00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical...

    Incorrect

    • A 60-year-old woman complains of persistent diarrhoea, wheezing, and flushing. During the physical examination, an irregular pulsatile hepatomegaly and a pansystolic murmur that is most pronounced during inspiration are detected. What diagnostic test could provide insight into the probable underlying condition?

      Your Answer: Abdominal thoracic CT

      Correct Answer: Urinary 5-HIAA (5-hydroxyindole acetic acid)

      Explanation:

      Carcinoid Syndrome and its Diagnosis

      Carcinoid syndrome is characterized by the presence of vasoactive amines such as serotonin in the bloodstream, leading to various clinical features. The primary carcinoid tumor is usually found in the small intestine or appendix, but it may not cause significant symptoms as the liver detoxifies the blood of these amines. However, systemic effects occur when malignant cells spread to other organs, such as the lungs, which are not part of the portal circulation. One of the complications of carcinoid syndrome is damage to the right heart valves, which can cause tricuspid regurgitation, as evidenced by a pulsatile liver and pansystolic murmur.

      To diagnose carcinoid syndrome, the 5-HIAA test is usually performed, which measures the breakdown product of serotonin in a 24-hour urine collection. If the test is positive, imaging and histology are necessary to confirm malignancy.

    • This question is part of the following fields:

      • Cardiovascular System
      25.4
      Seconds
  • Question 2 - A 67-year-old man comes to the emergency department with concerns of pain in...

    Incorrect

    • A 67-year-old man comes to the emergency department with concerns of pain in his right foot. Upon examination, you observe a slow capillary refill and a cold right foot. The patient is unable to move his toes, and the foot is tender. You can detect a pulse behind his medial malleolus and in his popliteal fossa, but there are no pulses in his foot. Which artery is likely affected in this patient's condition?

      Your Answer:

      Correct Answer: Anterior tibial

      Explanation:

      The dorsalis pedis artery in the foot is a continuation of the anterior tibial artery. However, in a patient presenting with acute limb ischemia and an absent dorsalis pedis artery pulse, it is likely that the anterior tibial artery is occluded. This can cause severe ischemia, as evidenced by a cold and tender foot with decreased motor function. The presence of a palpable popliteal pulse suggests that the femoral artery is not occluded. Occlusion of the fibular artery would not typically result in an absent dorsalis pedis pulse, while occlusion of the posterior tibial artery would result in no pulse present posterior to the medial malleolus, where this artery runs.

      The anterior tibial artery starts opposite the lower border of the popliteus muscle and ends in front of the ankle, where it continues as the dorsalis pedis artery. As it descends, it runs along the interosseous membrane, the distal part of the tibia, and the front of the ankle joint. The artery passes between the tendons of the extensor digitorum and extensor hallucis longus muscles as it approaches the ankle. The deep peroneal nerve is closely related to the artery, lying anterior to the middle third of the vessel and lateral to it in the lower third.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 3 - As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you...

    Incorrect

    • As a medical student observing a parathyroidectomy in the short-stay surgical theatre, you witness the ligation of blood vessels supplying the parathyroid glands. The ENT consultant requests you to identify the arteries responsible for supplying oxygenated blood to the parathyroid gland. Can you correctly name these arteries?

      Your Answer:

      Correct Answer: Superior and inferior thyroid arteries

      Explanation:

      The superior and inferior thyroid arteries provide oxygenated blood supply to the parathyroid glands. The existence of inferior parathyroid arteries and superior parathyroid arteries is not supported by anatomical evidence. While a middle thyroid artery may exist in some individuals, it is a rare variation that is not relevant to the question at hand.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 4 - A 67-year-old man is brought to the emergency department with unilateral weakness and...

    Incorrect

    • A 67-year-old man is brought to the emergency department with unilateral weakness and loss of sensation. He is later diagnosed with an ischaemic stroke. After initial treatment, he is started on dipyridamole as part of his ongoing therapy.

      What is the mechanism of action of dipyridamole?

      Your Answer:

      Correct Answer: Non-specific phosphodiesterase inhibitor

      Explanation:

      Understanding the Mechanism of Action of Dipyridamole

      Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.

      Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.

      Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.

      In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 5 - A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram,...

    Incorrect

    • A 75-year-old woman is hospitalized with acute mesenteric ischemia. During a CT angiogram, a narrowing is observed at the point where the superior mesenteric artery originates. At what level does this artery branch off from the aorta?

      Your Answer:

      Correct Answer: L1

      Explanation:

      The inferior pancreatico-duodenal artery is the first branch of the SMA, which exits the aorta at L1 and travels beneath the neck of the pancreas.

      The Superior Mesenteric Artery and its Branches

      The superior mesenteric artery is a major blood vessel that branches off the aorta at the level of the first lumbar vertebrae. It supplies blood to the small intestine from the duodenum to the mid transverse colon. However, due to its more oblique angle from the aorta, it is more susceptible to receiving emboli than the coeliac axis.

      The superior mesenteric artery is closely related to several structures, including the neck of the pancreas superiorly, the third part of the duodenum and uncinate process postero-inferiorly, and the left renal vein posteriorly. Additionally, the right superior mesenteric vein is also in close proximity.

      The superior mesenteric artery has several branches, including the inferior pancreatico-duodenal artery, jejunal and ileal arcades, ileo-colic artery, right colic artery, and middle colic artery. These branches supply blood to various parts of the small and large intestine. An overview of the superior mesenteric artery and its branches can be seen in the accompanying image.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 6 - An 80-year-old man visits his GP complaining of progressive breathlessness that has been...

    Incorrect

    • An 80-year-old man visits his GP complaining of progressive breathlessness that has been worsening over the past 6 months. During the examination, the GP observes pitting oedema in the mid-shins. The patient has a medical history of type 2 diabetes mellitus and a myocardial infarction that occurred 5 years ago. The GP orders a blood test to investigate the cause of the patient's symptoms.

      The blood test reveals a B-type natriuretic peptide (BNP) level of 907 pg/mL, which is significantly higher than the normal range (< 100). Can you identify the source of BNP secretion?

      Your Answer:

      Correct Answer: Ventricular myocardium

      Explanation:

      BNP is primarily secreted by the ventricular myocardium in response to stretching, making it a valuable indicator of heart failure. While it can be used for screening and prognostic scoring, it is not secreted by the atrial endocardium, distal convoluted tubule, pulmonary artery endothelium, or renal mesangial cells.

      B-type natriuretic peptide (BNP) is a hormone that is primarily produced by the left ventricular myocardium in response to strain. Although heart failure is the most common cause of elevated BNP levels, any condition that causes left ventricular dysfunction, such as myocardial ischemia or valvular disease, may also raise levels. In patients with chronic kidney disease, reduced excretion may also lead to elevated BNP levels. Conversely, treatment with ACE inhibitors, angiotensin-2 receptor blockers, and diuretics can lower BNP levels.

      BNP has several effects, including vasodilation, diuresis, natriuresis, and suppression of both sympathetic tone and the renin-angiotensin-aldosterone system. Clinically, BNP is useful in diagnosing patients with acute dyspnea. A low concentration of BNP (<100 pg/mL) makes a diagnosis of heart failure unlikely, but elevated levels should prompt further investigation to confirm the diagnosis. Currently, NICE recommends BNP as a helpful test to rule out a diagnosis of heart failure. In patients with chronic heart failure, initial evidence suggests that BNP is an extremely useful marker of prognosis and can guide treatment. However, BNP is not currently recommended for population screening for cardiac dysfunction.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 7 - A woman with longstanding angina visits her doctor and reports persistent symptoms. The...

    Incorrect

    • A woman with longstanding angina visits her doctor and reports persistent symptoms. The patient was previously prescribed a calcium channel blocker, but due to her asthma, a beta blocker cannot be prescribed. The doctor decides to prescribe ivabradine. What is the site of action of ivabradine in the heart?

      Your Answer:

      Correct Answer: Sinoatrial node

      Explanation:

      The mechanism of action of Ivabradine in heart failure involves targeting the If ion current present in the sinoatrial node to lower the heart rate.

      Ivabradine: An Anti-Anginal Drug

      Ivabradine is a type of medication used to treat angina by reducing the heart rate. It works by targeting the If (‘funny’) ion current, which is found in high levels in the sinoatrial node. By doing so, it decreases the activity of the cardiac pacemaker.

      However, Ivabradine is not without its side effects. Many patients report experiencing visual disturbances, such as luminous phenomena, as well as headaches, bradycardia, and heart block.

      Despite its potential benefits, there is currently no evidence to suggest that Ivabradine is superior to existing treatments for stable angina. As with any medication, it is important to weigh the potential benefits against the risks and side effects before deciding whether or not to use it.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 8 - A 2-year-old child presents with cyanosis shortly after birth. The child has no...

    Incorrect

    • A 2-year-old child presents with cyanosis shortly after birth. The child has no family history of paediatric problems and the pregnancy was uneventful. Upon examination, the child is cyanotic, has a respiratory rate of 60 breaths per minute, and nasal flaring. An urgent echocardiogram reveals Ebstein's anomaly. Which valvular defect is commonly associated with this condition?

      Your Answer:

      Correct Answer: Tricuspid regurgitation

      Explanation:

      Ebstein’s anomaly is a congenital heart defect that results in the right ventricle being smaller than normal and the right atrium being larger than normal, a condition known as ‘atrialisation’. Tricuspid regurgitation is often present as well.

      While aortic regurgitation is commonly associated with infective endocarditis, ascending aortic dissection, or connective tissue disorders like Marfan’s or Ehlers-Danlos, it is not typically seen in Ebstein’s anomaly. Similarly, aortic stenosis is usually caused by senile calcification rather than congenital heart disease.

      The mitral valve is located on the left side of the heart and is not affected by Ebstein’s anomaly. Mitral regurgitation, on the other hand, can be caused by conditions such as rheumatic heart disease or left ventricular dilatation.

      Pulmonary stenosis is typically associated with other congenital heart defects like Turner’s syndrome or Noonan’s syndrome, rather than Ebstein’s anomaly.

      Understanding Ebstein’s Anomaly

      Ebstein’s anomaly is a type of congenital heart defect that is characterized by the tricuspid valve being inserted too low, resulting in a large atrium and a small ventricle. This condition is also known as the atrialization of the right ventricle. It is believed that exposure to lithium during pregnancy may cause this condition.

      Ebstein’s anomaly is often associated with other heart defects such as patent foramen ovale (PFO) or atrial septal defect (ASD), which can cause a shunt between the right and left atria. Additionally, patients with this condition may also have Wolff-Parkinson White syndrome.

      Clinical features of Ebstein’s anomaly include cyanosis, a prominent a wave in the distended jugular venous pulse, hepatomegaly, tricuspid regurgitation, and a pansystolic murmur that worsens during inspiration. Patients may also exhibit right bundle branch block, which can lead to widely split S1 and S2 heart sounds.

      In summary, Ebstein’s anomaly is a congenital heart defect that affects the tricuspid valve and can cause a range of symptoms and complications. Early diagnosis and treatment are essential for managing this condition and improving patient outcomes.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her...

    Incorrect

    • A 54-year-old woman has been diagnosed with hypertension following ABPM which showed her blood pressure to be 152/91 mmHg. She is curious about her condition and asks her GP to explain the physiology of blood pressure. Can you tell me where the baroreceptors that detect blood pressure are located in the body?

      Your Answer:

      Correct Answer: Carotid sinus

      Explanation:

      The carotid sinus, located just above the point where the internal and external carotid arteries divide, houses baroreceptors that sense the stretching of the artery wall. These baroreceptors are connected to the glossopharyngeal nerve (cranial nerve IX). The nerve fibers then synapse in the solitary nucleus of the medulla, which regulates the activity of sympathetic and parasympathetic neurons. This, in turn, affects the heart and blood vessels, leading to changes in blood pressure.

      Similarly, the aortic arch also has baroreceptors that are connected to the aortic nerve. This nerve combines with the vagus nerve (X) and travels to the solitary nucleus.

      In contrast, the carotid body, located near the carotid sinus, contains chemoreceptors that detect changes in the levels of oxygen and carbon dioxide in the blood.

      The heart has four chambers and generates pressures of 0-25 mmHg on the right side and 0-120 mmHg on the left. The cardiac output is the product of heart rate and stroke volume, typically 5-6L per minute. The cardiac impulse is generated in the sino atrial node and conveyed to the ventricles via the atrioventricular node. Parasympathetic and sympathetic fibers project to the heart via the vagus and release acetylcholine and noradrenaline, respectively. The cardiac cycle includes mid diastole, late diastole, early systole, late systole, and early diastole. Preload is the end diastolic volume and afterload is the aortic pressure. Laplace’s law explains the rise in ventricular pressure during the ejection phase and why a dilated diseased heart will have impaired systolic function. Starling’s law states that an increase in end-diastolic volume will produce a larger stroke volume up to a point beyond which stroke volume will fall. Baroreceptor reflexes and atrial stretch receptors are involved in regulating cardiac output.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A parent brings their toddler to the Emergency Department after noticing a pale...

    Incorrect

    • A parent brings their toddler to the Emergency Department after noticing a pale yellow fluid leaking from their umbilicus. The doctor explains that this is due to the incomplete closure of a remnant from embryological development. What is the name of this remnant, which used to be part of the umbilical ligament?

      Your Answer:

      Correct Answer: Urachus

      Explanation:

      The allantois leaves behind the urachus, while the male prostatic utricle is a vestige of the vagina. The ductus arteriosus is represented by the ligamentum arteriosum, which links the aorta to the pulmonary trunk during fetal development. The ligamentum venosum, on the other hand, is the residual structure of the ductus venous, which diverts blood from the left umbilical vein to the placenta, bypassing the liver.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - A 75-year-old man with confirmed heart failure visits the GP clinic for wound...

    Incorrect

    • A 75-year-old man with confirmed heart failure visits the GP clinic for wound dressing on his left leg. During the visit, the nurse informs the GP that she suspects the patient's legs are swollen. Upon examination, the GP observes bilateral pitting edema that extends up to the knee and decides to prescribe a diuretic. Which diuretic inhibits the sodium-potassium-chloride cotransporter?

      Your Answer:

      Correct Answer: Furosemide (loop diuretic)

      Explanation:

      Loop Diuretics: Mechanism of Action and Clinical Applications

      Loop diuretics, such as furosemide and bumetanide, are medications that inhibit the Na-K-Cl cotransporter (NKCC) in the thick ascending limb of the loop of Henle. By doing so, they reduce the absorption of NaCl, resulting in increased urine output. Loop diuretics act on NKCC2, which is more prevalent in the kidneys. These medications work on the apical membrane and must first be filtered into the tubules by the glomerulus before they can have an effect. Patients with poor renal function may require higher doses to ensure sufficient concentration in the tubules.

      Loop diuretics are commonly used in the treatment of heart failure, both acutely (usually intravenously) and chronically (usually orally). They are also indicated for resistant hypertension, particularly in patients with renal impairment. However, loop diuretics can cause adverse effects such as hypotension, hyponatremia, hypokalemia, hypomagnesemia, hypochloremic alkalosis, ototoxicity, hypocalcemia, renal impairment, hyperglycemia (less common than with thiazides), and gout. Therefore, careful monitoring of electrolyte levels and renal function is necessary when using loop diuretics.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - A senior gentleman visits the GP for his routine INR check. He was...

    Incorrect

    • A senior gentleman visits the GP for his routine INR check. He was prescribed warfarin five years ago upon being diagnosed with atrial fibrillation.

      Which enzyme does warfarin inhibit?

      Your Answer:

      Correct Answer: Epoxide reductase

      Explanation:

      Warfarin prevents the activation of Vitamin K by inhibiting epoxide reductase. This enzyme is responsible for converting Vitamin K epoxide to Vitamin K quinone, a necessary step in the Vitamin K metabolic pathway. Without this conversion, the production of clotting factors (10, 9, 7 and 2) is decreased.

      Gamma-glutamyl carboxylase is the enzyme responsible for carboxylating glutamic acid to produce clotting factors. Warfarin does not directly inhibit this enzyme.

      CYP2C9 is an enzyme involved in the metabolism of many drugs, including warfarin.

      Protein C is a plasma protein that functions as an anticoagulant. It is dependent on Vitamin K for activation and works by inhibiting factor 5 and 8. Protein C is produced as an inactive precursor enzyme, which is then activated to exert its anticoagulant effects.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A 58-year-old male complains of intense pain in the center of his abdomen...

    Incorrect

    • A 58-year-old male complains of intense pain in the center of his abdomen that extends to his back and is accompanied by nausea and vomiting. Upon examination, his abdomen is tender and guarded, and his pulse is 106 bpm while his blood pressure is 120/82 mmHg. What diagnostic test would be beneficial in this case?

      Your Answer:

      Correct Answer: Amylase

      Explanation:

      Diagnostic Tests and Severity Assessment for Acute Pancreatitis

      Acute pancreatitis is a medical condition that requires prompt diagnosis and treatment. One of the most useful diagnostic tests for this condition is the measurement of amylase levels in the blood. In patients with acute pancreatitis, amylase levels are typically elevated, often reaching three times the upper limit of normal. Other blood parameters, such as troponin T, are not specific to pancreatitis and may be used to diagnose other medical conditions.

      To assess the severity of acute pancreatitis, healthcare providers may use the Modified Glasgow Criteria, which is a mnemonic tool that helps to evaluate various clinical parameters. These parameters include PaO2, age, neutrophil count, calcium levels, renal function, enzymes such as LDH and AST, albumin levels, and blood sugar levels. Depending on the severity of these parameters, patients may be classified as having mild, moderate, or severe acute pancreatitis.

      In summary, the diagnosis of acute pancreatitis relies on the measurement of amylase levels in the blood, while the severity of the condition can be assessed using the Modified Glasgow Criteria. Early diagnosis and prompt treatment are crucial for improving outcomes in patients with acute pancreatitis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A 67-year-old man presents with crushing central chest pain and flushing. His ECG...

    Incorrect

    • A 67-year-old man presents with crushing central chest pain and flushing. His ECG shows T wave inversion in II, III, and AVF, and his troponin T level is 0.9 ng/ml (normal <0.01). What is the substance that troponin T binds to?

      Your Answer:

      Correct Answer: Tropomyosin

      Explanation:

      The binding of troponin T to tropomyosin results in the formation of a troponin-tropomyosin complex. The clinical and electrographic characteristics suggest the presence of an inferior myocardial infarction, which is confirmed by the elevated levels of troponin. Troponin T is highly specific to myocardial damage. On the other hand, troponin C binds to calcium ions and is released by damage to both skeletal and cardiac muscle, making it an insensitive marker for myocardial necrosis. Troponin I binds to actin and helps to maintain the troponin-tropomyosin complex in place. It is also specific to myocardial damage. Myosin is the thick component of muscle fibers, and actin slides along myosin to generate muscle contraction. The sarcoplasmic reticulum plays a crucial role in regulating the concentration of calcium ions in the cytoplasm of striated muscle cells.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 13-year-old boy collapses at home and is taken to the hospital. After...

    Incorrect

    • A 13-year-old boy collapses at home and is taken to the hospital. After all tests come back normal, what is the underlying mechanism behind a vasovagal episode?

      Your Answer:

      Correct Answer: Peripheral vasodilation and venous pooling

      Explanation:

      Vasovagal syncope is a common type of fainting that is often seen in adolescents and older adults. It typically occurs when a person with a predisposition to this condition is exposed to a specific trigger. Before losing consciousness, the individual may experience symptoms such as lightheadedness, nausea, sweating, or ringing in the ears. When they faint, they fall down, which helps restore blood flow to the brain by eliminating the effects of gravity and allowing the person to regain consciousness.

      The mechanism behind a vasovagal episode involves a cardioinhibitory response that causes a decrease in heart rate (negative chronotropic effect) and contractility (negative inotropic effect), leading to a reduction in cardiac output and peripheral vasodilation. These effects result in the pooling of blood in the lower limbs.

      Understanding Syncope: Causes and Evaluation

      Syncope is a temporary loss of consciousness caused by a sudden decrease in blood flow to the brain. It is a common condition that can affect people of all ages. Syncope can be caused by various factors, including reflex syncope, orthostatic syncope, and cardiac syncope. Reflex syncope is the most common cause of syncope in all age groups, while orthostatic and cardiac causes become more common in older patients.

      Reflex syncope is triggered by emotional stress, pain, or other stimuli. Situational syncope can be caused by coughing, urination, or gastrointestinal issues. Carotid sinus syncope is another type of reflex syncope that occurs when pressure is applied to the carotid artery in the neck.

      Orthostatic syncope occurs when a person stands up too quickly, causing a sudden drop in blood pressure. This can be caused by primary or secondary autonomic failure, drug-induced factors, or volume depletion.

      Cardiac syncope is caused by arrhythmias, structural issues, or pulmonary embolism. Bradycardias and tachycardias are common types of arrhythmias that can cause syncope.

      To diagnose syncope, doctors may perform a cardiovascular examination, postural blood pressure readings, an ECG, carotid sinus massage, tilt table test, or a 24-hour ECG. These tests can help determine the underlying cause of syncope and guide treatment options.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon...

    Incorrect

    • A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon examination, there are no notable symptoms except for a low serum potassium level found in her blood test. After informing her of the results, she reveals that she has been experiencing palpitations and dizziness for a few hours. You advise her to go to the emergency department for an ECG and treatment. What ECG indication is associated with hypokalaemia?

      Your Answer:

      Correct Answer: ST segment depression

      Explanation:

      ECG changes indicating hypokalaemia include ST-segment depression, along with other signs such as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified through ECG signs such as a long PR interval and a sine wave pattern, as well as tall tented T waves and broad bizarre QRS complexes. Prolongation of the PR interval may be seen in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Patients with hypokalaemia may present with symptoms such as fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis. It is worth noting that abnormalities in serum potassium levels are often discovered incidentally.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - An 80-year-old man is seen in the stroke clinic for a history of...

    Incorrect

    • An 80-year-old man is seen in the stroke clinic for a history of transient paralysis and paresthesia in his left arm that resolved after 2 hours. The stroke clinicians suspect a transient ischaemic attack and plan to initiate secondary prevention treatment as per national guidelines.

      What is the mode of action of the prescribed medication?

      Your Answer:

      Correct Answer: ADP receptor inhibitor

      Explanation:

      Clopidogrel works by inhibiting the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelet activation and is therefore classified as an ADP receptor inhibitor. This drug is recommended as secondary prevention for patients who have experienced symptoms of a transient ischaemic attack (TIA). Other examples of ADP receptor inhibitors include ticagrelor and prasugrel. Aspirin, on the other hand, is a cyclooxygenase (COX) inhibitor that is used for pain control and management of ischaemic heart disease. Glycoprotein IIB/IIA inhibitors such as tirofiban and abciximab prevent platelet aggregation and thrombus formation by inhibiting the glycoprotein IIB/IIIA receptors. Picotamide is a thromboxane synthase inhibitor that is indicated for the management of acute coronary syndrome, as it inhibits the synthesis of thromboxane, a potent vasoconstrictor and facilitator of platelet aggregation.

      Clopidogrel: An Antiplatelet Agent for Cardiovascular Disease

      Clopidogrel is a medication used to manage cardiovascular disease by preventing platelets from sticking together and forming clots. It is commonly used in patients with acute coronary syndrome and is now also recommended as a first-line treatment for patients following an ischaemic stroke or with peripheral arterial disease. Clopidogrel belongs to a class of drugs called thienopyridines, which work in a similar way. Other examples of thienopyridines include prasugrel, ticagrelor, and ticlopidine.

      Clopidogrel works by blocking the P2Y12 adenosine diphosphate (ADP) receptor, which prevents platelets from becoming activated. However, concurrent use of proton pump inhibitors (PPIs) may make clopidogrel less effective. The Medicines and Healthcare products Regulatory Agency (MHRA) issued a warning in July 2009 about this interaction, and although evidence is inconsistent, omeprazole and esomeprazole are still cause for concern. Other PPIs, such as lansoprazole, are generally considered safe to use with clopidogrel. It is important to consult with a healthcare provider before taking any new medications or supplements.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - A 57-year-old Asian man arrived at the emergency department with complaints of chest...

    Incorrect

    • A 57-year-old Asian man arrived at the emergency department with complaints of chest pain. After initial investigations, he was diagnosed with a non-ST elevation myocardial infarction. The patient was prescribed dual antiplatelet therapy, consisting of aspirin and ticagrelor, along with subcutaneous fondaparinux. However, a few days after starting the treatment, he reported experiencing shortness of breath. What is the mechanism of action of the drug responsible for this adverse reaction?

      Your Answer:

      Correct Answer: Inhibits ADP binding to platelet receptors

      Explanation:

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A 75-year-old woman is scheduled to begin taking warfarin. Prior to starting this...

    Incorrect

    • A 75-year-old woman is scheduled to begin taking warfarin. Prior to starting this medication, her other medications are reviewed for potential contraindications. Is there any medication that should be reconsidered or adjusted before initiating warfarin therapy?

      Your Answer:

      Correct Answer: Fluoxetine

      Explanation:

      Before prescribing warfarin to a patient, it is crucial to thoroughly check for potential interactions with other medications. Warfarin is metabolized by cytochrome P450 enzymes in the liver, which means that medications that affect this enzyme system can impact warfarin metabolism.

      Certain medications, such as NSAIDs, antibiotics like erythromycin and ciprofloxacin, amiodarone, and SSRIs like fluoxetine, can inhibit cytochrome P450 enzymes and slow down warfarin metabolism, leading to increased effects.

      On the other hand, medications like phenytoin, carbamazepine, and rifampicin can induce cytochrome P450 enzymes and speed up warfarin metabolism, resulting in decreased effects.

      However, medications like simvastatin, salmeterol, bisoprolol, and losartan do not interfere with warfarin and can be safely prescribed alongside it.

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 68-year-old woman comes into the emergency department with her daughter after experiencing...

    Incorrect

    • A 68-year-old woman comes into the emergency department with her daughter after experiencing shortness of breath for 2 hours. She is in poor condition with a heart rate of 128/min, blood pressure of 90/66 mmHg, O2 saturation of 94% on air, respiratory rate of 29/min, and temperature of 36.3ºC. Her legs are swollen up to her knees, and her JVP is visible at her ear lobe. She has a history of myocardial infarction 4 years ago, angina, and a smoking history of 20 packs per year.

      What is the underlying cause of her presentation?

      Your Answer:

      Correct Answer: Reduced cardiac output

      Explanation:

      The cause of the patient’s acute heart failure is a decrease in cardiac output, which may be due to biventricular failure. This is evidenced by peripheral edema and respiratory distress, including shortness of breath, high respiratory rate, and low oxygen saturation. These symptoms are likely caused by inadequate heart filling, leading to peripheral congestion and pulmonary edema or pleural effusion.

      The pathophysiology of myocardial infarction is not relevant to the patient’s condition, as it is not explained by her peripheral edema and elevated JVP.

      While shortness of breath in heart failure may be caused by reduced ventilation/perfusion due to pulmonary edema, this is only one symptom and not the underlying mechanism of the condition.

      The overactivity of the renin-angiotensin system is a physiological response to decreased blood pressure or increased renal sympathetic firing, but it is not necessarily related to the patient’s current condition.

      Understanding Acute Heart Failure: Symptoms and Diagnosis

      Acute heart failure (AHF) is a medical emergency that can occur suddenly or worsen over time. It can affect individuals with or without a history of pre-existing heart failure. Decompensated AHF is more common and is characterized by a background history of HF. AHF is typically caused by a reduced cardiac output resulting from a functional or structural abnormality. De-novo heart failure, on the other hand, is caused by increased cardiac filling pressures and myocardial dysfunction, usually due to ischaemia.

      The most common precipitating causes of acute AHF are acute coronary syndrome, hypertensive crisis, acute arrhythmia, and valvular disease. Patients with heart failure may present with signs of fluid congestion, weight gain, orthopnoea, and breathlessness. They are broadly classified into four groups based on whether they present with or without hypoperfusion and fluid congestion. This classification is clinically useful in determining the therapeutic approach.

      The symptoms of AHF include breathlessness, reduced exercise tolerance, oedema, fatigue, chest signs, and an S3-heart sound. Signs of AHF include cyanosis, tachycardia, elevated jugular venous pressure, and a displaced apex beat. Over 90% of patients with AHF have a normal or increased blood pressure.

      The diagnostic workup for patients with AHF includes blood tests, chest X-ray, echocardiogram, and B-type natriuretic peptide. Blood tests are used to identify any underlying abnormalities, while chest X-ray findings include pulmonary venous congestion, interstitial oedema, and cardiomegaly. Echocardiogram is used to identify pericardial effusion and cardiac tamponade, while raised levels of B-type natriuretic peptide (>100mg/litre) indicate myocardial damage and support the diagnosis.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 67-year-old patient with chronic kidney disease is diagnosed with antithrombin III deficiency...

    Incorrect

    • A 67-year-old patient with chronic kidney disease is diagnosed with antithrombin III deficiency after presenting to the emergency department with left leg pain and swelling. A doppler-ultrasound scan confirms the presence of deep venous thrombosis (DVT). The patient is prescribed dabigatran. What is the mechanism of action of dabigatran?

      Your Answer:

      Correct Answer: Direct thrombin inhibitor

      Explanation:

      Dabigatran inhibits thrombin directly, while heparin activates antithrombin III. Clopidogrel is a P2Y12 inhibitor, Abciximab is a glycoprotein IIb/IIIa inhibitor, and Rivaroxaban is a direct factor X inhibitor.

      Dabigatran: An Oral Anticoagulant with Two Main Indications

      Dabigatran is an oral anticoagulant that directly inhibits thrombin, making it an alternative to warfarin. Unlike warfarin, dabigatran does not require regular monitoring. It is currently used for two main indications. Firstly, it is an option for prophylaxis of venous thromboembolism following hip or knee replacement surgery. Secondly, it is licensed for prevention of stroke in patients with non-valvular atrial fibrillation who have one or more risk factors present. The major adverse effect of dabigatran is haemorrhage, and doses should be reduced in chronic kidney disease. Dabigatran should not be prescribed if the creatinine clearance is less than 30 ml/min. In cases where rapid reversal of the anticoagulant effects of dabigatran is necessary, idarucizumab can be used. However, the RE-ALIGN study showed significantly higher bleeding and thrombotic events in patients with recent mechanical heart valve replacement using dabigatran compared with warfarin. As a result, dabigatran is now contraindicated in patients with prosthetic heart valves.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - A 63-year-old man arrives at the emergency department with sudden and severe chest...

    Incorrect

    • A 63-year-old man arrives at the emergency department with sudden and severe chest pain that began an hour ago. He experiences nausea and sweating, and the pain spreads to his left jaw and arm. The patient has a medical history of essential hypertension and type 2 diabetes mellitus. He is a current smoker with a 30 pack years history and drinks about 30 units of alcohol per week. He used to work as a lorry driver but is now retired. An electrocardiogram in the emergency department reveals ST segment elevations in leads II, III, and aVF, and a blood test shows elevated cardiac enzymes. The man undergoes a percutaneous coronary intervention and is admitted to the coronary care unit. After two weeks, he is discharged. What is the complication that this man is most likely to develop on day 7 after his arrival at the emergency department?

      Your Answer:

      Correct Answer: Cardiac tamponade

      Explanation:

      The patient’s symptoms suggest that he may have experienced an ST elevation myocardial infarction in the inferior wall of his heart. There are various complications that can arise after a heart attack, and the timing of these complications can vary.

      1. Ventricular arrhythmia is a common cause of death after a heart attack, but it typically occurs within the first 24 hours.
      2. Ventricular septal defect, which is caused by a rupture in the interventricular septum, is most likely to occur 3-5 days after a heart attack.
      3. This complication is autoimmune-mediated and usually occurs several weeks after a heart attack.
      4. Cardiac tamponade can occur when bleeding into the pericardial sac impairs the heart’s contractile function. This complication is most likely to occur 5-14 days after a heart attack.
      5. Mural thrombus, which can result from the formation of a true ventricular aneurysm, is most likely to occur at least two weeks after a heart attack. Ventricular pseudoaneurysm, on the other hand, can occur 3-14 days after a heart attack.

      Understanding Cardiac Tamponade

      Cardiac tamponade is a medical condition where there is an accumulation of pericardial fluid under pressure. This condition is characterized by several classical features, including hypotension, raised JVP, and muffled heart sounds, which are collectively known as Beck’s triad. Other symptoms of cardiac tamponade include dyspnea, tachycardia, an absent Y descent on the JVP, pulsus paradoxus, and Kussmaul’s sign. An ECG can also show electrical alternans.

      It is important to differentiate cardiac tamponade from constrictive pericarditis, which has different characteristic features such as an absent Y descent, X + Y present JVP, and the absence of pulsus paradoxus. Constrictive pericarditis is also characterized by pericardial calcification on CXR.

      The management of cardiac tamponade involves urgent pericardiocentesis. It is crucial to recognize the symptoms of cardiac tamponade and seek medical attention immediately to prevent further complications.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - Which of these statements relating to the external carotid is false? ...

    Incorrect

    • Which of these statements relating to the external carotid is false?

      Your Answer:

      Correct Answer: It ends by bifurcating into the superficial temporal and ascending pharyngeal artery

      Explanation:

      The external carotid artery ends by splitting into two branches – the superficial temporal and maxillary branches. It has a total of eight branches, with three located on its anterior surface – the thyroid, lingual, and facial arteries. The pharyngeal artery is a medial branch, while the posterior auricular and occipital arteries are located on the posterior surface.

      Anatomy of the External Carotid Artery

      The external carotid artery begins on the side of the pharynx and runs in front of the internal carotid artery, behind the posterior belly of digastric and stylohyoid muscles. It is covered by sternocleidomastoid muscle and passed by hypoglossal nerves, lingual and facial veins. The artery then enters the parotid gland and divides into its terminal branches within the gland.

      To locate the external carotid artery, an imaginary line can be drawn from the bifurcation of the common carotid artery behind the angle of the jaw to a point in front of the tragus of the ear.

      The external carotid artery has six branches, with three in front, two behind, and one deep. The three branches in front are the superior thyroid, lingual, and facial arteries. The two branches behind are the occipital and posterior auricular arteries. The deep branch is the ascending pharyngeal artery. The external carotid artery terminates by dividing into the superficial temporal and maxillary arteries within the parotid gland.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 42-year-old man presents to the emergency department with gradual-onset central chest pain....

    Incorrect

    • A 42-year-old man presents to the emergency department with gradual-onset central chest pain. The pain is 7/10 in severity and started six hours ago. He reports no shortness of breath or haemoptysis. The pain worsens when taking a deep breath in and improves when leaning forward.

      The patient has no significant medical history and is not taking any regular medications, but he recently completed a course of amoxicillin for an upper respiratory tract infection. His grandfather died of a heart attack at the age of 84. He has a smoking history of 3 pack-years but currently does not smoke or drink alcohol. He has not traveled recently. During a recent well man check at his GP, his 10-year QRISK score was determined to be 3%.

      On examination, the patient appears comfortable at rest. His heart rate is 88/min, blood pressure is 136/78 mmHg, oxygen saturation is 98% on air, respiratory rate is 16 breaths per minute, and temperature is 36.8ºC. No additional heart sounds are heard, and lung fields are clear on auscultation. The abdomen is soft and non-tender, with bowel sounds present.

      An ECG taken on admission shows concave ST-segment elevation and PR depression present in all leads.

      What is the most likely diagnosis?

      Your Answer:

      Correct Answer: Pericarditis

      Explanation:

      The most likely diagnosis for a patient with global ST and PR segment changes is pericarditis. This condition is characterized by inflammation of the pericardium, which often occurs after a respiratory illness. Patients with pericarditis typically experience sharp chest pain that worsens with inspiration or lying down and improves when leaning forward.

      While benign early repolarization (BER) can also cause ST elevation, it is less likely in this case as the patient’s symptoms are more consistent with pericarditis. Additionally, BER often presents with a fish hook pattern on the ECG.

      Infective endocarditis, pulmonary embolism (PE), and myocardial infarction (MI) are less likely diagnoses. Infective endocarditis typically presents with fever and a murmur, while PE is associated with tachycardia, haemoptysis, and signs of deep vein thrombosis. MI is usually confined to a specific territory on the ECG and is unlikely in a patient with low cardiac risk factors.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - What is the average stroke volume in a resting 75 Kg man? ...

    Incorrect

    • What is the average stroke volume in a resting 75 Kg man?

      Your Answer:

      Correct Answer: 70ml

      Explanation:

      The range of stroke volumes is between 55 and 100 milliliters.

      The stroke volume refers to the amount of blood that is pumped out of the ventricle during each cycle of cardiac contraction. This volume is usually the same for both ventricles and is approximately 70ml for a man weighing 70Kg. To calculate the stroke volume, the end systolic volume is subtracted from the end diastolic volume. Several factors can affect the stroke volume, including the size of the heart, its contractility, preload, and afterload.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - A 50-year-old man is brought to the emergency department following a collapse on...

    Incorrect

    • A 50-year-old man is brought to the emergency department following a collapse on the street. Upon examination, he displays visual and oculomotor deficits, but his motor function remains intact. Digital subtraction angiography reveals a basilar artery occlusion at the point where the vertebral arteries merge to form the basilar artery. What anatomical feature corresponds to the location of the occlusion?

      Your Answer:

      Correct Answer: The base of the pons

      Explanation:

      The basilar artery is formed by the union of the vertebral arteries at the base of the pons.

      The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.

      The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.

      The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - A 75-year-old woman is brought to the Emergency Department by her family members....

    Incorrect

    • A 75-year-old woman is brought to the Emergency Department by her family members. She has been experiencing palpitations and chest tightness for the last two hours. Upon examination, her ECG shows a 'sawtooth' appearance with baseline atrial activity of approximately 300/min and a ventricular rate of 150/min. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Atrial flutter

      Explanation:

      Atrial flutter is a type of supraventricular tachycardia that is characterized by a series of rapid atrial depolarization waves. This condition can be identified through ECG findings, which show a sawtooth appearance. The underlying atrial rate is typically around 300 beats per minute, which can affect the ventricular or heart rate depending on the degree of AV block. For instance, if there is a 2:1 block, the ventricular rate will be 150 beats per minute. Flutter waves may also be visible following carotid sinus massage or adenosine.

      Managing atrial flutter is similar to managing atrial fibrillation, although medication may be less effective. However, atrial flutter is more sensitive to cardioversion, so lower energy levels may be used. For most patients, radiofrequency ablation of the tricuspid valve isthmus is curative.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - A 50-year-old man is being investigated by cardiologists for worsening breathlessness, fatigue, and...

    Incorrect

    • A 50-year-old man is being investigated by cardiologists for worsening breathlessness, fatigue, and chest pain during exertion. Results from an echocardiogram reveal a thickened interventricular septum and reduced left ventricle filling. What is the most likely diagnosis based on these findings?

      Your Answer:

      Correct Answer: Hypertrophic obstructive cardiomyopathy

      Explanation:

      Hypertrophic obstructive cardiomyopathy is a condition where the heart muscle, particularly the interventricular septum, becomes thickened and less flexible, leading to diastolic dysfunction. In contrast, restrictive cardiomyopathy also results in reduced flexibility of the heart chamber walls, but without thickening of the myocardium. Dilated cardiomyopathy, on the other hand, is characterized by enlarged heart chambers with thin walls and a decreased ability to pump blood out of the heart.

      Hypertrophic obstructive cardiomyopathy (HOCM) is a genetic disorder that affects muscle tissue and is inherited in an autosomal dominant manner. It is caused by mutations in genes that encode contractile proteins, with the most common defects involving the β-myosin heavy chain protein or myosin-binding protein C. HOCM is characterized by left ventricle hypertrophy, which leads to decreased compliance and cardiac output, resulting in predominantly diastolic dysfunction. Biopsy findings show myofibrillar hypertrophy with disorganized myocytes and fibrosis. HOCM is often asymptomatic, but exertional dyspnea, angina, syncope, and sudden death can occur. Jerky pulse, systolic murmurs, and double apex beat are also common features. HOCM is associated with Friedreich’s ataxia and Wolff-Parkinson White. ECG findings include left ventricular hypertrophy, non-specific ST segment and T-wave abnormalities, and deep Q waves. Atrial fibrillation may occasionally be seen.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - A 79-year-old man visits his doctor complaining of chest pain that occurs during...

    Incorrect

    • A 79-year-old man visits his doctor complaining of chest pain that occurs during physical activity and subsides after rest for the past three months. The doctor diagnoses him with angina and prescribes medications. Due to contraindications, beta blockers and calcium channel blockers are not suitable for this patient, so the doctor starts him on ranolazine. What is the main mechanism of action of ranolazine?

      Your Answer:

      Correct Answer: Inhibition of persistent or late inward sodium current

      Explanation:

      Ranolazine is a medication that works by inhibiting persistent or late sodium current in various voltage-gated sodium channels in heart muscle. This results in a decrease in intracellular calcium levels, which in turn reduces tension in the heart muscle and lowers its oxygen demand.

      Other medications used to treat angina include ivabradine, which inhibits funny channels, trimetazidine, which inhibits fatty acid metabolism, nitrates, which increase nitric oxide, and several drugs that reduce heart rate, such as beta blockers and calcium channel blockers.

      It is important to note that ranolazine is not typically the first medication prescribed for angina. The drug management of angina may vary depending on the individual patient’s needs and medical history.

      Angina pectoris can be managed through lifestyle changes, medication, percutaneous coronary intervention, and surgery. In 2011, NICE released guidelines for the management of stable angina. Medication is an important aspect of treatment, and all patients should receive aspirin and a statin unless there are contraindications. Sublingual glyceryl trinitrate can be used to abort angina attacks. NICE recommends using either a beta-blocker or a calcium channel blocker as first-line treatment, depending on the patient’s comorbidities, contraindications, and preferences. If a calcium channel blocker is used as monotherapy, a rate-limiting one such as verapamil or diltiazem should be used. If used in combination with a beta-blocker, a longer-acting dihydropyridine calcium channel blocker like amlodipine or modified-release nifedipine should be used. Beta-blockers should not be prescribed concurrently with verapamil due to the risk of complete heart block. If initial treatment is ineffective, medication should be increased to the maximum tolerated dose. If a patient is still symptomatic after monotherapy with a beta-blocker, a calcium channel blocker can be added, and vice versa. If a patient cannot tolerate the addition of a calcium channel blocker or a beta-blocker, long-acting nitrate, ivabradine, nicorandil, or ranolazine can be considered. If a patient is taking both a beta-blocker and a calcium-channel blocker, a third drug should only be added while awaiting assessment for PCI or CABG.

      Nitrate tolerance is a common issue for patients who take nitrates, leading to reduced efficacy. NICE advises patients who take standard-release isosorbide mononitrate to use an asymmetric dosing interval to maintain a daily nitrate-free time of 10-14 hours to minimize the development of nitrate tolerance. However, this effect is not seen in patients who take once-daily modified-release isosorbide mononitrate.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - What is the most suitable pathological explanation for the initial processes that occur...

    Incorrect

    • What is the most suitable pathological explanation for the initial processes that occur in an abdominal aortic aneurysm in a 67-year-old male with hypertension who is otherwise healthy?

      Your Answer:

      Correct Answer: Loss of elastic fibres from the media

      Explanation:

      Aneurysmal disease is characterized by the expansion of all layers of the arterial wall and the depletion of both elastin and collagen. The initial occurrence involves the breakdown of elastic fibers, which leads to the deterioration of collagen fibers.

      Understanding the Pathology of Abdominal Aortic Aneurysm

      Abdominal aortic aneurysms occur when the elastic proteins within the extracellular matrix fail, resulting in the dilation of all layers of the arterial wall. This degenerative disease is primarily caused by the loss of the intima and elastic fibers from the media, which is associated with increased proteolytic activity and lymphocytic infiltration. Aneurysms are typically considered aneurysmal when the diameter of the infrarenal aorta is 3 cm or greater, which is significantly larger than the normal diameter of 1.5cm in females and 1.7cm in males after the age of 50 years.

      Smoking and hypertension are major risk factors for the development of aneurysms, while rare but important causes include syphilis and connective tissue diseases such as Ehlers Danlos type 1 and Marfan’s syndrome. Understanding the pathology of abdominal aortic aneurysm is crucial in identifying and managing the risk factors associated with this condition. By addressing these risk factors, individuals can reduce their likelihood of developing an aneurysm and improve their overall health.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (0/1) 0%
Passmed