00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her...

    Incorrect

    • A 42-year-old woman presents to a consultant endocrinologist for a discussion regarding her thyroid function test outcomes. The results are as follows:

      - Elevated TSH
      - Decreased FT4
      - Decreased FT3
      - Positive Anti-TPO

      What is the association of her condition with any of the following options?

      Your Answer: Hypertension

      Correct Answer: MALT lymphoma

      Explanation:

      The development of Hashimoto’s thyroiditis is linked to

      Understanding Hashimoto’s Thyroiditis

      Hashimoto’s thyroiditis is a chronic autoimmune disorder that affects the thyroid gland. It is more common in women and is typically associated with hypothyroidism, although there may be a temporary period of thyrotoxicosis during the acute phase. The condition is characterized by a firm, non-tender goitre and the presence of anti-thyroid peroxidase (TPO) and anti-thyroglobulin (Tg) antibodies.

      Hashimoto’s thyroiditis is often associated with other autoimmune conditions such as coeliac disease, type 1 diabetes mellitus, and vitiligo. Additionally, there is an increased risk of developing MALT lymphoma with this condition. It is important to note that many causes of hypothyroidism may have an initial thyrotoxic phase, as shown in the Venn diagram. Understanding the features and associations of Hashimoto’s thyroiditis can aid in its diagnosis and management.

    • This question is part of the following fields:

      • Endocrine System
      43.6
      Seconds
  • Question 2 - A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago....

    Incorrect

    • A 42-year-old woman complains of fatigue after experiencing flu-like symptoms two weeks ago. Upon examination, she has a smooth, small goiter and a pulse rate of 68 bpm. Her lab results show a Free T4 level of 9.3 pmol/L (normal range: 9.8-23.1) and a TSH level of 49.3 mU/L (normal range: 0.35-5.50). What additional test would you perform to confirm the diagnosis?

      Your Answer:

      Correct Answer: Thyroid peroxidase (TPO) antibodies

      Explanation:

      Diagnosis and Management of Primary Hypothyroidism

      The patient’s test results indicate a case of primary hypothyroidism, characterized by low levels of thyroxine (T4) and elevated thyroid-stimulating hormone (TSH). The most likely cause of this condition is Hashimoto’s thyroiditis, which is often accompanied by the presence of thyroid peroxidase antibodies. While the patient has a goitre, it appears to be smooth and non-threatening, so a thyroid ultrasound is not necessary. Additionally, a radio-iodine uptake scan is unlikely to show significant uptake and is therefore not recommended. Positive TSH receptor antibodies are typically associated with Graves’ disease, which is not the likely diagnosis in this case. For further information on Hashimoto’s thyroiditis, patients can refer to Patient.info.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 3 - A 23-year-old male patient visits his GP complaining of breast tissue enlargement that...

    Incorrect

    • A 23-year-old male patient visits his GP complaining of breast tissue enlargement that has been progressively worsening for the past 3 months. He also reports the presence of a new lump on his left testicle. Upon thorough examination and taking a detailed medical history, the GP suspects that the patient may be suffering from testicular cancer.

      What is the probable diagnosis?

      Your Answer:

      Correct Answer: HCG secreting seminoma

      Explanation:

      Gynaecomastia can be caused by testicular conditions such as seminoma that secrete hCG.

      Understanding Gynaecomastia: Causes and Drug Triggers

      Gynaecomastia is a condition characterized by the abnormal growth of breast tissue in males, often caused by an increased ratio of oestrogen to androgen. It is important to distinguish the causes of gynaecomastia from those of galactorrhoea, which is caused by the actions of prolactin on breast tissue.

      Physiological changes during puberty can lead to gynaecomastia, but it can also be caused by syndromes with androgen deficiency such as Kallmann and Klinefelter’s, testicular failure due to mumps, liver disease, testicular cancer, and hyperthyroidism. Additionally, haemodialysis and ectopic tumour secretion can also trigger gynaecomastia.

      Drug-induced gynaecomastia is also a common cause, with spironolactone being the most frequent trigger. Other drugs that can cause gynaecomastia include cimetidine, digoxin, cannabis, finasteride, GnRH agonists like goserelin and buserelin, oestrogens, and anabolic steroids. However, it is important to note that very rare drug causes of gynaecomastia include tricyclics, isoniazid, calcium channel blockers, heroin, busulfan, and methyldopa.

      In summary, understanding the causes and drug triggers of gynaecomastia is crucial in diagnosing and treating this condition.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 4 - A 28-year-old female, who is 5 months postpartum, presents with a 4-week history...

    Incorrect

    • A 28-year-old female, who is 5 months postpartum, presents with a 4-week history of weight loss, heat intolerance, tremor, palpitation and diarrhoea. Pregnancy and birth were uncomplicated. On further questioning, she admits having taken off-license weight loss medication bought from the internet 2 months ago. Past medical history and family history are insignificant. She does not smoke or drink alcohol.

      On physical examination, she has exophthalmos, brisk reflexes and fine tremor. Her vital signs were heart rate 100/minute, blood pressure 138/78 mmHg, temperature 36.6ºC. The thyroid gland was diffusely enlarged.

      Thyroid Stimulating Hormone (TSH) 0.01 mU/l
      Free thyroxine (T4) 25 pmol/l
      Total thyroxine (T4) 155 nmol/l

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Graves' Disease

      Explanation:

      During the postnatal period, Graves’ disease may either present for the first time or worsen. Exophthalmos is a distinctive symptom of Graves’ disease that is not observed in other hyperthyroid conditions. Hypothyroidism is caused by Hashimoto’s thyroiditis. postpartum thyroiditis is characterized by initial hyperthyroidism after childbirth, followed by normal or occasionally reduced thyroid levels.

      During pregnancy, there is an increase in the levels of thyroxine-binding globulin (TBG), which causes an increase in the levels of total thyroxine. However, this does not affect the free thyroxine level. If left untreated, thyrotoxicosis can increase the risk of fetal loss, maternal heart failure, and premature labor. Graves’ disease is the most common cause of thyrotoxicosis during pregnancy, but transient gestational hyperthyroidism can also occur due to the activation of the TSH receptor by HCG. Propylthiouracil has traditionally been the antithyroid drug of choice, but it is associated with an increased risk of severe hepatic injury. Therefore, NICE Clinical Knowledge Summaries recommend using propylthiouracil in the first trimester and switching to carbimazole in the second trimester. Maternal free thyroxine levels should be kept in the upper third of the normal reference range to avoid fetal hypothyroidism. Thyrotropin receptor stimulating antibodies should be checked at 30-36 weeks gestation to determine the risk of neonatal thyroid problems. Block-and-replace regimes should not be used in pregnancy, and radioiodine therapy is contraindicated.

      On the other hand, thyroxine is safe during pregnancy, and serum thyroid-stimulating hormone should be measured in each trimester and 6-8 weeks postpartum. Women require an increased dose of thyroxine during pregnancy, up to 50% as early as 4-6 weeks of pregnancy. Breastfeeding is safe while on thyroxine. It is important to manage thyroid problems during pregnancy to ensure the health of both the mother and the baby.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 5 - A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool,...

    Incorrect

    • A 55-year-old woman comes to her doctor complaining of fatigue, difficulty passing stool, and muscle weakness. Her lab results show:

      Free T4 6 pmol/l (9-18 pmol/l)
      TSH 7.2 mu/l (0.5-5.5 mu/l)

      Based on the probable diagnosis, which of the following tests is most likely to be positive in this patient?

      Your Answer:

      Correct Answer: Anti-thyroid peroxidase (anti-TPO) antibodies

      Explanation:

      Rheumatoid factor is not the most suitable answer for a patient with hypothyroidism, despite its presence in various rheumatological conditions and healthy individuals.

      Understanding Thyroid Autoantibodies

      Thyroid autoantibodies are antibodies that attack the thyroid gland, causing various thyroid disorders. There are three main types of anti-thyroid autoantibodies: anti-thyroid peroxidase (anti-TPO) antibodies, TSH receptor antibodies, and thyroglobulin antibodies. Anti-TPO antibodies are present in 90% of Hashimoto’s thyroiditis cases and 75% of Graves’ disease cases. TSH receptor antibodies are found in 90-100% of Graves’ disease cases. Thyroglobulin antibodies are present in 70% of Hashimoto’s thyroiditis cases, 30% of Graves’ disease cases, and a small proportion of thyroid cancer cases.

      Understanding the different types of thyroid autoantibodies is important in diagnosing and treating thyroid disorders. Hashimoto’s thyroiditis and Graves’ disease are the most common autoimmune thyroid disorders, and the presence of specific autoantibodies can help differentiate between the two. Additionally, monitoring the levels of these antibodies can help track the progression of the disease and the effectiveness of treatment. Overall, understanding thyroid autoantibodies is crucial in managing thyroid health.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 6 - A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his...

    Incorrect

    • A 67-year-old male is undergoing evaluation for Cushing's syndrome. During the assessment, his primary care physician requests a serum cortisol test. In its unbound form, cortisol is responsible for the manifestations of Cushing's syndrome. What is the primary substance that binds to cortisol in the bloodstream, rendering it inactive?

      Your Answer:

      Correct Answer: Cortisol binding globulin

      Explanation:

      Cortisol: Functions and Regulation

      Cortisol is a hormone produced in the zona fasciculata of the adrenal cortex. It plays a crucial role in various bodily functions and is essential for life. Cortisol increases blood pressure by up-regulating alpha-1 receptors on arterioles, allowing for a normal response to angiotensin II and catecholamines. However, it inhibits bone formation by decreasing osteoblasts, type 1 collagen, and absorption of calcium from the gut, while increasing osteoclastic activity. Cortisol also increases insulin resistance and metabolism by increasing gluconeogenesis, lipolysis, and proteolysis. It inhibits inflammatory and immune responses, but maintains the function of skeletal and cardiac muscle.

      The regulation of cortisol secretion is controlled by the hypothalamic-pituitary-adrenal (HPA) axis. The pituitary gland secretes adrenocorticotropic hormone (ACTH), which stimulates the adrenal cortex to produce cortisol. The hypothalamus releases corticotrophin-releasing hormone (CRH), which stimulates the pituitary gland to release ACTH. Stress can also increase cortisol secretion.

      Excess cortisol in the body can lead to Cushing’s syndrome, which can cause a range of symptoms such as weight gain, muscle weakness, and high blood pressure. Understanding the functions and regulation of cortisol is important for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 7 - A 25-year-old woman visits the endocrinology department for weight management issues. She has...

    Incorrect

    • A 25-year-old woman visits the endocrinology department for weight management issues. She has been struggling with her weight since she was a child and currently has a BMI of 46 kg/m². Despite eating large portions at meals, she never feels full and snacks between meals. Her parents and two older siblings are all at a healthy weight. Genetic testing reveals a de novo mutation in the satiety signalling pathway. Which hormone's decreased synthesis may be responsible for her condition?

      Your Answer:

      Correct Answer: Leptin

      Explanation:

      Leptin is the hormone that lowers appetite, while ghrelin is the hormone that increases appetite. Leptin is produced by adipose tissue and plays a crucial role in regulating feelings of fullness and satiety. Mutations that affect leptin signaling can lead to severe childhood-onset obesity. On the other hand, ghrelin is known as the hunger hormone and stimulates appetite. However, decreased ghrelin synthesis does not cause obesity. Insulin is an anabolic hormone that promotes glucose uptake and lipogenesis, while obestatin’s role in satiety is still controversial.

      The Physiology of Obesity: Leptin and Ghrelin

      Leptin is a hormone produced by adipose tissue that plays a crucial role in regulating body weight. It acts on the hypothalamus, specifically on the satiety centers, to decrease appetite and induce feelings of fullness. In cases of obesity, where there is an excess of adipose tissue, leptin levels are high. Leptin also stimulates the release of melanocyte-stimulating hormone (MSH) and corticotrophin-releasing hormone (CRH), which further contribute to the regulation of appetite. On the other hand, low levels of leptin stimulate the release of neuropeptide Y (NPY), which increases appetite.

      Ghrelin, on the other hand, is a hormone that stimulates hunger. It is mainly produced by the P/D1 cells lining the fundus of the stomach and epsilon cells of the pancreas. Ghrelin levels increase before meals, signaling the body to prepare for food intake, and decrease after meals, indicating that the body has received enough nutrients.

      In summary, the balance between leptin and ghrelin plays a crucial role in regulating appetite and body weight. In cases of obesity, there is an imbalance in this system, with high levels of leptin and potentially disrupted ghrelin signaling, leading to increased appetite and weight gain.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 8 - A father brings his 14-year-old son to see you as he is concerned...

    Incorrect

    • A father brings his 14-year-old son to see you as he is concerned about his growth. He is taller than his peers, has not yet experienced puberty and has developed excessive body hair. He is referred to a specialist who diagnoses mild congenital adrenal hyperplasia.

      What is the most frequent deficiency leading to this condition?

      Your Answer:

      Correct Answer: 21-hydroxylase deficiency

      Explanation:

      The most common cause of congenital adrenal hyperplasia is 21-hydroxylase deficiency, while 17-hydroxylase deficiency is a rare cause. 17β-hydroxysteroid dehydrogenase deficiency results in a rare condition of sexual development, while 5-alpha reductase deficiency affects male sexual development.

      Understanding Congenital Adrenal Hyperplasia

      Congenital adrenal hyperplasia is a group of genetic disorders that affect the production of adrenal steroids. It is an autosomal recessive disorder, which means that both parents must carry the gene for the disorder to be passed on to their child. The most common cause of congenital adrenal hyperplasia is a deficiency in the enzyme 21-hydroxylase, which is responsible for the production of cortisol and aldosterone. This deficiency leads to low levels of cortisol, which triggers the anterior pituitary gland to produce high levels of adrenocorticotropic hormone (ACTH). ACTH then stimulates the adrenal glands to produce excess androgens, which can cause virilization in female infants.

      Other less common forms of congenital adrenal hyperplasia include 11-beta hydroxylase deficiency and 17-hydroxylase deficiency. These conditions also affect the production of adrenal steroids and can lead to similar symptoms.

      It is important to diagnose and treat congenital adrenal hyperplasia early to prevent complications such as adrenal crisis, growth failure, and infertility. Treatment typically involves hormone replacement therapy to replace the deficient hormones and suppress the excess androgens. With proper management, individuals with congenital adrenal hyperplasia can lead healthy and normal lives.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 9 - A 50-year-old man with type 2 diabetes mellitus, who is currently on metformin,...

    Incorrect

    • A 50-year-old man with type 2 diabetes mellitus, who is currently on metformin, visits for his diabetic check-up. His blood sugar levels are not well-controlled and the doctor decides to prescribe gliclazide in addition to his current medication. During the consultation, the doctor discusses the potential side effects of sulfonylureas. What is a possible side effect of sulfonylureas?

      Your Answer:

      Correct Answer: Hypoglycaemia

      Explanation:

      Hypoglycaemia is a significant adverse effect of sulfonylureas, including gliclazide, which stimulate insulin secretion from the pancreas. Patients taking sulfonylureas should be educated about the possibility of hypoglycaemia and instructed on how to manage it if it occurs. Acarbose commonly causes flatulence, while PPAR agonists (glitazones) can lead to fluid retention, and metformin may cause nausea and diarrhoea.

      Sulfonylureas are a type of medication used to treat type 2 diabetes mellitus. They work by increasing the amount of insulin produced by the pancreas, but only if the beta cells in the pancreas are functioning properly. Sulfonylureas bind to a specific channel on the cell membrane of pancreatic beta cells, known as the ATP-dependent K+ channel (KATP).

      While sulfonylureas can be effective in managing diabetes, they can also cause some adverse effects. The most common side effect is hypoglycemia, which is more likely to occur with long-acting preparations like chlorpropamide. Another common side effect is weight gain. However, there are also rarer side effects that can occur, such as hyponatremia (low sodium levels) due to inappropriate ADH secretion, bone marrow suppression, hepatotoxicity (liver damage), and peripheral neuropathy.

      It is important to note that sulfonylureas should not be used during pregnancy or while breastfeeding.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 10 - A 27-year-old mother is concerned about her infant's skin tone. The baby was...

    Incorrect

    • A 27-year-old mother is concerned about her infant's skin tone. The baby was delivered naturally 18 days ago and is now showing signs of jaundice. Despite having normal vital signs, what could be the possible reason for the baby's prolonged jaundice?

      Your Answer:

      Correct Answer: Congenital hypothyroidism

      Explanation:

      The age of the baby is an important factor in determining the possible causes of neonatal jaundice. Congenital hypothyroidism may be responsible for prolonged jaundice in newborns. The following is a summary of the potential causes of jaundice based on the age at which it appears:

      Jaundice within 24 hours of birth may be caused by haemolytic disease of the newborn, infections, or G6PD deficiency.

      Jaundice appearing between 24-72 hours may be due to physiological factors, sepsis, or polycythaemia.

      Jaundice appearing after 72 hours may be caused by extrahepatic biliary atresia, sepsis, or other factors.

      Understanding Congenital Hypothyroidism

      Congenital hypothyroidism is a condition that affects approximately 1 in 4000 newborns. If left undiagnosed and untreated within the first four weeks of life, it can lead to irreversible cognitive impairment. Some of the common features of this condition include prolonged neonatal jaundice, delayed mental and physical milestones, short stature, a puffy face, macroglossia, and hypotonia.

      To ensure early detection and treatment, children are screened for congenital hypothyroidism at 5-7 days of age using the heel prick test. This test involves taking a small sample of blood from the baby’s heel and analyzing it for thyroid hormone levels. If the results indicate low levels of thyroid hormone, the baby will be referred for further testing and treatment.

      It is important for parents and healthcare providers to be aware of the signs and symptoms of congenital hypothyroidism and to ensure that newborns receive timely screening and treatment to prevent long-term complications. With early detection and appropriate management, children with congenital hypothyroidism can lead healthy and fulfilling lives.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 11 - As a third year medical student working in a GP surgery, you come...

    Incorrect

    • As a third year medical student working in a GP surgery, you come across a worried 54-year-old male patient who is experiencing chest discomfort. He has recently begun taking a new tablet for his high blood pressure and suspects it may be the cause of his symptoms. During your examination, you notice bilateral non-tender glandular swellings around the areolae. There are no signs of lymphadenopathy in the axillary region, and testicular examination is normal. Which medication is most likely responsible for this clinical presentation?

      Your Answer:

      Correct Answer: Spironolactone

      Explanation:

      Spironolactone-Induced Gynaecomastia

      Spironolactone is a type of diuretic that helps to increase urine production by blocking aldosterone receptors in the kidneys. However, it also has anti-androgenic properties that can lead to the development of gynaecomastia, a condition where men develop breast tissue. This is because spironolactone inhibits the production of testosterone and increases the level of free oestrogen in the blood, causing the proliferation of glandular tissue in the mammary glands.

      While gynaecomastia is not commonly associated with other medications, they all have their own side effects. Aspirin, for example, can cause gastrointestinal ulceration by inhibiting COX enzymes and prostaglandin synthesis. Thiazide diuretics work by blocking the sodium chloride co-transporter in the distal convoluted tubule, which can lead to a decrease in blood volume. Loop diuretics, on the other hand, can cause severe hyponatraemia but do not affect testosterone production. Statins, which are used to lower cholesterol levels, can cause rhabdomyolysis, a serious condition where muscle tissue breaks down and releases harmful substances into the bloodstream.

      In summary, while spironolactone can be an effective diuretic, it is important to be aware of its potential side effects, including gynaecomastia. Patients should always consult with their healthcare provider before starting any new medication and report any unusual symptoms or side effects.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 12 - A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot...

    Incorrect

    • A 44-year-old man has been diagnosed with type II diabetes mellitus but cannot tolerate metformin therapy. What is the mechanism of action of alogliptin, which has been prescribed as an alternative?

      Your Answer:

      Correct Answer: Reduce the peripheral breakdown of incretins

      Explanation:

      Gliptins (DPP-4 inhibitors) work by inhibiting the enzyme DPP-4, which reduces the breakdown of incretin hormones such as GLP-1. This leads to a glucose-dependent increase in insulin secretion and a reduction in glucagon secretion, ultimately regulating glucose homeostasis. However, gliptins do not increase the production of GLP-1, directly stimulate the release of insulin from pancreatic beta cells, inhibit the SGLT2 receptor, or reduce insulin resistance.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 13 - A 12-year-old girl is being informed about the typical changes that occur during...

    Incorrect

    • A 12-year-old girl is being informed about the typical changes that occur during puberty by her doctor. The doctor explains that there are three main changes that usually happen before menarche. What is the order in which these changes occur?

      Your Answer:

      Correct Answer: Breast buds, growth of pubic hair, growth of axillary hair

      Explanation:

      The onset of menarche is preceded by three sequential physical changes: the development of breast buds, growth of pubic hair, and growth of axillary hair. These changes are brought about by the hormone estrogen, which is crucial for the process of puberty.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 14 - A 55-year-old male visits his doctor complaining of a milky discharge from his...

    Incorrect

    • A 55-year-old male visits his doctor complaining of a milky discharge from his nipples. He has a history of schizophrenia and has been taking olanzapine for a while now. No recent changes have been made to his medication.

      Which compound with elevated levels is most likely causing this symptom?

      Your Answer:

      Correct Answer: Prolactin, released from the anterior pituitary

      Explanation:

      The patient is experiencing galactorrhea, which is commonly associated with hyperprolactinemia. Prolactin stimulates milk production in the mammary glands, and the patient’s hyperprolactinemia is likely due to his use of olanzapine, which acts as a dopamine antagonist. Dopamine normally inhibits prolactin secretion. The other answer choices are incorrect as they do not accurately explain the mechanism behind the patient’s presentation.

      Understanding Prolactin and Its Functions

      Prolactin is a hormone that is produced by the anterior pituitary gland. Its primary function is to stimulate breast development and milk production in females. During pregnancy, prolactin levels increase to support the growth and development of the mammary glands. It also plays a role in reducing the pulsatility of gonadotropin-releasing hormone (GnRH) at the hypothalamic level, which can block the action of luteinizing hormone (LH) on the ovaries or testes.

      The secretion of prolactin is regulated by dopamine, which constantly inhibits its release. However, certain factors can increase or decrease prolactin secretion. For example, prolactin levels increase during pregnancy, in response to estrogen, and during breastfeeding. Additionally, stress, sleep, and certain drugs like metoclopramide and antipsychotics can also increase prolactin secretion. On the other hand, dopamine and dopaminergic agonists can decrease prolactin secretion.

      Overall, understanding the functions and regulation of prolactin is important for reproductive health and lactation.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 15 - A woman in her early 50s complains of headaches, anxiety and weight loss....

    Incorrect

    • A woman in her early 50s complains of headaches, anxiety and weight loss. Upon examination, she displays hypertension, tachycardia and pallor. The diagnosis is phaeochromocytoma. What is the most common location for these tumors to occur?

      Your Answer:

      Correct Answer: Adrenal medulla

      Explanation:

      Phaeochromocytoma is a condition characterized by uncommon tumours that secrete catecholamines in the adrenal medulla. Although they are seldom detected outside the adrenal medulla, if they do occur, they are more likely to be malignant.

      Phaeochromocytoma: A Rare Tumor that Secretes Catecholamines

      Phaeochromocytoma is a type of tumor that secretes catecholamines and is considered rare. It is familial in about 10% of cases and may be associated with certain syndromes such as MEN type II, neurofibromatosis, and von Hippel-Lindau syndrome. This tumor can be bilateral in 10% of cases and malignant in 10%. It can also occur outside of the adrenal gland, with the most common site being the organ of Zuckerkandl, which is adjacent to the bifurcation of the aorta.

      The symptoms of phaeochromocytoma are typically episodic and include hypertension (which is present in around 90% of cases and may be sustained), headaches, palpitations, sweating, and anxiety. To diagnose this condition, a 24-hour urinary collection of metanephrines is preferred over a 24-hour urinary collection of catecholamines due to its higher sensitivity (97%).

      Surgery is the definitive management for phaeochromocytoma. However, before surgery, the patient must first be stabilized with medical management, which includes an alpha-blocker (such as phenoxybenzamine) given before a beta-blocker (such as propranolol).

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 16 - A 25-year-old woman comes to the clinic with a thyroid cancer. She has...

    Incorrect

    • A 25-year-old woman comes to the clinic with a thyroid cancer. She has no significant family history and is in good health. During the examination, a nodule is found in the left lobe of her thyroid, which appears to be a small, distinct mass separate from the gland. What is the most probable cause of this finding?

      Your Answer:

      Correct Answer: Papillary carcinoma

      Explanation:

      The most frequent subtype of thyroid cancer is papillary carcinoma, which can lead to lymph node metastasis. This occurrence is uncommon in follicular tumors. Anaplastic carcinoma is rare in this age group and would result in more localized symptoms.

      Thyroid cancer rarely causes hyperthyroidism or hypothyroidism as it does not usually secrete thyroid hormones. The most common type of thyroid cancer is papillary carcinoma, which is often found in young females and has an excellent prognosis. Follicular carcinoma is less common, while medullary carcinoma is a cancer of the parafollicular cells that secrete calcitonin and is associated with multiple endocrine neoplasia type 2. Anaplastic carcinoma is rare and not responsive to treatment, causing pressure symptoms. Lymphoma is also rare and associated with Hashimoto’s thyroiditis.

      Management of papillary and follicular cancer involves a total thyroidectomy followed by radioiodine to kill residual cells. Yearly thyroglobulin levels are monitored to detect early recurrent disease. Papillary carcinoma usually contains a mixture of papillary and colloidal filled follicles, while follicular adenoma presents as a solitary thyroid nodule and malignancy can only be excluded on formal histological assessment. Follicular carcinoma may appear macroscopically encapsulated, but microscopically capsular invasion is seen. Medullary carcinoma is associated with raised serum calcitonin levels and familial genetic disease in up to 20% of cases. Anaplastic carcinoma is most common in elderly females and is treated by resection where possible, with palliation achieved through isthmusectomy and radiotherapy. Chemotherapy is ineffective.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 17 - A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to...

    Incorrect

    • A 65-year-old man with a history of poorly-controlled type 2 diabetes presents to the emergency department with altered mental status. His daughter reports that he has been complaining of increased thirst and urination over the past few days and has been skipping his insulin injections. On examination, he is dehydrated with a GCS of 3. His vital signs are recorded, and he is intubated and given ventilatory support. An arterial blood gas shows mild metabolic acidosis and his capillary blood glucose is undetectable. What is the next most appropriate step in his treatment?

      Your Answer:

      Correct Answer: 0.9% sodium chloride

      Explanation:

      In the ABCDE approach, the patient should be promptly given sodium chloride to restore their intravascular volume and maintain circulatory function. However, insulin is not recommended as an initial treatment for HHS. This is because glucose in the intravascular space helps maintain circulating volume, which is crucial for dehydrated patients. Administering insulin before fluid resuscitation can cause a reduction in intravascular volume and worsen hypotension. It may also worsen pre-existing hypokalaemia by driving potassium into the intracellular space. Potassium chloride should be administered only after fluid resuscitation and guided by potassium levels obtained from an arterial blood gas. Thiamine supplementation is not indicated at the moment as urgent resuscitation should be the priority.

      Hyperosmolar hyperglycaemic state (HHS) is a serious medical emergency that can be challenging to manage and has a high mortality rate of up to 20%. It is typically seen in elderly patients with type 2 diabetes mellitus (T2DM) and is caused by hyperglycaemia leading to osmotic diuresis, severe dehydration, and electrolyte imbalances. HHS develops gradually over several days, resulting in extreme dehydration and metabolic disturbances. Symptoms include polyuria, polydipsia, lethargy, nausea, vomiting, altered consciousness, and focal neurological deficits. Diagnosis is based on hypovolaemia, marked hyperglycaemia, significantly raised serum osmolarity, and no significant hyperketonaemia or acidosis.

      Management of HHS involves fluid replacement with IV 0.9% sodium chloride solution at a rate of 0.5-1 L/hour, depending on clinical assessment. Potassium levels should be monitored and added to fluids as needed. Insulin should not be given unless blood glucose stops falling while giving IV fluids. Patients are at risk of thrombosis due to hyperviscosity, so venous thromboembolism prophylaxis is recommended. Complications of HHS include vascular complications such as myocardial infarction and stroke.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 18 - A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type...

    Incorrect

    • A 33-year-old woman with a history of asthma, gout, rheumatoid arthritis, and type II diabetes mellitus has been admitted to the respiratory ward due to breathlessness after contracting SARS-CoV-2. Despite receiving 60% oxygen via a venturi mask, her oxygen saturation remains at 91%. The doctor decides to prescribe dexamethasone. What is the expected effect of this medication?

      Your Answer:

      Correct Answer: Increased blood glucose levels

      Explanation:

      The use of corticosteroids, such as dexamethasone, can worsen diabetic control due to their anti-insulin effects. Dexamethasone, which is commonly used to manage severe SARS-CoV-2 infection, has a high glucocorticoid activity that can lead to insulin resistance and increased blood glucose levels. However, it is unlikely to cause an asthma exacerbation or a flare-up of rheumatoid arthritis or gout. While psychosis is a known side effect of dexamethasone, it is less common than an increase in blood glucose levels.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 19 - A 65-year-old man with a medical history of obesity, hypertension, type 2 diabetes...

    Incorrect

    • A 65-year-old man with a medical history of obesity, hypertension, type 2 diabetes mellitus, and ischaemic heart disease is hospitalized for SARS-CoV-2 infection. He is started on oxygen therapy and a 10-day course of oral dexamethasone. What is the most crucial monitoring strategy following the initiation of this medication?

      Your Answer:

      Correct Answer: Four times daily capillary blood glucose

      Explanation:

      Regular monitoring of capillary blood glucose is recommended when using corticosteroids as they can worsen diabetic control due to their anti-insulin effects. Dexamethasone, a corticosteroid with a high glucocorticoid effect, carries a high risk of hyperglycaemia in patients with or without diabetes. Monitoring blood sugars is essential for patients with diabetes who are started on glucocorticoids. Monitoring cardiac function, daily amylase levels, daily lying and standing blood pressure, and daily urea and electrolytes are not routinely recommended while on corticosteroids. However, these tests may be necessary if suggestive symptoms develop.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 20 - A man in his early 50s comes to the hospital with a fever...

    Incorrect

    • A man in his early 50s comes to the hospital with a fever and cough. An X-ray shows pneumonia in his left lower lobe. Upon arrival at the emergency department, his blood pressure is 83/60mmHg and his heart rate is 112/min. The doctor prescribes antibiotics and IV fluids.

      What is the primary way the body reacts to a drop in blood pressure?

      Your Answer:

      Correct Answer: Insertion of AQP-2 channels in collecting ducts

      Explanation:

      When blood pressure drops, the body initiates several physiological responses, one of which is the activation of the renin-angiotensin aldosterone system (RAAS). This system breaks down bradykinin, a potent vasodilator, through the action of angiotensin-converting enzyme (ACE).

      RAAS activation results in increased aldosterone levels, which in turn increases the number of epithelial sodium channels (ENAC) to enhance sodium reabsorption.

      Another response to low blood pressure is the release of antidiuretic hormone, which promotes the insertion of aquaporin-2 channels in the collecting duct. This mechanism increases water reabsorption to help maintain fluid balance in the body.

      Understanding Antidiuretic Hormone (ADH)

      Antidiuretic hormone (ADH) is a hormone that is produced in the supraoptic nuclei of the hypothalamus and released by the posterior pituitary gland. Its primary function is to conserve body water by promoting water reabsorption in the collecting ducts of the kidneys through the insertion of aquaporin-2 channels.

      ADH secretion is regulated by various factors. An increase in extracellular fluid osmolality, a decrease in volume or pressure, and the presence of angiotensin II can all increase ADH secretion. Conversely, a decrease in extracellular fluid osmolality, an increase in volume, a decrease in temperature, or the absence of ADH can decrease its secretion.

      Diabetes insipidus (DI) is a condition that occurs when there is either a deficiency of ADH (cranial DI) or an insensitivity to ADH (nephrogenic DI). Cranial DI can be treated with desmopressin, which is an analog of ADH.

      Overall, understanding the role of ADH in regulating water balance in the body is crucial for maintaining proper hydration and preventing conditions like DI.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 21 - A 55-year-old man presents to your clinic with numbness and paraesthesia in his...

    Incorrect

    • A 55-year-old man presents to your clinic with numbness and paraesthesia in his right thumb and index finger. His hands seem enlarged and you observe significant gaps between his teeth. Which hormone is expected to be elevated?

      Your Answer:

      Correct Answer: Growth hormone

      Explanation:

      Excessive growth hormone can cause prognathism, spade-like hands, and tall stature. Patients may experience discomfort due to ill-fitting hats or shoes, as well as joint pain, headaches, and visual issues. It is important to note that gigantism occurs when there is an excess of growth hormone secretion before growth plate fusion, while acromegaly occurs when there is an excess of secretion after growth plate fusion.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 22 - An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness...

    Incorrect

    • An 80-year-old patient, Gwyneth, is being examined by her physician for recurring dizziness upon standing up, which is interfering with her daily activities. Gwyneth is in good health and does not take any regular medications. The physician diagnoses Gwyneth with orthostatic hypotension and prescribes fludrocortisone as a treatment.

      What is the most probable side effect that Gwyneth may encounter?

      Your Answer:

      Correct Answer: Fluid retention

      Explanation:

      Corticosteroids are a class of medications commonly prescribed for various clinical uses, such as treating allergies, inflammatory conditions, auto-immunity, and endogenous steroid replacement.

      There are different types of corticosteroids, each with varying levels of glucocorticoid and mineralocorticoid activity. Glucocorticoids mimic cortisol, which is involved in carbohydrate metabolism and the stress response, while mineralocorticoids mimic aldosterone, which regulates sodium and water retention in response to low blood pressure.

      The clinical uses and side effects of corticosteroids depend on their level of glucocorticoid and mineralocorticoid activity. Fludrocortisone, for example, has minimal glucocorticoid activity and high mineralocorticoid activity.

      Therefore, fluid retention is the most associated side effect with mineralocorticoid activity, while depression, hyperglycemia, osteoporosis, and peptic ulceration are side effects associated with glucocorticoid activity.

      Corticosteroids are commonly prescribed medications that can be taken orally or intravenously, or applied topically. They mimic the effects of natural steroids in the body and can be used to replace or supplement them. However, the use of corticosteroids is limited by their numerous side effects, which are more common with prolonged and systemic use. These side effects can affect various systems in the body, including the endocrine, musculoskeletal, gastrointestinal, ophthalmic, and psychiatric systems. Some of the most common side effects include impaired glucose regulation, weight gain, osteoporosis, and increased susceptibility to infections. Patients on long-term corticosteroids should have their doses adjusted during intercurrent illness, and the medication should not be abruptly withdrawn to avoid an Addisonian crisis. Gradual withdrawal is recommended for patients who have received high doses or prolonged treatment.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 23 - A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia...

    Incorrect

    • A 25-year-old female visits her GP complaining of chronic thirst, polyuria, and nocturia that have persisted for 2 months. She has a medical history of premenstrual dysphoric disorder diagnosed 3 years ago. After a series of tests, the patient is diagnosed with primary polydipsia. What results are expected from her water deprivation test?

      Your Answer:

      Correct Answer: High urine osmolality after both fluid deprivation and desmopressin

      Explanation:

      The patient has primary polydipsia, a psychogenic disorder causing excessive drinking despite being hydrated. Urine osmolality is high after both fluid deprivation and desmopressin, as the patient still produces and responds to ADH. Low urine osmolality after both fluid deprivation and desmopressin is typical of nephrogenic DI, while low urine osmolality after fluid deprivation but high after desmopressin is typical of cranial DI. Low urine osmolality after desmopressin and low urine osmolality after fluid deprivation but normal after desmopressin are not commonly seen with any pathological state.

      The water deprivation test is a diagnostic tool used to assess patients with polydipsia, or excessive thirst. During the test, the patient is instructed to refrain from drinking water, and their bladder is emptied. Hourly measurements of urine and plasma osmolalities are taken to monitor changes in the body’s fluid balance. The results of the test can help identify the underlying cause of the patient’s polydipsia. Normal results show a high urine osmolality after the administration of DDAVP, while psychogenic polydipsia is characterized by a low urine osmolality. Cranial DI and nephrogenic DI are both associated with high plasma osmolalities and low urine osmolalities.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 24 - A 30-year-old woman complains of menstrual irregularity and galactorrhoea for the past year....

    Incorrect

    • A 30-year-old woman complains of menstrual irregularity and galactorrhoea for the past year. She also experiences occasional headaches. During examination, she was found to have bitemporal superior quadrantanopia. What is the most probable diagnosis?

      Your Answer:

      Correct Answer: Prolactinoma

      Explanation:

      Prolactinomas cause amenorrhoea, infertility, and galactorrhoea. If the tumour extends outside the sella, visual field defects or other mass effects may occur. Other types of tumours will produce different symptoms depending on their location and structure involved. Craniopharyngiomas originate from the pituitary gland and will produce poralhemianopia if large enough, as well as symptoms related to pituitary hormones. Non-functioning pituitary tumours will have similar symptoms without the pituitary hormone side effects. Tumours of the hypothalamus will present with symptoms of euphoria, headache, weight loss, and mass effect if large enough.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 25 - A 10-year-old boy visits his paediatrician with his mother. He is worried that...

    Incorrect

    • A 10-year-old boy visits his paediatrician with his mother. He is worried that he hasn't started puberty yet while some of his classmates have. The paediatrician explains to the young boy and his mother that the onset of puberty can vary and that it is considered delayed if there are no signs of puberty by the age of 13 years. The paediatrician reassures the boy that there is no need to worry and that he should be patient. What is the first sign of puberty the boy should expect?

      Your Answer:

      Correct Answer: Testicular enlargement

      Explanation:

      The initial indication of male puberty is the growth of the testicles. This typically happens between the ages of 9.5 and 13.5 years and is the first sign of male puberty. Testicular enlargement is the only pubertal change present in Tanner stage 1.

      During Tanner stage 2, which usually occurs between the ages of 10.5 and 14.5 years, penis growth begins.

      Pubic hair development also starts during Tanner stage 2, between the ages of 9.9 and 14.0 years.

      The height growth spurt occurs at age 14 and reaches a maximum of 10cm/year in Tanner.

      The voice changes during Tanner stage 3, which typically happens around 13.5 years old.

      Puberty: Normal Changes in Males and Females

      Puberty is a natural process that marks the transition from childhood to adolescence. In males, the first sign of puberty is testicular growth, which typically occurs around the age of 12. Testicular volume greater than 4 ml indicates the onset of puberty. The maximum height spurt for boys occurs at the age of 14. On the other hand, in females, the first sign of puberty is breast development, which usually occurs around the age of 11.5. The height spurt for girls reaches its maximum early in puberty, at the age of 12, before menarche. Menarche, or the first menstrual period, typically occurs at the age of 13, with a range of 11-15 years. Following menarche, there is only a slight increase of about 4% in height.

      During puberty, it is normal for boys to experience gynaecomastia, or the development of breast tissue. Girls may also experience asymmetrical breast growth. Additionally, diffuse enlargement of the thyroid gland may be seen in both males and females. These changes are all part of the normal process of puberty and should not be a cause for concern.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 26 - A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her...

    Incorrect

    • A 65-year-old woman with type 2 diabetes mellitus is being evaluated by her diabetic nurse. Despite taking metformin for the past 6 months, her glycaemic control remains poor. To improve management, the decision is made to add sitagliptin (a dipeptidyl-peptidase 4 (DPP-4) inhibitor) to her current metformin regimen.

      What is the mechanism of action of the newly prescribed medication?

      Your Answer:

      Correct Answer: Increased levels of glucagon-like peptide 1 (GLP-1)

      Explanation:

      DPP-4 inhibitors, like sitagliptin, work by inhibiting the breakdown of incretins such as GLP-1 and GIP. This leads to higher levels of insulin being released, as incretins increase insulin release. These inhibitors are often weight-neutral, but can occasionally cause weight loss.

      The answer Increases cell sensitivity to insulin is incorrect, as this is the mechanism of action of metformin, not DPP-4 inhibitors. Metformin increases cell sensitivity to insulin, but the exact mechanism is not fully understood.

      Similarly, Inhibition of sodium-glucose co-transporter (SGLT2) is incorrect, as this is the mechanism of action of SGLT2 inhibitors, not DPP-4 inhibitors. SGLT2 inhibitors prevent glucose absorption in the kidneys, leading to higher levels of glucose in the urine and an increased risk of urinary tract infections.

      Lastly, Increases adipogenesis is incorrect, as this is the mechanism of action of thiazolidinediones, not DPP-4 inhibitors. Thiazolidinediones stimulate adipogenesis, causing cells to become more dependent on glucose for energy.

      Diabetes mellitus is a condition that has seen the development of several drugs in recent years. One hormone that has been the focus of much research is glucagon-like peptide-1 (GLP-1), which is released by the small intestine in response to an oral glucose load. In type 2 diabetes mellitus (T2DM), insulin resistance and insufficient B-cell compensation occur, and the incretin effect, which is largely mediated by GLP-1, is decreased. GLP-1 mimetics, such as exenatide and liraglutide, increase insulin secretion and inhibit glucagon secretion, resulting in weight loss, unlike other medications. They are sometimes used in combination with insulin in T2DM to minimize weight gain. Dipeptidyl peptidase-4 (DPP-4) inhibitors, such as vildagliptin and sitagliptin, increase levels of incretins by decreasing their peripheral breakdown, are taken orally, and do not cause weight gain. Nausea and vomiting are the major adverse effects of GLP-1 mimetics, and the Medicines and Healthcare products Regulatory Agency has issued specific warnings on the use of exenatide, reporting that it has been linked to severe pancreatitis in some patients. NICE guidelines suggest that a DPP-4 inhibitor might be preferable to a thiazolidinedione if further weight gain would cause significant problems, a thiazolidinedione is contraindicated, or the person has had a poor response to a thiazolidinedione.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 27 - A 20-year-old woman arrives at the emergency department complaining of abdominal pain, nausea,...

    Incorrect

    • A 20-year-old woman arrives at the emergency department complaining of abdominal pain, nausea, and vomiting. She reports having a cough and fever for the past few days. Upon examination, she has dry mucous membranes and her breath has a fruity odor. Her vital signs are as follows: blood pressure 95/55 mmHg, heart rate 120/min, respiratory rate 29/min, temperature 37.8ºC (100ºF), and oxygen saturation 98% on room air. Laboratory results show:

      - Sodium (Na+): 124 mmol/L (135 - 145)
      - Potassium (K+): 5.5 mmol/L (3.5 - 5.0)
      - Bicarbonate: 13 mmol/L (22 - 29)
      - Serum glucose: 30 mmol/L (4 - 7.8)
      - pH: 7.15 (7.35 - 7.45)
      - Serum ketones: 3.5 mmol/L (0 - 0.6)

      What is the most likely cause of the increased ketones in this patient?

      Your Answer:

      Correct Answer: Lipolysis

      Explanation:

      DKA is a condition that arises due to uncontrolled lipolysis, leading to an excess of free fatty acids that are converted to ketone bodies. This life-threatening complication of diabetes is characterized by elevated levels of blood glucose, ketones, and acidosis, with symptoms such as nausea, vomiting, abdominal pain, dehydration, and fruity breath odor. DKA is commonly observed in type 1 diabetes mellitus and can be triggered by non-compliance with treatment or an infection. Insulin deficiency and increased levels of counterregulatory hormones cause lipolysis in adipose tissue, leading to the release of free fatty acids that undergo hepatic oxidation to form ketone bodies. In DKA, increased gluconeogenesis and glycogenolysis occur due to insulin deficiency and counterregulatory hormones, leading to the synthesis of glucose from non-carbohydrate precursors and breakdown of glycogen, respectively. Glycolysis is not involved in DKA as it does not lead to the breakdown of fatty acids.

      Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes mellitus, accounting for around 6% of cases. It can also occur in rare cases of extreme stress in patients with type 2 diabetes mellitus. DKA is caused by uncontrolled lipolysis, resulting in an excess of free fatty acids that are converted to ketone bodies. The most common precipitating factors of DKA are infection, missed insulin doses, and myocardial infarction. Symptoms include abdominal pain, polyuria, polydipsia, dehydration, Kussmaul respiration, and breath that smells like acetone. Diagnostic criteria include glucose levels above 11 mmol/l or known diabetes mellitus, pH below 7.3, bicarbonate below 15 mmol/l, and ketones above 3 mmol/l or urine ketones ++ on dipstick.

      Management of DKA involves fluid replacement, insulin, and correction of electrolyte disturbance. Fluid replacement is necessary as most patients with DKA are deplete around 5-8 litres. Isotonic saline is used initially, even if the patient is severely acidotic. Insulin is administered through an intravenous infusion, and correction of electrolyte disturbance is necessary. Long-acting insulin should be continued, while short-acting insulin should be stopped. Complications may occur from DKA itself or the treatment, such as gastric stasis, thromboembolism, arrhythmias, acute respiratory distress syndrome, acute kidney injury, and cerebral edema. Children and young adults are particularly vulnerable to cerebral edema following fluid resuscitation in DKA and often need 1:1 nursing to monitor neuro-observations, headache, irritability, visual disturbance, focal neurology, etc.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 28 - As a medical student in a GP practice, you encounter a mother who...

    Incorrect

    • As a medical student in a GP practice, you encounter a mother who brings in her 5-year-old son. The child has been eating well but is falling through the centiles and gaining height slowly. After conducting a thorough history, examination, and blood tests, you diagnose the child with growth-hormone insufficiency. The mother has several questions about the condition, including when the human body stops producing growth hormone. Can you provide information on the developmental stage that signals the cessation of growth hormone release in the human body?

      Your Answer:

      Correct Answer: Growth hormone is secreted for life

      Explanation:

      Throughout adulthood, the maintenance of tissues still relies on sufficient levels of growth hormone. This hormone not only promotes growth, but also supports cellular regeneration and reproduction. While it is crucial for normal growth during childhood, it also helps to preserve muscle mass, facilitate organ growth, and boost the immune system, making its lifelong release necessary. Therefore, growth hormone is a key factor in growth during all stages of life, including before, during, and after puberty.

      Understanding Growth Hormone and Its Functions

      Growth hormone (GH) is a hormone produced by the somatotroph cells in the anterior pituitary gland. It plays a crucial role in postnatal growth and development, as well as in regulating protein, lipid, and carbohydrate metabolism. GH acts on a transmembrane receptor for growth factor, leading to receptor dimerization and direct or indirect effects on tissues via insulin-like growth factor 1 (IGF-1), which is primarily secreted by the liver.

      GH secretion is regulated by various factors, including growth hormone releasing hormone (GHRH), fasting, exercise, and sleep. Conversely, glucose and somatostatin can decrease GH secretion. Disorders associated with GH include acromegaly, which results from excess GH, and GH deficiency, which can lead to short stature.

      In summary, GH is a vital hormone that plays a significant role in growth and metabolism. Understanding its functions and regulation can help in the diagnosis and treatment of GH-related disorders.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 29 - A 23-year-old female patient visits her GP clinic due to her struggle with...

    Incorrect

    • A 23-year-old female patient visits her GP clinic due to her struggle with weight loss. Her BMI is almost 40 kg/m², which is severely impacting her mental and physical well-being. Despite following a strict diet and exercise routine, she has not seen any significant improvement. The GP decides to prescribe orlistat as an anti-obesity medication.

      What is the mechanism of action of orlistat in promoting weight loss?

      Your Answer:

      Correct Answer: Reduces fat digestion by inhibiting lipase

      Explanation:

      Orlistat functions by inhibiting gastric and pancreatic lipase, which reduces the digestion of fat.

      2,4-Dinitrophenol (DNP) induces mitochondrial uncoupling and can result in weight loss without calorie reduction. However, it is hazardous when used improperly and is not prescribed outside of the US.

      Weight gain can be caused by increased insulin secretion.

      Orlistat reduces fat digestion by inhibiting lipase, which decreases the amount of fat that can be absorbed. This can result in light-colored, floating stools due to the high fat content.

      Liraglutide is a medication that slows gastric emptying to increase satiety and is primarily prescribed as an adjunct in type 2 diabetics.

      Serotonin reuptake inhibitors are not utilized for weight loss.

      Obesity can be managed through a step-wise approach that includes conservative, medical, and surgical options. The first step is usually conservative, which involves implementing changes in diet and exercise. If this is not effective, medical options such as Orlistat may be considered. Orlistat is a pancreatic lipase inhibitor that is used to treat obesity. However, it can cause adverse effects such as faecal urgency/incontinence and flatulence. A lower dose version of Orlistat is now available without prescription, known as ‘Alli’. The National Institute for Health and Care Excellence (NICE) has defined criteria for the use of Orlistat. It should only be prescribed as part of an overall plan for managing obesity in adults who have a BMI of 28 kg/m^2 or more with associated risk factors, or a BMI of 30 kg/m^2 or more, and continued weight loss of at least 5% at 3 months. Orlistat is typically used for less than one year.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds
  • Question 30 - Sarah is a 15-year-old female who presented to the clinic with concerns about...

    Incorrect

    • Sarah is a 15-year-old female who presented to the clinic with concerns about her development. She has not grown as expected and remains shorter than most of the girls in her class. She also notes that she has not started her period yet, which is affecting her confidence.

      On examination, she is 150cm tall and has no breast development. Pubic hair is sparse and axillary hair is absent. The uterus and ovaries are not palpable. A cleft palate is noted on examination of the mouth. When cranial nerve I was examined, she was unable to detect the smell of the odours sampled.

      Blood tests show low levels of estrogen, follicular stimulating hormone (FSH) and luteinizing hormone (LH). Liver function tests were normal. Blood glucose reading was 5.6mmol/L. Iron studies were unremarkable.

      What is the likely cause for her symptoms?

      Your Answer:

      Correct Answer: Kallmann syndrome

      Explanation:

      The patient’s symptoms of delayed puberty and underdeveloped secondary sexual characteristics, along with a cleft palate and anosmia, suggest Kallmann syndrome. This condition is characterized by hypogonadotropic hypogonadism, as evidenced by low-normal levels of LH and FSH, as well as low testosterone levels. Kallmann syndrome is an X-linked inherited disorder caused by the failure of gonadotrophin-releasing hormone-producing neurons to migrate properly during fetal development.

      While Klinefelter syndrome can also cause delayed puberty and small testes, it is associated with hypergonadotropic hypogonadism, which is characterized by elevated levels of FSH and LH but low testosterone levels. Anosmia is not typically a symptom of Klinefelter syndrome.

      Hemochromatosis, a condition in which iron accumulates in the body, can also cause hypogonadotropic hypogonadism by affecting the hypothalamus. However, this is unlikely in this case as the patient’s iron studies were normal and anosmia is not a common symptom of hemochromatosis.

      Kallmann’s syndrome is a condition that can cause delayed puberty due to hypogonadotropic hypogonadism. It is often inherited as an X-linked recessive trait and is believed to be caused by a failure of GnRH-secreting neurons to migrate to the hypothalamus. One of the key indicators of Kallmann’s syndrome is anosmia, or a lack of smell, in boys with delayed puberty. Other features may include hypogonadism, cryptorchidism, low sex hormone levels, and normal or above-average height. Some patients may also have cleft lip/palate and visual/hearing defects.

      Management of Kallmann’s syndrome typically involves testosterone supplementation. Gonadotrophin supplementation may also be used to stimulate sperm production if fertility is desired later in life. It is important for individuals with Kallmann’s syndrome to receive appropriate medical care and monitoring to manage their symptoms and ensure optimal health outcomes.

    • This question is part of the following fields:

      • Endocrine System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Endocrine System (0/1) 0%
Passmed