-
Question 1
Correct
-
A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and swollen ankles over the past 10 months. She has a medical history of ischaemic heart disease, but an echocardiogram reveals normal valve function. During the examination, the doctor detects a low-pitched sound at the start of diastole, following S2. What is the probable reason for this sound?
Your Answer: Rapid movement of blood entering ventricles from atria
Explanation:S3 is an unusual sound that can be detected in certain heart failure patients. It is caused by the rapid movement and oscillation of blood into the ventricles.
Another abnormal heart sound, S4, is caused by forceful atrial contraction and occurs later in diastole.
While aortic regurgitation causes an early diastolic decrescendo murmur and mitral stenosis can cause a mid-diastolic rumble with an opening snap, these conditions are less likely as the echocardiogram reported normal valve function.
A patent ductus arteriosus typically causes a continuous murmur and would present earlier in life.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 16-year-old competitive swimmer visits the paediatric clinic after experiencing palpitations during races or intense training. She has never had shortness of breath or chest pain, but one persistent episode led her to the emergency department where an ECG was taken. Based on the shortening of one of the ECG intervals, a provisional diagnosis of Wolff-Parkinson-White syndrome was made. What does this abnormal section of the ECG represent in terms of electrical activity?
Your Answer: Atrial repolarisation alone
Correct Answer: The time between atrial depolarisation and ventricular depolarisation
Explanation:The PR interval on an ECG represents the duration between atrial depolarisation and ventricular depolarisation. In Wolff-Parkinson-White syndrome, an accessory pathway called the Bundle of Kent exists between the atrium and ventricle, allowing electrical signals to bypass the atrioventricular node and potentially leading to tachyarrhythmias. This results in a shorter PR interval on the ECG. Atrial repolarisation is not visible on the ECG, while the depolarisation of the sinoatrial node is represented by the p wave. The QT interval on the ECG represents the time between ventricular depolarisation and repolarisation, while the QRS complex represents ventricular depolarisation, not the PR interval.
Understanding the Normal ECG
The electrocardiogram (ECG) is a diagnostic tool used to assess the electrical activity of the heart. The normal ECG consists of several waves and intervals that represent different phases of the cardiac cycle. The P wave represents atrial depolarization, while the QRS complex represents ventricular depolarization. The ST segment represents the plateau phase of the ventricular action potential, and the T wave represents ventricular repolarization. The Q-T interval represents the time for both ventricular depolarization and repolarization to occur.
The P-R interval represents the time between the onset of atrial depolarization and the onset of ventricular depolarization. The duration of the QRS complex is normally 0.06 to 0.1 seconds, while the duration of the P wave is 0.08 to 0.1 seconds. The Q-T interval ranges from 0.2 to 0.4 seconds depending upon heart rate. At high heart rates, the Q-T interval is expressed as a ‘corrected Q-T (QTc)’ by taking the Q-T interval and dividing it by the square root of the R-R interval.
Understanding the normal ECG is important for healthcare professionals to accurately interpret ECG results and diagnose cardiac conditions. By analyzing the different waves and intervals, healthcare professionals can identify abnormalities in the electrical activity of the heart and provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Incorrect
-
A 68-year-old man arrives at the emergency department complaining of intense abdominal pain that spreads to his back. His medical history shows that he has an abdominal aortic aneurysm. During a FAST scan, it is discovered that the abdominal aorta is widely dilated, with the most significant expansion occurring at the point where it divides into the iliac arteries. What vertebral level corresponds to the location of the most prominent dilation observed in the FAST scan?
Your Answer: L2
Correct Answer: L4
Explanation:The abdominal aorta divides into two branches at the level of the fourth lumbar vertebrae. At the level of T12, the coeliac trunk arises, while at L1, the superior mesenteric artery branches off. The testicular artery and renal artery originate at L2, and at L3, the inferior mesenteric artery is formed.
The aorta is a major blood vessel that carries oxygenated blood from the heart to the rest of the body. At different levels along the aorta, there are branches that supply blood to specific organs and regions. These branches include the coeliac trunk at the level of T12, which supplies blood to the stomach, liver, and spleen. The left renal artery, at the level of L1, supplies blood to the left kidney. The testicular or ovarian arteries, at the level of L2, supply blood to the reproductive organs. The inferior mesenteric artery, at the level of L3, supplies blood to the lower part of the large intestine. Finally, at the level of L4, the abdominal aorta bifurcates, or splits into two branches, which supply blood to the legs and pelvis.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Incorrect
-
A 25-year-old man has a cannula inserted into his cephalic vein. What is the structure through which the cephalic vein passes?
Your Answer: Tendon of biceps
Correct Answer: Clavipectoral fascia
Explanation:Preserving the cephalic vein is important for creating an arteriovenous fistula in patients with end stage renal failure, as it is a preferred vessel for this purpose. The vein travels through the calvipectoral fascia, but does not pass through the pectoralis major muscle, before ending in the axillary vein.
The Cephalic Vein: Path and Connections
The cephalic vein is a major blood vessel that runs along the lateral side of the arm. It begins at the dorsal venous arch, which drains blood from the hand and wrist, and travels up the arm, crossing the anatomical snuffbox. At the antecubital fossa, the cephalic vein is connected to the basilic vein by the median cubital vein. This connection is commonly used for blood draws and IV insertions.
After passing through the antecubital fossa, the cephalic vein continues up the arm and pierces the deep fascia of the deltopectoral groove to join the axillary vein. This junction is located near the shoulder and marks the end of the cephalic vein’s path.
Overall, the cephalic vein plays an important role in the circulation of blood in the upper limb. Its connections to other major veins in the arm make it a valuable site for medical procedures, while its path through the deltopectoral groove allows it to contribute to the larger network of veins that drain blood from the upper body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Incorrect
-
A 54-year-old man visits his GP for a routine check-up and physical examination. He has a medical history of hypertension and asthma but currently has no immediate concerns. He reports feeling healthy.
During the examination, the man appears to be in good health, with normal vital signs except for a high blood pressure reading of 160/90 mmHg. While listening to his heart, the GP detects an S4 heart sound and orders an ECG.
Which segment of the ECG corresponds to the S4 heart sound?Your Answer: U wave
Correct Answer: P wave
Explanation:The S4 heart sound coincides with the P wave on an ECG. This is because the S4 sound is caused by the contraction of the atria against a stiff ventricle, which occurs just before the S1 sound. It is commonly heard in conditions such as aortic stenosis, hypertrophic cardiomyopathy, or hypertension. As the P wave represents atrial depolarization, it is the ECG wave that coincides with the S4 heart sound.
It is important to note that the QRS complex, which represents ventricular depolarization, is not associated with the S4 heart sound. Similarly, the ST segment, which is the interval between ventricular depolarization and repolarization, and T waves, which indicate ventricular repolarization, are not linked to the S4 heart sound.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A 73-year-old male arrives at the ER with ventricular tachycardia and fainting. Despite defibrillation, the patient's condition does not improve and amiodarone is administered. Amiodarone is a class 3 antiarrhythmic that extends the plateau phase of the myocardial action potential.
What is responsible for sustaining the plateau phase of the cardiac action potential?Your Answer: Rapid influx of sodium
Correct Answer: Slow influx of calcium and efflux of potassium
Explanation:The plateau phase (phase 2) of the cardiac action potential is sustained by the slow influx of calcium and efflux of potassium ions. Rapid efflux of potassium and chloride occurs during phase 1, while rapid influx of sodium occurs during phase 0. Slow efflux of calcium is not a characteristic of the plateau phase.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 55-year-old man is having a radical gastrectomy for stomach cancer. What structure must be divided to access the coeliac axis during the procedure?
Your Answer: Lesser omentum
Explanation:The division of the lesser omentum is necessary during a radical gastrectomy as it constitutes one of the nodal stations that must be removed.
The Coeliac Axis and its Branches
The coeliac axis is a major artery that supplies blood to the upper abdominal organs. It has three main branches: the left gastric, hepatic, and splenic arteries. The hepatic artery further branches into the right gastric, gastroduodenal, right gastroepiploic, superior pancreaticoduodenal, and cystic arteries. Meanwhile, the splenic artery gives off the pancreatic, short gastric, and left gastroepiploic arteries. Occasionally, the coeliac axis also gives off one of the inferior phrenic arteries.
The coeliac axis is located anteriorly to the lesser omentum and is related to the right and left coeliac ganglia, as well as the caudate process of the liver and the gastric cardia. Inferiorly, it is in close proximity to the upper border of the pancreas and the renal vein.
Understanding the anatomy and branches of the coeliac axis is important in diagnosing and treating conditions that affect the upper abdominal organs, such as pancreatic cancer or gastric ulcers.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
Which one of the following is not a branch of the subclavian artery?
Your Answer: Vertebral artery
Correct Answer: Superior thyroid artery
Explanation:The branches of the subclavian artery can be remembered using the mnemonic VIT C & D, which stands for Vertebral artery, Internal thoracic, Thyrocervical trunk, Costalcervical trunk, and Dorsal scapular. It is important to note that the Superior thyroid artery is actually a branch of the external carotid artery.
The Subclavian Artery: Origin, Path, and Branches
The subclavian artery is a major blood vessel that supplies blood to the upper extremities, neck, and head. It has two branches, the left and right subclavian arteries, which arise from different sources. The left subclavian artery originates directly from the arch of the aorta, while the right subclavian artery arises from the brachiocephalic artery (trunk) when it bifurcates into the subclavian and the right common carotid artery.
From its origin, the subclavian artery travels laterally, passing between the anterior and middle scalene muscles, deep to scalenus anterior and anterior to scalenus medius. As it crosses the lateral border of the first rib, it becomes the axillary artery and is superficial within the subclavian triangle.
The subclavian artery has several branches that supply blood to different parts of the body. These branches include the vertebral artery, which supplies blood to the brain and spinal cord, the internal thoracic artery, which supplies blood to the chest wall and breast tissue, the thyrocervical trunk, which supplies blood to the thyroid gland and neck muscles, the costocervical trunk, which supplies blood to the neck and upper back muscles, and the dorsal scapular artery, which supplies blood to the muscles of the shoulder blade.
In summary, the subclavian artery is an important blood vessel that plays a crucial role in supplying blood to the upper extremities, neck, and head. Its branches provide blood to various parts of the body, ensuring proper functioning and health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A medical resident has been instructed by the geriatric consultant to review the medication chart of an elderly patient with a history of hypertension, heart failure, and biliary colic. The resident noticed a significant drop in systolic blood pressure upon standing and discontinued a medication that may have contributed to the postural hypotension. However, a few hours later, the patient's continuous cardiac monitoring showed tachycardia. Which medication cessation could have caused the tachycardia in this elderly patient?
Your Answer: Clopidogrel
Correct Answer: Atenolol
Explanation:Abruptly stopping atenolol, a beta blocker, can lead to ‘rebound tachycardia’. None of the other drugs listed have been associated with this condition. While ramipril, an ace-inhibitor, may have contributed to the patient’s postural hypotension, it is not known to cause tachycardia upon cessation. Furosemide, a loop diuretic, can worsen postural hypotension by causing volume depletion, but it is not known to cause tachycardia upon discontinuation. Aspirin and clopidogrel, both antiplatelet drugs, are unlikely to be stopped abruptly and are not associated with either ‘rebound tachycardia’ or postural hypotension.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
A 56-year-old male is admitted to the hospital with increasing fatigue and difficulty exercising. After undergoing various tests, including echocardiography and right heart catheterization, it is determined that he has pulmonary arterial hypertension (PAH) with a mean pulmonary artery pressure of 35 mmhg and a pulmonary capillary wedge pressure of 8mmhg. One of the medications prescribed for him is ambrisentan. What is the mechanism of action of this drug?
Your Answer:
Correct Answer: Endothelin-1 receptor antagonist
Explanation:Ambrisentan is an antagonist of endothelin-1 receptors, which are involved in vasoconstriction. In pulmonary arterial hypertension (PAH), the expression of endothelin-1 is increased, leading to constriction of blood vessels. Ambrisentan selectively targets ETA receptors found in vascular smooth muscle, reducing morbidity and mortality in PAH patients. Common side effects include peripheral edema, sinusitis, flushing, and nasal congestion. Prostacyclins like PGI2 can also be used to manage PPH by dilating blood vessels and inhibiting platelet aggregation. PGE2, an inflammatory mediator, is not used in PAH treatment. PDE inhibitors like sildenafil increase cGMP levels in pulmonary vessels, relaxing vascular smooth muscle and reducing pulmonary artery pressure.
Pulmonary arterial hypertension (PAH) is a condition where the resting mean pulmonary artery pressure is equal to or greater than 25 mmHg. The pathogenesis of PAH is thought to involve endothelin. It is more common in females and typically presents between the ages of 30-50 years. PAH is diagnosed in the absence of chronic lung diseases such as COPD, although certain factors increase the risk. Around 10% of cases are inherited in an autosomal dominant fashion.
The classical presentation of PAH is progressive exertional dyspnoea, but other possible features include exertional syncope, exertional chest pain, peripheral oedema, and cyanosis. Physical examination may reveal a right ventricular heave, loud P2, raised JVP with prominent ‘a’ waves, and tricuspid regurgitation.
Management of PAH should first involve treating any underlying conditions. Acute vasodilator testing is central to deciding on the appropriate management strategy. If there is a positive response to acute vasodilator testing, oral calcium channel blockers may be used. If there is a negative response, prostacyclin analogues, endothelin receptor antagonists, or phosphodiesterase inhibitors may be used. Patients with progressive symptoms should be considered for a heart-lung transplant.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A patient in his 60s with dilated cardiomyopathy visits his primary care physician complaining of heart failure symptoms. What is the reason behind his heart condition causing heart failure?
Your Answer:
Correct Answer: Ventricular dilatation increases afterload due to Laplace's law
Explanation:Laplace’s law states that the pressure in a lumen is equal to the wall tension divided by the lumen radius. Heart failure occurs when the heart is unable to meet the body’s demands for cardiac output. While an increased end diastolic volume can initially increase cardiac output, if myocytes become too stretched, cardiac output will decrease. Insufficient blood supply to the myocardium can also cause heart failure, but this is not related to dilated cardiomyopathy. The Bainbridge reflex and baroreceptor reflex are the main controllers of heart rate, with the former responding to increased stretch in the atrium. Ventricular dilatation does not directly cause an increase in aortic pressure. Laplace’s law shows that as the ventricle dilates, tension must increase to maintain pressure, but at a certain point, myocytes will no longer be able to exert enough force, leading to heart failure. Additionally, as the ventricle dilates, afterload increases, which is the force the heart must contract against.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
Which of the following events is commonly observed in the arterioles of individuals with malignant hypertension?
Your Answer:
Correct Answer: Fibrinoid necrosis
Explanation:Arterioles of patients with malignant hypertension exhibit fibrinoid necrosis.
Understanding Cell Death: Necrosis and Apoptosis
Cell death can occur through two mechanisms: necrosis and apoptosis. Necrosis is characterized by a failure in bioenergetics, which leads to tissue hypoxia and the inability to generate ATP. This results in the loss of cellular membrane integrity, energy-dependent transport mechanisms, and ionic instability, leading to cellular lysis and the release of intracellular contents that may stimulate an inflammatory response. Different types of necrosis exist, including coagulative, colliquative, caseous, gangrene, fibrinoid, and fat necrosis, with the predominant pattern depending on the tissue type and underlying cause.
On the other hand, apoptosis, also known as programmed cell death, is an energy-dependent process that involves the activation of caspases triggered by intracellular signaling mechanisms. This results in DNA fragmentation, mitochondrial dysfunction, and nuclear and cellular shrinkage, leading to the formation of apoptotic bodies. Unlike necrosis, phagocytosis of the cell does not occur, and the cell degenerates into apoptotic bodies.
Understanding the mechanisms of cell death is crucial in various fields, including medicine, biology, and pathology. By identifying the type of cell death, clinicians and researchers can better understand the underlying causes and develop appropriate interventions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
Sarah, a 68-year-old woman, visits her doctor complaining of shortness of breath and swollen ankles that have been worsening for the past four months. During the consultation, the doctor observes that Sarah is using more pillows than usual. She has a medical history of hypertension, hypercholesterolemia, type 2 diabetes mellitus, and a previous myocardial infarction. The doctor also notices a raised jugular venous pressure (JVP) and suspects congestive heart failure. What would indicate a normal JVP?
Your Answer:
Correct Answer: 2 cm from the vertical height above the sternal angle
Explanation:The normal range for jugular venous pressure is within 3 cm of the vertical height above the sternal angle. This measurement is used to estimate central venous pressure by observing the internal jugular vein, which connects to the right atrium. To obtain this measurement, the patient is positioned at a 45º angle, the right internal jugular vein is observed between the two heads of sternocleidomastoid, and a ruler is placed horizontally from the highest pulsation point of the vein to the sternal angle, with an additional 5cm added to the measurement. A JVP measurement greater than 3 cm from the sternal angle may indicate conditions such as right-sided heart failure, cardiac tamponade, superior vena cava obstruction, or fluid overload.
Understanding the Jugular Venous Pulse
The jugular venous pulse is a useful tool in assessing right atrial pressure and identifying underlying valvular disease. The waveform of the jugular vein can provide valuable information, such as a non-pulsatile JVP indicating superior vena caval obstruction and Kussmaul’s sign indicating constrictive pericarditis.
The ‘a’ wave of the jugular venous pulse represents atrial contraction and can be large in conditions such as tricuspid stenosis, pulmonary stenosis, and pulmonary hypertension. However, it may be absent in atrial fibrillation. Cannon ‘a’ waves occur when atrial contractions push against a closed tricuspid valve and are seen in complete heart block, ventricular tachycardia/ectopics, nodal rhythm, and single chamber ventricular pacing.
The ‘c’ wave represents the closure of the tricuspid valve and is not normally visible. The ‘v’ wave is due to passive filling of blood into the atrium against a closed tricuspid valve and can be giant in tricuspid regurgitation. The ‘x’ descent represents the fall in atrial pressure during ventricular systole, while the ‘y’ descent represents the opening of the tricuspid valve.
Understanding the jugular venous pulse and its various components can aid in the diagnosis and management of cardiovascular conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
Which one of the following vessels does not directly drain into the inferior vena cava?
Your Answer:
Correct Answer: Superior mesenteric vein
Explanation:The portal vein receives drainage from the superior mesenteric vein, while the right and left hepatic veins directly drain into it. This can result in significant bleeding in cases of severe liver lacerations.
Anatomy of the Inferior Vena Cava
The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.
The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.
The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?
Your Answer:
Correct Answer: Anterior tibial
Explanation:The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.
The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
Where is the site of action of bendroflumethiazide in elderly patients?
Your Answer:
Correct Answer: Proximal part of the distal convoluted tubules
Explanation:Thiazides and thiazide-like medications, such as indapamide, work by blocking the Na+-Cl− symporter at the start of the distal convoluted tubule, which inhibits the reabsorption of sodium.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Cl− symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
A 32-year-old arrives at the emergency department with a stab wound to the femoral artery. He has a history of intravenous drug use.
Due to poor vein quality, peripheral cannulation under ultrasound guidance is not feasible. Intraosseous access has been established, but additional access is required to administer large volume transfusions.
To obtain access to a vessel that runs anterior to the medial malleolus, the consultant has decided to perform a venous cutdown.
Which vessel will be accessed through this procedure?Your Answer:
Correct Answer: Long saphenous vein
Explanation:The correct answer is the long saphenous vein, which passes in front of the medial malleolus and is commonly used for venous cutdown procedures. This vein is the largest vessel in the superficial venous system and is formed from the dorsal venous arch of the foot. During a venous cutdown, the skin is opened up to expose the vessel, allowing for cannulation under direct vision.
The anterior tibial vein, fibular vein, and posterior tibial vein are all incorrect answers. The anterior tibial vein is part of the deep venous system and arises from the dorsal venous arch, while the fibular vein forms from the plantar veins of the foot and drains into the posterior tibial vein. The posterior tibial vein also arises from the plantar veins of the foot but ascends posterior to the medial malleolus.
The Anatomy of Saphenous Veins
The human body has two saphenous veins: the long saphenous vein and the short saphenous vein. The long saphenous vein is often used for bypass surgery or removed as a treatment for varicose veins. It originates at the first digit where the dorsal vein merges with the dorsal venous arch of the foot and runs up the medial side of the leg. At the knee, it runs over the posterior border of the medial epicondyle of the femur bone before passing laterally to lie on the anterior surface of the thigh. It then enters an opening in the fascia lata called the saphenous opening and joins with the femoral vein in the region of the femoral triangle at the saphenofemoral junction. The long saphenous vein has several tributaries, including the medial marginal, superficial epigastric, superficial iliac circumflex, and superficial external pudendal veins.
On the other hand, the short saphenous vein originates at the fifth digit where the dorsal vein merges with the dorsal venous arch of the foot, which attaches to the great saphenous vein. It passes around the lateral aspect of the foot and runs along the posterior aspect of the leg with the sural nerve. It then passes between the heads of the gastrocnemius muscle and drains into the popliteal vein, approximately at or above the level of the knee joint.
Understanding the anatomy of saphenous veins is crucial for medical professionals who perform surgeries or treatments involving these veins.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
A 48-year-old man visits his local doctor complaining of chest pain that occurs during physical activity and subsides with rest. He first noticed it 10 months ago and feels that it has gradually worsened. He now experiences this pain while climbing a few stairs. Previously, he could walk down to the newsagent and back, a distance of 200 yards, without any discomfort. He has a medical history of hypertension and appendectomy.
His close friend had similar symptoms that were relieved by sublingual glyceryl nitrates. He asks the doctor to prescribe something similar.
What is the mechanism by which nitrates work?Your Answer:
Correct Answer: Nitrates cause a decrease in intracellular calcium which results in smooth muscle relaxation
Explanation:The reason why nitrates cause a decrease in intracellular calcium is because nitric oxide triggers the activation of smooth muscle soluble guanylyl cyclase (GC) to produce cGMP. This increase in intracellular cGMP inhibits calcium entry into the cell, resulting in a reduction in intracellular calcium levels and inducing smooth muscle relaxation. Additionally, nitric oxide activates K+ channels, leading to hyperpolarization and relaxation. Furthermore, nitric oxide stimulates a cGMP-dependent protein kinase that activates myosin light chain phosphatase, which dephosphorylates myosin light chains, ultimately leading to relaxation. Therefore, the correct answer is the second option.
Understanding Nitrates and Their Effects on the Body
Nitrates are a type of medication that can cause blood vessels to widen, which is known as vasodilation. They are commonly used to manage angina and treat heart failure. One of the most frequently prescribed nitrates is sublingual glyceryl trinitrate, which is used to relieve angina attacks in patients with ischaemic heart disease.
The mechanism of action for nitrates involves the release of nitric oxide in smooth muscle, which activates guanylate cyclase. This enzyme then converts GTP to cGMP, leading to a decrease in intracellular calcium levels. In the case of angina, nitrates dilate the coronary arteries and reduce venous return, which decreases left ventricular work and reduces myocardial oxygen demand.
However, nitrates can also cause side effects such as hypotension, tachycardia, headaches, and flushing. Additionally, many patients who take nitrates develop tolerance over time, which can reduce their effectiveness. To combat this, the British National Formulary recommends that patients who develop tolerance take the second dose of isosorbide mononitrate after 8 hours instead of 12 hours. This allows blood-nitrate levels to fall for 4 hours and maintains effectiveness. It’s important to note that this effect is not seen in patients who take modified release isosorbide mononitrate.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 57-year-old man needs long term parenteral nutrition and a PICC line is chosen for long term venous access. The insertion site is the elbow region of the basilic vein. During catheter advancement, which venous structure is the catheter tip most likely to pass into from the basilic vein?
Your Answer:
Correct Answer: Axillary vein
Explanation:The most common site for a PICC line to end up in is the axillary vein, which is where the basilic vein drains into. While PICC lines can be placed in various locations, the posterior circumflex humeral vein is typically encountered before the axillary vein. However, due to its angle of entry into the basilic vein, it is unlikely for a PICC line to enter this structure.
The Basilic Vein: A Major Pathway of Venous Drainage for the Arm and Hand
The basilic vein is one of the two main pathways of venous drainage for the arm and hand, alongside the cephalic vein. It begins on the medial side of the dorsal venous network of the hand and travels up the forearm and arm. Most of its course is superficial, but it passes deep under the muscles midway up the humerus. Near the region anterior to the cubital fossa, the basilic vein joins the cephalic vein.
At the lower border of the teres major muscle, the anterior and posterior circumflex humeral veins feed into the basilic vein. It is often joined by the medial brachial vein before draining into the axillary vein. The basilic vein is continuous with the palmar venous arch distally and the axillary vein proximally. Understanding the path and function of the basilic vein is important for medical professionals in diagnosing and treating conditions related to venous drainage in the arm and hand.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 72-year-old male is admitted post myocardial infarction.
Suddenly, on day seven, he collapses without warning. The physician observes the presence of Kussmaul's sign.
What is the most probable complication of MI in this case?Your Answer:
Correct Answer: Ventricular rupture
Explanation:Complications of Myocardial Infarction: Cardiac Tamponade
Myocardial infarction can lead to a range of complications, including cardiac tamponade. This occurs when there is ventricular rupture, which can be life-threatening. One way to diagnose cardiac tamponade is through Kussmaul’s sign, which is the detection of a rising jugular venous pulse on inspiration. However, the classic diagnostic triad for cardiac tamponade is Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds.
It is important to note that Dressler’s syndrome, a type of pericarditis that can occur after a myocardial infarction, typically has a gradual onset and is associated with chest pain. Therefore, it is important to differentiate between these complications in order to provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
Which segment of the ECG waveform corresponds to the shutting of the mitral valve?
Your Answer:
Correct Answer: QRS complex
Explanation:A diagram depicting the various stages of the cardiac cycle can be accessed through the external link provided.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 61-year-old man recovering from severe community-acquired pneumonia is being assessed by a consultant and a medical student. He has a medical history of hypertension, heart failure, depression, and gout, and is currently taking ramipril, atenolol, furosemide, sertraline, allopurinol, and ibuprofen. The consultant suspects that his slightly low blood pressure may be due to his medications. The patient's urea and electrolyte levels are provided below. Can you identify the role of atenolol in reducing blood pressure?
Na+ 142 mmol/l
K+ 4.2 mmol/l
Urea 6 mmol/l
Creatinine 68 µmol/lYour Answer:
Correct Answer: Inhibits the release of renin from the kidneys
Explanation:Beta-blockers have an added advantage in treating hypertension as they can suppress the release of renin from the kidneys. This is because the release of renin is partly regulated by β1-adrenoceptors in the kidney, which are inhibited by beta-blockers. By reducing the amount of circulating plasma renin, the levels of angiotensin II and aldosterone decrease, leading to increased renal loss of sodium and water, ultimately lowering arterial pressure.
It is important to note that atenolol does not compete with aldosterone, unlike spironolactone, a potassium-sparing diuretic that does compete with aldosterone for its receptor. Additionally, atenolol does not inhibit the conversion of ATI to ATII, which is achieved by ACE-inhibitors like ramipril.
While both beta-1 and beta-2 receptors are present in the heart, atenolol primarily acts on beta-1 receptors, resulting in negative inotropic, negative chronotropic, and positive lusitropic effects. Lusitropy refers to the relaxation of the heart.
Therefore, the statement that atenolol inhibits the release of renin is correct, and the fifth option is incorrect.
Beta-blockers are a class of drugs that are primarily used to manage cardiovascular disorders. They have a wide range of indications, including angina, post-myocardial infarction, heart failure, arrhythmias, hypertension, thyrotoxicosis, migraine prophylaxis, and anxiety. Beta-blockers were previously avoided in heart failure, but recent evidence suggests that certain beta-blockers can improve both symptoms and mortality. They have also replaced digoxin as the rate-control drug of choice in atrial fibrillation. However, their role in reducing stroke and myocardial infarction has diminished in recent years due to a lack of evidence.
Examples of beta-blockers include atenolol and propranolol, which was one of the first beta-blockers to be developed. Propranolol is lipid-soluble, which means it can cross the blood-brain barrier.
Like all drugs, beta-blockers have side-effects. These can include bronchospasm, cold peripheries, fatigue, sleep disturbances (including nightmares), and erectile dysfunction. There are also some contraindications to using beta-blockers, such as uncontrolled heart failure, asthma, sick sinus syndrome, and concurrent use with verapamil, which can precipitate severe bradycardia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 55-year-old male with hypertension visits his GP complaining of a persistent dry cough. He reports that this started two weeks ago after he was prescribed ramipril. What alternative medication class might the GP consider switching him to?
Your Answer:
Correct Answer: Angiotensin receptor blockers
Explanation:A dry cough is a common and bothersome side effect of ACE inhibitors like ramipril. However, angiotensin receptor blockers work by blocking angiotensin II receptors and have similar adverse effects to ACE inhibitors, but without the cough. According to guidelines, ACE inhibitors are the first line of treatment for white patients under 55 years old. If they are ineffective, angiotensin receptor blockers should be used instead. Beta-blockers, diuretics, calcium channel blockers, and alpha blockers are reserved for later use.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
What is the average stroke volume in a resting 75 Kg man?
Your Answer:
Correct Answer: 70ml
Explanation:The range of stroke volumes is between 55 and 100 milliliters.
The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
A 67-year-old woman visits the anticoagulation clinic for her regular INR test. She has a medical history of deep vein thrombosis and pulmonary embolism and is currently taking warfarin for life. During this visit, her INR level is found to be 4.4, which is higher than her target of 3.0. Upon further inquiry, she reveals that she had been prescribed antibiotics by her GP recently. Can you identify the clotting factors that warfarin affects?
Your Answer:
Correct Answer: Factors II, VII, IX, X
Explanation:Warfarin is an oral anticoagulant that is widely used to prevent blood clotting in various medical conditions, including stroke prevention in atrial fibrillation and venous thromboembolism. Warfarin primarily targets the Vitamin K dependent clotting factors, which include factors II, VII, IX, and X.
To monitor the effectiveness of warfarin therapy, the International Normalized Ratio (INR) is used. However, the INR can be affected by drug interactions, such as those with antibiotics. Therefore, it is important to be aware of the common drug interactions associated with warfarin.
Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects
Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.
Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.
Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.
In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
A 67-year-old male presents with sudden onset of abdominal pain on the left side that radiates to his back. He also reports vomiting. The patient has no significant medical history.
Upon examination, the patient has a temperature of 37.5°C, a respiratory rate of 28/min, a pulse of 110/min, and a blood pressure of 160/82 mmHg. The abdomen is tender to touch, especially over the hypochondrium, and bowel sounds are present. Urinalysis reveals amylase 3+ with glucose 2+.
What is the most likely diagnosis?Your Answer:
Correct Answer: Acute pancreatitis
Explanation:Possible Causes of Acute Abdominal Pain with Radiation to the Back
The occurrence of acute abdominal pain with radiation to the back can be indicative of two possible conditions: a dissection or rupture of an aortic aneurysm or pancreatitis. However, the presence of amylase in the urine suggests that the latter is more likely. Pancreatitis is a condition characterized by inflammation of the pancreas, which can cause severe abdominal pain that radiates to the back. The presence of amylase in the urine is a common diagnostic marker for pancreatitis.
In addition, acute illness associated with pancreatitis can lead to impaired insulin release and increased gluconeogenesis, which can cause elevated glucose levels. Therefore, glucose levels may also be monitored in patients with suspected pancreatitis. It is important to promptly diagnose and treat pancreatitis as it can lead to serious complications such as pancreatic necrosis, sepsis, and organ failure.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 20-year-old man experienced recurrent episodes of breathlessness and palpitations lasting approximately 20 minutes and resolving gradually. No unusual physical signs were observed. What is the probable cause of these symptoms?
Your Answer:
Correct Answer: Panic attacks
Explanation:Likely Diagnosis for Sudden Onset of Symptoms
When considering the sudden onset of symptoms, drug abuse is an unlikely cause as the symptoms are short-lived and not accompanied by other common drug abuse symptoms. Paroxysmal SVT would present with sudden starts and stops, rather than a gradual onset. Personality disorder and thyrotoxicosis would both lead to longer-lasting symptoms and other associated symptoms. Therefore, the most likely diagnosis for sudden onset symptoms would be panic disorder. It is important to consider all possible causes and seek medical attention to properly diagnose and treat any underlying conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
How many valves are present between the right atrium and the superior vena cava (SVC)?
Your Answer:
Correct Answer: None
Explanation:Inserting a CVP line from the internal jugular vein into the right atrium is relatively easy due to the absence of valves.
The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an unroofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 50-year-old man comes in with a lipoma situated at the back of the posterior border of the sternocleidomastoid muscle, about 4 cm above the middle third of the clavicle. While performing surgery to remove the growth, problematic bleeding is encountered. What is the most probable origin of the bleeding?
Your Answer:
Correct Answer: External jugular vein
Explanation:The superficial fascia of the posterior triangle contains the external jugular vein, which runs diagonally and drains into the subclavian vein. Surgeons must be careful during exploration of this area to avoid injuring the external jugular vein and causing excessive bleeding. The internal jugular vein and carotid arteries are located in the anterior triangle, while the third part of the subclavian artery is found in the posterior triangle, not the second part.
The posterior triangle of the neck is an area that is bound by the sternocleidomastoid and trapezius muscles, the occipital bone, and the middle third of the clavicle. Within this triangle, there are various nerves, vessels, muscles, and lymph nodes. The nerves present include the accessory nerve, phrenic nerve, and three trunks of the brachial plexus, as well as branches of the cervical plexus such as the supraclavicular nerve, transverse cervical nerve, great auricular nerve, and lesser occipital nerve. The vessels found in this area are the external jugular vein and subclavian artery. Additionally, there are muscles such as the inferior belly of omohyoid and scalene, as well as lymph nodes including the supraclavicular and occipital nodes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 50-year-old man undergoes carotid endarterectomy surgery after experiencing a transient ischaemic attack. The procedure is successful with no complications. However, the patient develops new hoarseness of voice and loss of effective cough mechanism post-surgery. There are no notable findings upon examination of the oral cavity.
Which structure has been affected by the surgery?Your Answer:
Correct Answer: Cranial nerve X
Explanation:Speech is innervated by the vagus (X) nerve, so any damage to this nerve can cause speech problems. Injuries to one side of the vagus nerve can result in hoarseness and vocal cord paralysis on the same side, while bilateral injuries can lead to aphonia and stridor. Other symptoms of vagal disease may include dysphagia, loss of cough reflex, gastroparesis, and cardiovascular effects. The facial nerve (VII) may also be affected during carotid surgery, causing muscle weakness in facial expression. However, the vestibulocochlear nerve (VIII) is not involved in speech and would not be damaged during carotid surgery. The accessory nerve (XI) does not innervate speech muscles and is rarely affected during carotid surgery, causing weakness in shoulder elevation instead. Hypoglossal (XII) palsy is a rare complication of carotid surgery that causes tongue deviation towards the side of the lesion, but not voice hoarseness.
The vagus nerve is responsible for a variety of functions and supplies structures from the fourth and sixth pharyngeal arches, as well as the fore and midgut sections of the embryonic gut tube. It carries afferent fibers from areas such as the pharynx, larynx, esophagus, stomach, lungs, heart, and great vessels. The efferent fibers of the vagus are of two main types: preganglionic parasympathetic fibers distributed to the parasympathetic ganglia that innervate smooth muscle of the innervated organs, and efferent fibers with direct skeletal muscle innervation, largely to the muscles of the larynx and pharynx.
The vagus nerve arises from the lateral surface of the medulla oblongata and exits through the jugular foramen, closely related to the glossopharyngeal nerve cranially and the accessory nerve caudally. It descends vertically in the carotid sheath in the neck, closely related to the internal and common carotid arteries. In the mediastinum, both nerves pass posteroinferiorly and reach the posterior surface of the corresponding lung root, branching into both lungs. At the inferior end of the mediastinum, these plexuses reunite to form the formal vagal trunks that pass through the esophageal hiatus and into the abdomen. The anterior and posterior vagal trunks are formal nerve fibers that splay out once again, sending fibers over the stomach and posteriorly to the coeliac plexus. Branches pass to the liver, spleen, and kidney.
The vagus nerve has various branches in the neck, including superior and inferior cervical cardiac branches, and the right recurrent laryngeal nerve, which arises from the vagus anterior to the first part of the subclavian artery and hooks under it to insert into the larynx. In the thorax, the left recurrent laryngeal nerve arises from the vagus on the aortic arch and hooks around the inferior surface of the arch, passing upwards through the superior mediastinum and lower part of the neck. In the abdomen, the nerves branch extensively, passing to the coeliac axis and alongside the vessels to supply the spleen, liver, and kidney.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)