is crucial for the process of puberty.
Puberty: Normal Changes in Males and Females
Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.
During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 23
Incorrect
-
As a medical student on a gastrointestinal ward, you come across a patient suffering from long-standing reflux. During the ward round, you notice that the patient, who is in his late 40s, is being treated with metoclopramide, a pro-kinetic drug that blocks the action of dopamine and speeds up gastrointestinal motility. However, the patient is now experiencing gynaecomastia and erectile dysfunction. Which hormone is most likely being overproduced in this patient, leading to his current symptoms?
Your Answer: Oestrogen
Correct Answer: Prolactin
Explanation:Understanding Prolactin and Galactorrhoea
Prolactin is a hormone produced by the anterior pituitary gland, and its release is regulated by various physiological factors. Dopamine is the primary inhibitor of prolactin release, and dopamine agonists like bromocriptine can be used to manage galactorrhoea. It is crucial to distinguish between the causes of galactorrhoea and gynaecomastia, which are both related to the actions of prolactin on breast tissue.
Excess prolactin can lead to different symptoms in men and women. Men may experience impotence, loss of libido, and galactorrhoea, while women may have amenorrhoea and galactorrhoea. Several factors can cause raised prolactin levels, including prolactinoma, pregnancy, oestrogens, stress, exercise, sleep, acromegaly, polycystic ovarian syndrome, and primary hypothyroidism.
Certain drugs can also increase prolactin levels, such as metoclopramide, domperidone, phenothiazines, and haloperidol. Although rare, some SSRIs and opioids may also cause raised prolactin levels.
In summary, understanding prolactin and its effects on the body is crucial in diagnosing and managing conditions like galactorrhoea. Identifying the underlying causes of raised prolactin levels is essential in providing appropriate treatment and care.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 24
Incorrect
-
A 38-year-old woman presents to the Emergency Department with a 2-day history of left flank pain. She has been recently diagnosed with osteoporosis after a low-energy, femoral neck fracture.
Her blood results show the following:
Na+ 140 mmol/L (135 - 145)
K+ 3.6 mmol/L (3.5 - 5.0)
Calcium 2.9 mmol/L (2.1-2.6)
Phosphate 0.6 mmol/L (0.8-1.4)
Her urine dip is positive for erythrocytes making a diagnosis of renal calculi likely.
What is the pathophysiological reason for the low serum phosphate level, given the likely underlying pathology?Your Answer: Increased osteoblast activity resulting in increased deposition of phosphate in bone
Correct Answer: Decreased renal phosphate reabsorption
Explanation:The decrease in renal phosphate reabsorption is caused by PTH.
The symptoms presented are indicative of a kidney stone, which can be a sign of hyperparathyroidism. Primary hyperparathyroidism, caused by a functioning parathyroid adenoma, can result in low phosphate and high calcium levels. PTH reduces renal phosphate reabsorption, leading to increased phosphate loss in urine. Pituitary adenomas are associated with osteoporosis due to excessive PTH causing bone resorption.
PTH activates vitamin D, which increases phosphate absorption in the gastrointestinal tract. However, the renal loss of phosphate is greater than the increase in absorption, resulting in a net loss of phosphate when PTH levels are high.
PTH also increases renal vitamin D activation, leading to increased intestinal absorption of calcium and phosphate, as well as increased osteoclast activity. This results in elevated levels of serum calcium and phosphate.
Hypothyroidism does not significantly affect phosphate regulation, so it would not cause low serum phosphate levels.
Increased osteoclast activity caused by PTH leads to bone resorption and the release of calcium and phosphate into the blood. However, the renal loss of phosphate is greater than the increase in serum phosphate due to osteoclast activity, resulting in an overall decrease in serum phosphate levels.
Understanding Parathyroid Hormone and Its Effects
Parathyroid hormone is a hormone produced by the chief cells of the parathyroid glands. Its main function is to increase the concentration of calcium in the blood by stimulating the PTH receptors in the kidney and bone. This hormone has a short half-life of only 4 minutes.
The effects of parathyroid hormone are mainly seen in the bone, kidney, and intestine. In the bone, PTH binds to osteoblasts, which then signal to osteoclasts to resorb bone and release calcium. In the kidney, PTH promotes the active reabsorption of calcium and magnesium from the distal convoluted tubule, while decreasing the reabsorption of phosphate. In the intestine, PTH indirectly increases calcium absorption by increasing the activation of vitamin D, which in turn increases calcium absorption.
Overall, understanding the role of parathyroid hormone is important in maintaining proper calcium levels in the body. Any imbalances in PTH secretion can lead to various disorders such as hyperparathyroidism or hypoparathyroidism.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 25
Correct
-
A 45-year-old male has been diagnosed with Cushing's disease due to a pituitary adenoma, resulting in elevated plasma cortisol levels. Which part of the adrenal gland is responsible for producing cortisol hormone?
Your Answer: Zona fasciculata
Explanation:The adrenal gland comprises two primary parts: the cortex and medulla.
The adrenal medulla is accountable for the production of adrenaline and noradrenaline, which are catecholamines.
The adrenal cortex is divided into three layers: glomerulosa, fasciculata, and reticularis. The glomerulosa primarily produces mineralocorticoids, while the reticularis mainly produces sex steroids. As a result, the Zona fasciculata is the primary source of glucocorticosteroids.
Cortisol: Functions and Regulation
Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.
The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.
Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 26
Correct
-
A 33-year-old woman with a history of coeliac disease presents to the emergency department with palpitations, diaphoresis, and tremors. Upon examination, her vital signs reveal a heart rate of 110 bpm and respiratory rate of 24 per min. She displays hand tremors, bulging eyeballs, and diffuse swelling in her neck. Her blood tests show:
TSH 0.1 mU/l
Free T4 32.5 pmol/l
Free T3 12.5 pmol/l
What is the most probable underlying pathophysiology in this patient?Your Answer: Antibodies to TSH receptors
Explanation:Graves’ disease is the most probable cause of thyrotoxicosis in a middle-aged woman, particularly if she exhibits exophthalmos. This autoimmune disorder is characterised by the presence of antibodies to the thyroid stimulating hormone (TSH) receptors.
Graves’ Disease: Common Features and Unique Signs
Graves’ disease is the most frequent cause of thyrotoxicosis, which is commonly observed in women aged 30-50 years. The condition presents typical features of thyrotoxicosis, such as weight loss, palpitations, and heat intolerance. However, Graves’ disease also displays specific signs that are not present in other causes of thyrotoxicosis. These include eye signs, such as exophthalmos and ophthalmoplegia, as well as pretibial myxoedema and thyroid acropachy. The latter is a triad of digital clubbing, soft tissue swelling of the hands and feet, and periosteal new bone formation.
Graves’ disease is characterized by the presence of autoantibodies, including TSH receptor stimulating antibodies in 90% of patients and anti-thyroid peroxidase antibodies in 75% of patients. Thyroid scintigraphy reveals a diffuse, homogenous, and increased uptake of radioactive iodine. These features help distinguish Graves’ disease from other causes of thyrotoxicosis and aid in its diagnosis.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 27
Correct
-
A 32-year-old man visits the clinic complaining of weakness and frequent muscle cramps that have been ongoing for the past two weeks. Upon examination, you observe widespread hyporeflexia. A blood test reveals hypokalaemia, but the cause has not yet been determined. Which of the following conditions is linked to hypokalaemia?
Your Answer: Conn's syndrome
Explanation:Primary hyperaldosteronism, also known as Conn’s syndrome, can lead to hypertension, hypernatraemia, and hypokalemia. This condition is caused by an excess of aldosterone, which is responsible for maintaining potassium balance by activating Na+/K+ pumps. However, in excess, aldosterone can cause the movement of potassium into cells, resulting in hypokalaemia. The kidneys play a crucial role in maintaining potassium balance, along with other factors such as insulin, catecholamines, and aldosterone. On the other hand, congenital adrenal hypoplasia, Addison’s disease, rhabdomyolysis, and metabolic acidosis are all causes of hyperkalaemia, which is an excess of potassium in the blood. Addison’s disease and adrenal hypoplasia result in mineralocorticoid deficiency, which can lead to hyperkalaemia. Acidosis can also cause hyperkalaemia by causing positively charged hydrogen ions to enter cells while positively charged potassium ions leave cells and enter the bloodstream.
Primary hyperaldosteronism is a condition characterized by hypertension, hypokalaemia, and alkalosis. It was previously believed that adrenal adenoma, also known as Conn’s syndrome, was the most common cause of this condition. However, recent studies have shown that bilateral idiopathic adrenal hyperplasia is responsible for up to 70% of cases. It is important to differentiate between the two causes as it determines the appropriate treatment. Adrenal carcinoma is an extremely rare cause of primary hyperaldosteronism.
To diagnose primary hyperaldosteronism, the 2016 Endocrine Society recommends a plasma aldosterone/renin ratio as the first-line investigation. This test should show high aldosterone levels alongside low renin levels due to negative feedback from sodium retention caused by aldosterone. If the results are positive, a high-resolution CT abdomen and adrenal vein sampling are used to differentiate between unilateral and bilateral sources of aldosterone excess. If the CT is normal, adrenal venous sampling (AVS) can be used to distinguish between unilateral adenoma and bilateral hyperplasia.
The management of primary hyperaldosteronism depends on the underlying cause. Adrenal adenoma is treated with surgery, while bilateral adrenocortical hyperplasia is managed with an aldosterone antagonist such as spironolactone. It is important to accurately diagnose and manage primary hyperaldosteronism to prevent complications such as cardiovascular disease and stroke.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 28
Incorrect
-
A 54-year-old man with type 2 diabetes mellitus visits the Endocrinology clinic for evaluation. He is currently on maximum doses of metformin and glibenclamide, but his HbA1c levels have increased from 58 mmol/mol to 67 mmol/mol over the past six months. The consultant recommends adding sitagliptin as a third antidiabetic medication. What is the mechanism of action of this new medication?
Your Answer: Mimic incretins by binding to GLP-1 receptors and stimulating insulin release
Correct Answer: Inhibit the peripheral breakdown of incretins, enhancing their ability to stimulate insulin release
Explanation:Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 29
Correct
-
A 38-year-old woman presents with symptoms of irritability and changes in bowel habits. During examination, a smooth enlargement of the thyroid gland is noted. Thyroid function tests are ordered and the results are as follows:
TSH 0.1 mug/l
Free T4 35 pmol/l
What is the most likely underlying diagnosis?Your Answer: Graves disease
Explanation:When TSH receptor antibodies are present, they stimulate the thyroid to produce T4. This results in a decrease in TSH levels due to negative feedback on the pituitary. However, in cases where hyperthyroidism is caused by pregnancy, the TSH levels are usually elevated.
Understanding Thyroid Disease and its Management
Thyroid disease can present with various manifestations, which can be classified based on the presence or absence of clinical signs of thyroid dysfunction and the presence of a mass. To assess thyroid disease, a thorough history and examination, including ultrasound, are necessary. If a nodule is identified, it should be sampled through an image-guided fine needle aspiration. Radionucleotide scanning is not very useful.
Thyroid tumors can be papillary, follicular, anaplastic, medullary, or lymphoma. Multinodular goitre is a common reason for presentation, and if the patient is asymptomatic and euthyroid, they can be reassured. However, if they have compressive symptoms, surgery is required, and total thyroidectomy is the best option. Patients with endocrine dysfunction are initially managed by physicians, and surgery may be offered alongside radioiodine for those with Graves disease that fails with medical management or in patients who prefer not to be irradiated. Patients with hypothyroidism do not generally get offered a thyroidectomy.
Complications following surgery include anatomical damage to the recurrent laryngeal nerve, bleeding, and damage to the parathyroid glands resulting in hypocalcaemia. For further information, the Association of Clinical Biochemistry guidelines for thyroid function tests and the British Association of Endocrine Surgeons website can be consulted.
-
This question is part of the following fields:
- Endocrine System
-
-
Question 30
Incorrect
-
The acute phase response to injury in elderly patients does not involve which of the following?
Your Answer: Decreased albumin
Correct Answer: Increased transferrin
Explanation:The acute phase response is characterized by various physiological changes, such as the production of acute phase proteins, decreased levels of transport proteins like albumin and transferrin, hepatic retention of cations, fever, an increase in neutrophil count, elevated muscle proteolysis, and alterations in vascular permeability.
Surgery triggers a stress response that causes hormonal and metabolic changes in the body. This response is characterized by substrate mobilization, muscle protein loss, sodium and water retention, suppression of anabolic hormone secretion, activation of the sympathetic nervous system, and immunological and haematological changes. The hypothalamic-pituitary axis and the sympathetic nervous systems are activated, and the normal feedback mechanisms of control of hormone secretion fail. The stress response is associated with increased growth hormone, cortisol, renin, adrenocorticotrophic hormone (ACTH), aldosterone, prolactin, antidiuretic hormone, and glucagon, while insulin, testosterone, oestrogen, thyroid stimulating hormone, luteinizing hormone, and follicle stimulating hormone are decreased or remain unchanged. The metabolic effects of cortisol are enhanced, including skeletal muscle protein breakdown, stimulation of lipolysis, anti-insulin effect, mineralocorticoid effects, and anti-inflammatory effects. The stress response also affects carbohydrate, protein, lipid, salt and water metabolism, and cytokine release. Modifying the response can be achieved through opioids, spinal anaesthesia, nutrition, growth hormone, anabolic steroids, and normothermia.
-
This question is part of the following fields:
- Endocrine System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)