-
Question 1
Correct
-
A 32-year-old woman who is 34 weeks pregnant with her first baby is worried about the possibility of her child having a congenital heart defect. She was born with patent ductus arteriosus (PDA) herself and wants to know what treatment options are available for this condition.
What treatment will you recommend if her baby is diagnosed with PDA?Your Answer: The baby receives indomethacin as a neonate
Explanation:The preferred treatment for patent ductus arteriosus (PDA) in neonates is indomethacin or ibuprofen, administered after birth. While PDA is more common in premature infants, a family history of heart defects can increase the risk. Diagnosis typically occurs during postnatal baby checks, often due to the presence of a murmur or symptoms of heart failure. Doing nothing is not a recommended approach, as spontaneous closure is rare. Surgery may be necessary if medical management is unsuccessful. Prostaglandin E1 is not the best answer, as it is typically used in cases where PDA is associated with another congenital heart defect. Indomethacin or ibuprofen are not given to the mother during the antenatal period.
Understanding Patent Ductus Arteriosus
Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.
This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.
The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Correct
-
A 82-year-old male is admitted to the Emergency Room with complaints of severe chest pain that spreads to his left arm and jaw. Upon conducting an Electrocardiography (ECG), it is confirmed that he is suffering from ST-elevation myocardial infarction. He is then transferred for percutaneous coronary intervention but unfortunately, he suffers a cardiac arrest and passes away 12 hours after his initial presentation. What are the probable histological findings that would be observed in his heart?
Your Answer: Coagulative necrosis, neutrophils, wavy fibres, hypercontraction of myofibrils
Explanation:In the first 24 hours after a myocardial infarction (MI), histology findings show early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage carries a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1 and 3 days post-MI, extensive coagulative necrosis and neutrophils are present, which can be associated with fibrinous pericarditis.
From 3 to 14 days post-MI, macrophages and granulation tissue appear at the margins. This stage carries a high risk of free wall rupture, papillary muscle rupture, and left ventricular pseudoaneurysm.
Between 2 weeks and several months post-MI, the contracted scar is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
Which vessel is the first to branch from the external carotid artery?
Your Answer: Superior thyroid artery
Explanation:Here is a mnemonic to remember the order in which the branches of the external carotid artery originate: Some Attendings Like Freaking Out Potential Medical Students. The first branch is the superior thyroid artery, followed by the ascending pharyngeal, lingual, facial, occipital, post auricular, and finally the maxillary and superficial temporal arteries.
Anatomy of the External Carotid Artery
The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.
To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.
The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 47-year-old woman, who is notably tall, visits the surgical clinic due to bilateral inguinal hernias. During her evaluation, she experiences chest discomfort and faints. A chest x-ray reveals indications of mediastinal widening. What is the probable underlying condition?
Your Answer: Aortic dissection
Explanation:Individuals with Marfan syndrome may exhibit various connective tissue disorders, including bilateral inguinal hernia. They are particularly susceptible to aortic dissection, as demonstrated in this instance.
Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
Mrs. Green is a 64-year-old woman with colon cancer. She is undergoing adjuvant chemotherapy, however in the past six months has suffered four deep vein thrombosis (DVT) events, despite being optimally anticoagulated with the maximum dose of dabigatran. On one occasion she suffered a DVT during treatment with dalteparin (a low molecular weight heparin). She has been admitted with symptoms of another DVT.
What is the recommended treatment for her current DVT?Your Answer: Insert an inferior vena caval filter
Explanation:For patients with recurrent venous thromboembolic disease, an inferior vena cava filter may be considered. This is particularly relevant for patients with cancer who have experienced multiple DVTs despite being fully anticoagulated. Before considering an inferior vena cava filter, alternative treatments such as increasing the target INR to 3-4 for long-term high-intensity oral anticoagulant therapy or switching to LMWH should be considered. This recommendation is in line with NICE guidelines on the diagnosis, management, and thrombophilia testing of venous thromboembolic diseases. Prescribing apixaban, increasing the dose of dabigatran off-license, or prescribing Thrombo-Embolic Deterrent (TED) stockings are not appropriate solutions for this patient. Similarly, initiating end-of-life drugs and preparing the family is not indicated based on the clinical description provided.
Management of Pulmonary Embolism
Pulmonary embolism (PE) is a serious condition that requires prompt management. The National Institute for Health and Care Excellence (NICE) updated their guidelines on the management of venous thromboembolism (VTE) in 2020, with some key changes. One of the significant changes is the recommendation to use direct oral anticoagulants (DOACs) as the first-line treatment for most people with VTE, including those with active cancer. Another change is the increasing use of outpatient treatment for low-risk PE patients, determined by a validated risk stratification tool.
Anticoagulant therapy is the cornerstone of VTE management. The guidelines recommend using apixaban or rivaroxaban as the first-line treatment for PE, followed by LMWH, dabigatran, edoxaban, or a vitamin K antagonist (VKA) if necessary. For patients with active cancer, DOACs are now recommended instead of LMWH. The length of anticoagulation depends on whether the VTE was provoked or unprovoked, with treatment typically lasting for at least three months. Patients with unprovoked VTE may continue treatment for up to six months, depending on their risk of recurrence and bleeding.
In cases of haemodynamic instability, thrombolysis is recommended as the first-line treatment for massive PE with circulatory failure. Other invasive approaches may also be considered where appropriate facilities exist. Patients who have repeat pulmonary embolisms, despite adequate anticoagulation, may be considered for inferior vena cava (IVC) filters. However, the evidence base for IVC filter use is weak, and further studies are needed.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Incorrect
-
A woman visits her physician and undergoes lying and standing blood pressure tests. Upon standing, her baroreceptors sense reduced stretch, triggering the baroreceptor reflex. This results in a decrease in baroreceptor activity, leading to an elevation in sympathetic discharge.
What is the function of the neurotransmitter that is released?Your Answer:
Correct Answer: Noradrenaline binds to β 1 receptors in the SA node increasing depolarisation
Explanation:The binding of noradrenaline to β 1 receptors in the SA node is responsible for an increase in heart rate due to an increase in depolarisation in the pacemaker action potential, allowing for more frequent firing of action potentials. As the SA node is the pacemaker in a healthy individual, the predominant β receptor found in the heart, β 1, is the one that noradrenaline acts on more than β 2 and α 2 receptors. Therefore, the correct answer is that noradrenaline binds to β 1 receptors in the SA node.
The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Incorrect
-
A patient in their 60s is diagnosed with first-degree heart block which is shown on their ECG by an elongated PR interval. The PR interval relates to a particular period in the electrical conductance of the heart.
What factors could lead to a decrease in the PR interval?Your Answer:
Correct Answer: Increased conduction velocity across the AV node
Explanation:An increase in sympathetic activation leads to a faster heart rate by enhancing the conduction velocity of the AV node. The PR interval represents the time between the onset of atrial depolarization (P wave) and the onset of ventricular depolarization (beginning of QRS complex). While atrial conduction occurs at a speed of 1m/s, the AV node only conducts at 0.05m/s. Consequently, the AV node is the limiting factor, and a reduction in the PR interval is determined by the conduction velocity across the AV node.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Incorrect
-
A man in his 50s arrives at the emergency department exhibiting signs of a stroke. After undergoing a CT angiogram, it is revealed that there is a constriction in the artery that provides blood to the right common carotid.
What is the name of the affected artery?Your Answer:
Correct Answer: Brachiocephalic artery
Explanation:The largest branch from the aortic arch is the brachiocephalic artery, which originates from it. This artery gives rise to both the right subclavian artery and the right common carotid arteries. The brachiocephalic artery is supplied by the aortic arch, while the coronary arteries are supplied by the ascending aorta. Additionally, the coeliac trunk is a branch that stems from the abdominal aorta.
The Brachiocephalic Artery: Anatomy and Relations
The brachiocephalic artery is the largest branch of the aortic arch, originating at the apex of the midline. It ascends superiorly and posteriorly to the right, lying initially anterior to the trachea and then on its right-hand side. At the level of the sternoclavicular joint, it divides into the right subclavian and right common carotid arteries.
In terms of its relations, the brachiocephalic artery is anterior to the sternohyoid, sterno-thyroid, thymic remnants, left brachiocephalic vein, and right inferior thyroid veins. Posteriorly, it is related to the trachea, right pleura, right lateral, right brachiocephalic vein, superior part of the SVC, left lateral, thymic remnants, origin of left common carotid, inferior thyroid veins, and trachea at a higher level.
The brachiocephalic artery typically has no branches, but it may have the thyroidea ima artery. Understanding the anatomy and relations of the brachiocephalic artery is important for medical professionals, as it is a crucial vessel in the human body.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Incorrect
-
A 14-year-old male immigrant from India visits his primary care physician complaining of gradually worsening shortness of breath, particularly during physical exertion, and widespread joint pain. He had a severe untreated throat infection in the past, but his vaccination record is complete. During the physical examination, a high-pitched holosystolic murmur is heard at the apex with radiation to the axilla.
Hemoglobin: 135 g/L
Platelets: 150 * 10^9/L
White blood cells: 9.5 * 10^9/L
Anti-streptolysin O titers: >200 units/mL
What is the most probable histological finding in his heart?Your Answer:
Correct Answer: Aschoff bodies
Explanation:Rheumatic heart fever is characterized by the presence of Aschoff bodies, which are granulomatous nodules. The mitral valve is commonly affected in this condition, and an elevated ASO titre indicates exposure to group A streptococcus bacteria. Rheumatic heart disease is also associated with the presence of Anitschkow cells, which are enlarged macrophages with an ovoid, wavy, rod-like nucleus. Other types of bodies seen in different conditions include Councilman bodies in hepatitis C and yellow fever, Mallory bodies in alcoholism affecting hepatocytes, and Call-Exner bodies in granulosa cell tumours.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Incorrect
-
During the repair of an atrial septal defect, the surgeons notice blood leakage from the coronary sinus. What is the largest tributary of the coronary sinus?
Your Answer:
Correct Answer: Great cardiac vein
Explanation:The largest tributary of the coronary sinus is the great cardiac vein, which runs in the anterior interventricular groove. The heart is drained directly by the Thebesian veins.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Incorrect
-
A 20-year-old man has a tonsillectomy due to recurrent acute tonsillitis. During recovery, he experiences a postoperative bleeding. Which vessel is the most probable cause of the bleeding?
Your Answer:
Correct Answer: External palatine vein
Explanation:If the external palatine vein is harmed during tonsillectomy, it can result in reactionary bleeding and is located adjacent to the tonsil.
Tonsil Anatomy and Tonsillitis
The tonsils are located in the pharynx and have two surfaces, a medial and lateral surface. They vary in size and are usually supplied by the tonsillar artery and drained by the jugulodigastric and deep cervical nodes. Tonsillitis is a common condition that is usually caused by bacteria, with group A Streptococcus being the most common culprit. It can also be caused by viruses. In some cases, tonsillitis can lead to the development of an abscess, which can distort the uvula. Tonsillectomy is recommended for patients with recurrent acute tonsillitis, suspected malignancy, or enlargement causing sleep apnea. The preferred technique for tonsillectomy is dissection, but it can be complicated by hemorrhage, which is the most common complication. Delayed otalgia may also occur due to irritation of the glossopharyngeal nerve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Incorrect
-
A 64-year-old woman is being monitored in the nurse-led heart failure clinic. She has left-sided heart failure and her recent echo revealed a reduced ejection fraction. She complains of nocturnal breathlessness and needing multiple pillows to sleep.
She is prescribed bisoprolol and another medication with the explanation that it will help decrease mortality.
What is the probable medication she has been prescribed?Your Answer:
Correct Answer: Ramipril
Explanation:In the treatment of heart failure, medications are used to improve the heart’s ability to pump blood effectively. Beta blockers, such as bisoprolol, are commonly prescribed to slow the heart rate and improve filling. The first-line drugs for heart failure are beta blockers and ACE inhibitors. Therefore, the patient in question will be prescribed an ACE inhibitor, such as ramipril, as the second drug. Ramipril works by reducing venous resistance, making it easier for the heart to pump blood out, and lowering arterial pressures, which increases the heart’s pre-load.
Carvedilol is not the correct choice for this patient. Although it can be used in heart failure, the patient is already taking a beta blocker, and adding another drug from the same class could cause symptomatic bradycardia or hypotension.
Digoxin is not the appropriate choice either. While it can be used in heart failure, it should only be initiated by a specialist.
Sacubitril-valsartan is also not the right choice for this patient. Although it is becoming more commonly used in heart failure patients, it should only be prescribed by a specialist after first and second-line treatment options have been exhausted.
Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Incorrect
-
A fifth-year medical student is requested to perform an abdominal examination on a 58-year-old man who was admitted to the hospital with diffuse abdominal discomfort. The patient has a medical history of chronic obstructive pulmonary disease. The student noted diffuse tenderness in the abdomen without any signs of peritonism, masses, or organ enlargement. The student observed that the liver was bouncing up and down intermittently on the tips of her fingers.
What could be the probable reason for this observation?Your Answer:
Correct Answer: Tricuspid regurgitation
Explanation:Tricuspid regurgitation causes pulsatile hepatomegaly due to backflow of blood into the liver during the cardiac cycle. Other conditions such as hepatitis, mitral stenosis or mitral regurgitation do not cause this symptom.
Tricuspid Regurgitation: Causes and Signs
Tricuspid regurgitation is a heart condition characterized by the backflow of blood from the right ventricle to the right atrium due to the incomplete closure of the tricuspid valve. This condition can be identified through various signs, including a pansystolic murmur, prominent or giant V waves in the jugular venous pulse, pulsatile hepatomegaly, and a left parasternal heave.
There are several causes of tricuspid regurgitation, including right ventricular infarction, pulmonary hypertension (such as in cases of COPD), rheumatic heart disease, infective endocarditis (especially in intravenous drug users), Ebstein’s anomaly, and carcinoid syndrome. It is important to identify the underlying cause of tricuspid regurgitation in order to determine the appropriate treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Incorrect
-
A 45-year-old woman has varicose veins originating from the short saphenous vein. During mobilization of the vein near its origin, which structure is at the highest risk of injury?
Your Answer:
Correct Answer: Sural nerve
Explanation:Litigation often arises from damage to the sural nerve, which is closely associated with this structure. While the other structures may also sustain injuries, the likelihood of such occurrences is comparatively lower.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Incorrect
-
A 65-year-old man presents for a coronary angiogram due to worsening symptoms of unstable angina. The cardiologist observes multiple significant coronary stenoses, which are likely related to the patient's numerous risk factors, including hypertension, heavy smoking, hypercholesterolemia, and type 2 diabetes mellitus. What is the ultimate step in the development of this pathology?
Your Answer:
Correct Answer: Smooth muscle proliferation and migration
Explanation:Understanding Atherosclerosis and its Complications
Atherosclerosis is a complex process that occurs over several years. It begins with endothelial dysfunction triggered by factors such as smoking, hypertension, and hyperglycemia. This leads to changes in the endothelium, including inflammation, oxidation, proliferation, and reduced nitric oxide bioavailability. As a result, low-density lipoprotein (LDL) particles infiltrate the subendothelial space, and monocytes migrate from the blood and differentiate into macrophages. These macrophages then phagocytose oxidized LDL, slowly turning into large ‘foam cells’. Smooth muscle proliferation and migration from the tunica media into the intima result in the formation of a fibrous capsule covering the fatty plaque.
Once a plaque has formed, it can cause several complications. For example, it can form a physical blockage in the lumen of the coronary artery, leading to reduced blood flow and oxygen to the myocardium, resulting in angina. Alternatively, the plaque may rupture, potentially causing a complete occlusion of the coronary artery and resulting in a myocardial infarction. It is essential to understand the process of atherosclerosis and its complications to prevent and manage cardiovascular diseases effectively.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Incorrect
-
A 30-year-old female patient complains of chest pain that is mainly located behind her sternum but radiates to both shoulders. The pain worsens when she breathes deeply or exercises. She has never smoked, drinks a bottle of wine per week, and had a flu-like illness about ten days ago. During examination, her temperature is 38°C, heart rate is 80 bpm, blood pressure is 118/76 mmHg, and respiratory rate is 16. A high pitched rub is audible during systole, and when asked to take a deep breath, she reports more pain on inspiration. The ECG shows ST elevation in both anterior and inferior leads. What is the most probable diagnosis?
Your Answer:
Correct Answer: Pericarditis
Explanation:Common Heart Conditions
Pericarditis is a heart condition that is often triggered by a heart attack or viral infections like Coxsackie B. Patients with pericarditis usually have a history of flu-like symptoms. One of the most common symptoms of pericarditis is widespread ST elevation on the ECG, which is characterized by upward concavity.
Alcoholic cardiomyopathy is another heart condition that can cause heart failure. Patients with this condition may experience symptoms like shortness of breath, fatigue, and swelling in the legs and ankles.
Angina is a type of chest pain that can be stable or unstable depending on whether it occurs at rest or during physical activity. Stable angina is usually triggered by physical exertion, while unstable angina can occur even when a person is at rest.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Incorrect
-
An 68-year-old patient visits the GP complaining of a cough that produces green sputum, fever and shortness of breath. After being treated with antibiotics, her symptoms improve. However, three weeks later, she experiences painful joints, chest pain, fever and an erythema marginatum rash. What is the probable causative organism responsible for the initial infection?
Your Answer:
Correct Answer: Streptococcus pyogenes
Explanation:An immunological reaction is responsible for the development of rheumatic fever.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Incorrect
-
Which one of the following is typically not provided by the right coronary artery?
Your Answer:
Correct Answer: The circumflex artery
Explanation:The left coronary artery typically gives rise to the circumflex artery.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Incorrect
-
A 50-year-old man comes to the clinic complaining of gynaecomastia. He is currently undergoing treatment for heart failure and gastro-oesophageal reflux. Which medication that he is taking is the most probable cause of his gynaecomastia?
Your Answer:
Correct Answer: Spironolactone
Explanation:Medications Associated with Gynaecomastia
Gynaecomastia, the enlargement of male breast tissue, can be caused by various medications. Spironolactone, ciclosporin, cimetidine, and omeprazole are some of the drugs that have been associated with this condition. Ramipril has also been linked to gynaecomastia, but it is a rare occurrence.
Aside from these medications, other drugs that can cause gynaecomastia include digoxin, LHRH analogues, cimetidine, and finasteride. It is important to note that not all individuals who take these medications will develop gynaecomastia, and the risk may vary depending on the dosage and duration of treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Incorrect
-
A 28-year-old male is being evaluated at the pre-operative assessment clinic. A murmur is detected in the 4th intercostal space adjacent to the left side of the sternum. What is the most probable source of the murmur?
Your Answer:
Correct Answer: Tricuspid valve
Explanation:The optimal location for auscultating the tricuspid valve is near the sternum, while the projected sound from the mitral area is most audible at the cardiac apex.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 21
Incorrect
-
A 65-year-old man presents to the GP for a routine hypertension check-up. He has a medical history of hypertension, ischaemic heart disease, osteoarthritis, rheumatic fever and COPD.
During the physical examination, the GP hears a mid-late diastolic murmur that intensifies during expiration. The GP suspects that the patient may have mitral stenosis.
What is the primary cause of this abnormality?Your Answer:
Correct Answer: Rheumatic fever
Explanation:Understanding Mitral Stenosis
Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.
Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.
Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.
Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 22
Incorrect
-
A 75-year-old male presents to his GP with a four week history of shortness of breath when he walks for approximately two minutes on level ground. There is also an associated central chest pain which resolves when he rests. The pain is localised and does not radiate.
On examination, there were obvious signs of ankle and sacral pitting oedema. A left ventricular heave was palpated but the apex beat was not displaced. A systolic murmur was heard best at the second intercostal space just right of the sternum. This murmur also radiated to the carotid arteries.
Which investigation is most likely to confirm the underlying cause of his symptoms?Your Answer:
Correct Answer: Echocardiogram
Explanation:Diagnosis of Valvular Heart Disease
Echocardiography is the most sensitive and specific way to diagnose valvular heart disease (VHD). It involves observing the valvular leaflets and degree of calcified stenosis of the aortic valve, as well as calculating cardiac output and ejection fraction for prognostic information. Chest x-ray may reveal a calcified aortic valve and left ventricular hypertrophy, while bilateral ankle edema is a minor sign for congestive heart failure. To assess the severity of heart failure, an x-ray, ECG, and BNP should be performed, but echocardiogram remains the most reliable diagnostic tool for VHD.
A myocardial infarction is unlikely in this patient due to her age and the duration of symptoms. Instead, her angina-type pain is likely due to her underlying aortic valve disease. An angiogram of the coronary arteries alone cannot diagnose valvular defects. Cardiac enzymes such as troponin I and T are markers for myocardial necrosis and will not aid in the diagnosis of VHD. While ECG should be performed in a patient presenting with these symptoms, it alone is insufficient to diagnose VHD. The ECG may show left axis deviation due to left ventricular hypertrophy.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 23
Incorrect
-
A 32-year-old man is shot in the postero-inferior aspect of his thigh. What structure is located at the most lateral aspect of the popliteal fossa?
Your Answer:
Correct Answer: Common peroneal nerve
Explanation:The structures found in the popliteal fossa, listed from medial to lateral, include the popliteal artery, popliteal vein, tibial nerve, and common peroneal nerve. The sural nerve, which is a branch of the tibial nerve, typically originates at the lower part of the popliteal fossa, but its location may vary.
Anatomy of the Popliteal Fossa
The popliteal fossa is a diamond-shaped space located at the back of the knee joint. It is bound by various muscles and ligaments, including the biceps femoris, semimembranosus, semitendinosus, and gastrocnemius. The floor of the popliteal fossa is formed by the popliteal surface of the femur, posterior ligament of the knee joint, and popliteus muscle, while the roof is made up of superficial and deep fascia.
The popliteal fossa contains several important structures, including the popliteal artery and vein, small saphenous vein, common peroneal nerve, tibial nerve, posterior cutaneous nerve of the thigh, genicular branch of the obturator nerve, and lymph nodes. These structures are crucial for the proper functioning of the lower leg and foot.
Understanding the anatomy of the popliteal fossa is important for healthcare professionals, as it can help in the diagnosis and treatment of various conditions affecting the knee joint and surrounding structures.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 24
Incorrect
-
The following result is obtained on a 48-year-old male who is admitted with acute onset chest pain:
Serum Cholesterol 7.3 mmol/L (<5.2)
He has a strong family history of ischaemic heart disease.
What abnormalities might be expected upon examination of this man?Your Answer:
Correct Answer: Tendon nodules
Explanation:Familial Hypercholesterolaemia and its Manifestations
Familial hypercholesterolaemia is a condition characterized by high levels of cholesterol in the blood. This condition is often indicated by the deposition of cholesterol in various parts of the body. The history of the patient suggests that they may be suffering from familial hypercholesterolaemia. The deposition of cholesterol can be observed around the corneal arcus, around the eye itself (xanthelasma), and in tendons such as achilles, knuckles or triceps tendons (tendon xanthomas).
While dietary and lifestyle modifications are recommended, they are usually not enough to manage the condition. High dose lifelong statin therapy is often necessary to control the levels of cholesterol in the blood. It is important to seek medical attention and follow the recommended treatment plan to prevent further complications associated with familial hypercholesterolaemia. The National Institute for Health and Care Excellence (NICE) recommends the use of statin therapy in conjunction with lifestyle modifications for the management of familial hypercholesterolaemia.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 25
Incorrect
-
An 80-year-old patient comes in for a routine follow-up appointment and reports a decline in exercise tolerance. They mention having difficulty with stairs and experiencing occasional central chest pain that radiates to their back, which is relieved by rest. The pain is not present at rest.
During the examination, you observe a regular, slow-rising pulse and record a blood pressure of 110/95mmHg. Upon auscultation of the precordium, you detect an ejection systolic murmur.
To further assess cardiac function and valves, an echocardiogram is scheduled. Based on the likely diagnosis, what additional exam findings are you most likely to discover?Your Answer:
Correct Answer: Fourth heart sound (S4)
Explanation:The patient’s symptoms and physical exam suggest the presence of aortic stenosis. This is indicated by the ejection systolic murmur, slow-rising pulse, and progressive heart failure symptoms. The fourth heart sound (S4) is also present, which occurs when the left atrium contracts forcefully to compensate for a stiff ventricle. In aortic stenosis, the left ventricle is hypertrophied due to the narrowed valve, leading to the S4 sound.
While hepatomegaly is more commonly associated with right heart valvular disease, it is not entirely ruled out in this case. However, the patient’s history is more consistent with aortic stenosis.
Malar flush, a pink flushed appearance across the cheeks, is typically seen in mitral stenosis due to hypercarbia causing arteriole vasodilation.
Pistol shot femoral pulses, a sound heard during systole when auscultating the femoral artery, is a finding associated with aortic regurgitation and not present in this case.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 26
Incorrect
-
Sarah, a 73-year-old woman, is currently admitted to the medical ward after experiencing chest pain. A recent blood test revealed low levels of potassium. The doctors explained that potassium plays a crucial role in the normal functioning of the heart and any changes in its concentration can affect the heart's ability to contract and relax properly.
How does potassium contribute to a normal cardiac action potential?Your Answer:
Correct Answer: A slow influx of the electrolyte causes a plateau in the myocardial action potential
Explanation:Calcium causes a plateau in the cardiac action potential, prolonging contraction and reflected in the ST-segment of an ECG. A low concentration of calcium ions can result in a prolonged QT-segment. Sodium ions cause depolarisation, potassium ions cause repolarisation, and their movement maintains the resting potential. Calcium ions also bind to troponin-C to trigger muscle contraction.
Understanding the Cardiac Action Potential and Conduction Velocity
The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.
Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 27
Incorrect
-
A 26-year-old male smoker presents to the vascular clinic with complaints of pain and claudication in both legs. Upon examination, the patient exhibits poor pedal pulses, loss of leg hair, and a necrotic ulcer at the base of his 5th toe. An angiogram reveals corkscrew vessels in the vasa vasorum, which are responsible for supplying blood to the larger blood vessels in the legs.
Where in the wall of the blood vessel are these corkscrew vessels typically located?Your Answer:
Correct Answer: Tunica adventitia
Explanation:Vasa vasorum are vessels found in the outermost layer of the blood vessel wall known as the tunica adventitia. They are the hallmark of Buerger’s disease, which presents with corkscrew vessels and can lead to amputation. The other answers do not contain the vasa vasorum.
Artery Histology: Layers of Blood Vessel Walls
The wall of a blood vessel is composed of three layers: the tunica intima, tunica media, and tunica adventitia. The innermost layer, the tunica intima, is made up of endothelial cells that are separated by gap junctions. The middle layer, the tunica media, contains smooth muscle cells and is separated from the intima by the internal elastic lamina and from the adventitia by the external elastic lamina. The outermost layer, the tunica adventitia, contains the vasa vasorum, fibroblast, and collagen. This layer is responsible for providing support and protection to the blood vessel. The vasa vasorum are small blood vessels that supply oxygen and nutrients to the larger blood vessels. The fibroblast and collagen provide structural support to the vessel wall. Understanding the histology of arteries is important in diagnosing and treating various cardiovascular diseases.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 28
Incorrect
-
A 46-year-old man with a history of hypertrophic cardiomyopathy (HOCM) presents for evaluation at the cardiology clinic. During the assessment, a fourth heart sound is detected.
What characteristic is associated with this clinical observation?Your Answer:
Correct Answer: It coincides with the P wave of the ECG
Explanation:The S4 heart sound occurs simultaneously with the P wave on an ECG. This sound is heard during late diastole when the left ventricle is being actively filled and the atrial contraction is forcing blood into a noncompliant left ventricle. The P wave on the ECG represents the depolarization of the left and right atrium, which results in atrial contraction. Therefore, the S4 heart sound coincides with the P wave on the ECG.
The presence of an S4 heart sound can indicate diastolic heart failure, which is caused by severe left ventricular hypertrophy. This condition can be found in patients with HOCM or can develop as a complication of hypertension or aortic stenosis.
In contrast, the S3 heart sound occurs during early diastole when the left ventricle is being passively filled.
During diastole, the T wave on the ECG represents the repolarization of the ventricles and marks the beginning of ventricular relaxation.
Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 29
Incorrect
-
A 55-year-old man undergoes a regular health examination, including observation, ECG, and routine blood tests. The ECG reveals an extended corrected QT interval. Which abnormality detected in his blood test could explain the ECG results?
Your Answer:
Correct Answer: Hypokalaemia
Explanation:Long QT syndrome can be caused by hypokalaemia, among other electrolyte imbalances.
Electrolyte imbalances such as hypocalcaemia and hypomagnesaemia can also result in long QT syndrome.
However, hyperkalaemia, hypercalcaemia, and hypermagnesaemia are not linked to long QT syndrome.
Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.
There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.
LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.
Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 30
Incorrect
-
A 87-year-old male with chronic untreated hypertension arrives at the emergency department complaining of chest pain. Upon examination of his ECG, it is observed that there are tall QRS complexes throughout the entire ECG with elevated R-waves in the left-sided leads. What condition does this suggest?
Your Answer:
Correct Answer: Left ventricular hypertrophy (LVF)
Explanation:ST elevation is expected in the leads corresponding to the affected part of the heart in an STEMI, while ST depression, T wave inversion, or no change is expected in an NSTEMI or angina. Dilated cardiomyopathy does not have any classical ECG changes, and it is not commonly associated with hypertension as LVF. LVF, on the other hand, causes left ventricular hypertrophy due to prolonged hypertension, resulting in an increase in R-wave amplitude in leads 1, aVL, and V4-6, as well as an increase in S wave depth in leads III, aVR, and V1-3 on the right side.
ECG Indicators of Atrial and Ventricular Hypertrophy
Left ventricular hypertrophy is indicated on an ECG when the sum of the S wave in V1 and the R wave in V5 or V6 exceeds 40 mm. Meanwhile, right ventricular hypertrophy is characterized by a dominant R wave in V1 and a deep S wave in V6. In terms of atrial hypertrophy, left atrial enlargement is indicated by a bifid P wave in lead II with a duration of more than 120 ms, as well as a negative terminal portion in the P wave in V1. On the other hand, right atrial enlargement is characterized by tall P waves in both II and V1 that exceed 0.25 mV. These ECG indicators can help diagnose and monitor patients with atrial and ventricular hypertrophy.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)