00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which one of the following vessels does not directly drain into the inferior...

    Incorrect

    • Which one of the following vessels does not directly drain into the inferior vena cava?

      Your Answer: Right testicular vein

      Correct Answer: Superior mesenteric vein

      Explanation:

      The portal vein receives drainage from the superior mesenteric vein, while the right and left hepatic veins directly drain into it. This can result in significant bleeding in cases of severe liver lacerations.

      Anatomy of the Inferior Vena Cava

      The inferior vena cava (IVC) originates from the fifth lumbar vertebrae and is formed by the merging of the left and right common iliac veins. It passes to the right of the midline and receives drainage from paired segmental lumbar veins throughout its length. The right gonadal vein empties directly into the cava, while the left gonadal vein usually empties into the left renal vein. The renal veins and hepatic veins are the next major veins that drain into the IVC. The IVC pierces the central tendon of the diaphragm at the level of T8 and empties into the right atrium of the heart.

      The IVC is related anteriorly to the small bowel, the first and third parts of the duodenum, the head of the pancreas, the liver and bile duct, the right common iliac artery, and the right gonadal artery. Posteriorly, it is related to the right renal artery, the right psoas muscle, the right sympathetic chain, and the coeliac ganglion.

      The IVC is divided into different levels based on the veins that drain into it. At the level of T8, it receives drainage from the hepatic vein and inferior phrenic vein before piercing the diaphragm. At the level of L1, it receives drainage from the suprarenal veins and renal vein. At the level of L2, it receives drainage from the gonadal vein, and at the level of L1-5, it receives drainage from the lumbar veins. Finally, at the level of L5, the common iliac vein merges to form the IVC.

    • This question is part of the following fields:

      • Cardiovascular System
      40.5
      Seconds
  • Question 2 - A 65-year-old patient has been discharged from the hospital after experiencing a myocardial...

    Correct

    • A 65-year-old patient has been discharged from the hospital after experiencing a myocardial infarction. What is the most suitable combination of medication for the patient to be discharged with?

      Your Answer: Aspirin, beta blocker, ACE inhibitor and statin

      Explanation:

      Medications for Secondary Prevention of Myocardial Infarction

      According to the NICE guidelines on myocardial infarction (MI), patients who have suffered from a heart attack should be discharged with specific medications for secondary prevention. These medications include aspirin, ACE inhibitors, beta-blockers, and statins. The purpose of these medications is to prevent further cardiac events and improve the patient’s overall cardiovascular health.

      Aspirin is a blood thinner that helps to prevent blood clots from forming in the arteries, which can lead to another heart attack. ACE inhibitors help to lower blood pressure and reduce the workload on the heart, which can help to prevent further damage to the heart muscle. Beta-blockers also help to lower blood pressure and reduce the workload on the heart, as well as slow down the heart rate. Statins are cholesterol-lowering medications that help to reduce the risk of plaque buildup in the arteries, which can lead to a heart attack.

      These medications are prescribed for tertiary prevention, which means they are used in conjunction with cardiac rehabilitation to help prevent future cardiac events. Cardiac rehabilitation typically involves exercise, education, and counseling to help patients make lifestyle changes that can improve their cardiovascular health.

      In summary, patients who have suffered from a heart attack should be discharged with aspirin, ACE inhibitors, beta-blockers, and statins for secondary prevention. These medications, along with cardiac rehabilitation, can help to prevent future cardiac events and improve the patient’s overall cardiovascular health.

    • This question is part of the following fields:

      • Cardiovascular System
      32.2
      Seconds
  • Question 3 - A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon...

    Incorrect

    • A 65-year-old woman visits the clinic complaining of increasing fatigue and weakness. Upon examination, there are no notable symptoms except for a low serum potassium level found in her blood test. After informing her of the results, she reveals that she has been experiencing palpitations and dizziness for a few hours. You advise her to go to the emergency department for an ECG and treatment. What ECG indication is associated with hypokalaemia?

      Your Answer: Small or absent P waves

      Correct Answer: ST segment depression

      Explanation:

      ECG changes indicating hypokalaemia include ST-segment depression, along with other signs such as small or absent P waves, tall tented T waves, and broad bizarre QRS complexes. On the other hand, hyperkalaemia can be identified through ECG signs such as a long PR interval and a sine wave pattern, as well as tall tented T waves and broad bizarre QRS complexes. Prolongation of the PR interval may be seen in both hypokalaemia and hyperkalaemia, while a short PR interval suggests pre-excitation or an AV nodal rhythm. Patients with hypokalaemia may present with symptoms such as fatigue, muscle weakness, myalgia, muscle cramps, constipation, hyporeflexia, and in rare cases, paralysis. It is worth noting that abnormalities in serum potassium levels are often discovered incidentally.

      Hypokalaemia, a condition characterized by low levels of potassium in the blood, can be detected through ECG features. These include the presence of U waves, small or absent T waves (which may occasionally be inverted), a prolonged PR interval, ST depression, and a long QT interval. The ECG image provided shows typical U waves and a borderline PR interval. To remember these features, one user suggests the following rhyme: In Hypokalaemia, U have no Pot and no T, but a long PR and a long QT.

    • This question is part of the following fields:

      • Cardiovascular System
      89.5
      Seconds
  • Question 4 - A 72-year-old male with urinary incontinence visits the urogynaecology clinic and is diagnosed...

    Incorrect

    • A 72-year-old male with urinary incontinence visits the urogynaecology clinic and is diagnosed with overactive bladder incontinence. He is prescribed a medication that works by blocking the parasympathetic pathway. What other drugs have a similar mechanism of action to the one he was prescribed?

      Your Answer: Alfuzosin

      Correct Answer: Atropine

      Explanation:

      Atropine is classified as an antimuscarinic drug that works by inhibiting the M1 to M5 muscarinic receptors. While oxybutynin is commonly prescribed for urinary incontinence due to its ability to block the M3 muscarinic receptors, atropine is more frequently used in anesthesia to reduce salivation before intubation.

      Alfuzosin, on the other hand, is an alpha blocker that is primarily used to treat benign prostate hyperplasia.

      Meropenem is an antibiotic that is reserved for infections caused by bacteria that are resistant to most beta-lactams. However, it is typically used as a last resort due to its potential adverse effects.

      Mirabegron is another medication used to treat urinary incontinence, but it works by activating the β3 adrenergic receptors.

      Understanding Atropine and Its Uses

      Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.

      Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.

    • This question is part of the following fields:

      • Cardiovascular System
      1.4
      Seconds
  • Question 5 - The following result is obtained on a 48-year-old male who is admitted with...

    Incorrect

    • The following result is obtained on a 48-year-old male who is admitted with acute onset chest pain:
      Serum Cholesterol 7.3 mmol/L (<5.2)
      He has a strong family history of ischaemic heart disease.
      What abnormalities might be expected upon examination of this man?

      Your Answer: Hepatomegaly

      Correct Answer: Tendon nodules

      Explanation:

      Familial Hypercholesterolaemia and its Manifestations

      Familial hypercholesterolaemia is a condition characterized by high levels of cholesterol in the blood. This condition is often indicated by the deposition of cholesterol in various parts of the body. The history of the patient suggests that they may be suffering from familial hypercholesterolaemia. The deposition of cholesterol can be observed around the corneal arcus, around the eye itself (xanthelasma), and in tendons such as achilles, knuckles or triceps tendons (tendon xanthomas).

      While dietary and lifestyle modifications are recommended, they are usually not enough to manage the condition. High dose lifelong statin therapy is often necessary to control the levels of cholesterol in the blood. It is important to seek medical attention and follow the recommended treatment plan to prevent further complications associated with familial hypercholesterolaemia. The National Institute for Health and Care Excellence (NICE) recommends the use of statin therapy in conjunction with lifestyle modifications for the management of familial hypercholesterolaemia.

    • This question is part of the following fields:

      • Cardiovascular System
      20.4
      Seconds
  • Question 6 - A 56-year-old male comes to your clinic complaining of occasional chest pain that...

    Incorrect

    • A 56-year-old male comes to your clinic complaining of occasional chest pain that usually occurs after meals and typically subsides within a few hours. He has a medical history of bipolar disorder, osteoarthritis, gout, and hyperparathyroidism. Currently, he is undergoing a prolonged course of antibiotics for prostatitis.

      During his visit, an ECG reveals a QT interval greater than 520 ms.

      What is the most likely cause of the observed ECG changes?

      - Lithium overdose
      - Paracetamol use
      - Hypercalcemia
      - Erythromycin use
      - Amoxicillin use

      Explanation: The most probable cause of the prolonged QT interval is erythromycin use, which is commonly associated with this ECG finding. Given the patient's medical history, it is likely that he is taking erythromycin for his prostatitis. Amoxicillin is not known to cause QT prolongation. Lithium toxicity typically presents with symptoms such as vomiting, diarrhea, tremors, and agitation. Hypercalcemia is more commonly associated with a short QT interval, making it an unlikely cause. Paracetamol is not known to cause QT prolongation.

      Your Answer: Hypercalcaemia

      Correct Answer: Erythromycin use

      Explanation:

      The prolonged QT interval can be caused by erythromycin.

      It is highly probable that the patient is taking erythromycin to treat his prostatitis, which is the reason for the prolonged QT interval.

      Long QT syndrome (LQTS) is a genetic condition that causes a delay in the ventricles’ repolarization. This delay can lead to ventricular tachycardia/torsade de pointes, which can cause sudden death or collapse. The most common types of LQTS are LQT1 and LQT2, which are caused by defects in the alpha subunit of the slow delayed rectifier potassium channel. A normal corrected QT interval is less than 430 ms in males and 450 ms in females.

      There are various causes of a prolonged QT interval, including congenital factors, drugs, and other conditions. Congenital factors include Jervell-Lange-Nielsen syndrome and Romano-Ward syndrome. Drugs that can cause a prolonged QT interval include amiodarone, sotalol, tricyclic antidepressants, and selective serotonin reuptake inhibitors. Other factors that can cause a prolonged QT interval include electrolyte imbalances, acute myocardial infarction, myocarditis, hypothermia, and subarachnoid hemorrhage.

      LQTS may be detected on a routine ECG or through family screening. Long QT1 is usually associated with exertional syncope, while Long QT2 is often associated with syncope following emotional stress, exercise, or auditory stimuli. Long QT3 events often occur at night or at rest and can lead to sudden cardiac death.

      Management of LQTS involves avoiding drugs that prolong the QT interval and other precipitants if appropriate. Beta-blockers are often used, and implantable cardioverter defibrillators may be necessary in high-risk cases. It is important to note that sotalol may exacerbate LQTS.

    • This question is part of the following fields:

      • Cardiovascular System
      24.6
      Seconds
  • Question 7 - A 24-year-old patient is brought to the emergency department after ingesting a bottle...

    Correct

    • A 24-year-old patient is brought to the emergency department after ingesting a bottle of insecticide and experiencing multiple episodes of vomiting. The suspected diagnosis is organophosphate poisoning and the patient is being treated with supportive measures and atropine. What potential side effect of atropine administration should be monitored for in this patient?

      Your Answer: Hypohidrosis

      Explanation:

      Hypohidrosis is a possible side-effect of Atropine.

      Atropine is an anticholinergic drug that works by blocking the muscarinic acetylcholine receptor in a competitive manner. Its side-effects may include tachycardia, mydriasis, dry mouth, hypohidrosis, constipation, and urinary retention. It is important to note that the other listed side-effects are typically associated with muscarinic agonist drugs like pilocarpine.

      Understanding Atropine and Its Uses

      Atropine is a medication that works against the muscarinic acetylcholine receptor. It is commonly used to treat symptomatic bradycardia and organophosphate poisoning. In cases of bradycardia with adverse signs, IV atropine is the first-line treatment. However, it is no longer recommended for routine use in asystole or pulseless electrical activity (PEA) during advanced life support.

      Atropine has several physiological effects, including tachycardia and mydriasis. However, it is important to note that it may trigger acute angle-closure glaucoma in susceptible patients. Therefore, it is crucial to use atropine with caution and under the guidance of a healthcare professional. Understanding the uses and effects of atropine can help individuals make informed decisions about their healthcare.

    • This question is part of the following fields:

      • Cardiovascular System
      24
      Seconds
  • Question 8 - Ella, a 69-year-old female, arrives at the emergency department with abrupt tearing abdominal...

    Incorrect

    • Ella, a 69-year-old female, arrives at the emergency department with abrupt tearing abdominal pain that radiates to her back.

      Ella has a medical history of hypertension, hypercholesterolemia, and diabetes. Her body mass index is 31 kg/m². She smokes 10 cigarettes a day.

      The emergency physician orders an ECG and MRI, which confirm the diagnosis of an aortic dissection.

      Which layer or layers of the aorta are impacted?

      Your Answer:

      Correct Answer: Tear in tunica intima

      Explanation:

      An aortic dissection occurs when there is a tear in the innermost layer (tunica intima) of the aorta’s wall. This tear allows blood to flow into the space between the tunica intima and the middle layer (tunica media), causing pooling. The tear only affects the tunica intima layer and does not involve the outermost layer (tunica externa) or all three layers of the aortic wall.

      Aortic dissection is a serious condition that can cause chest pain. It occurs when there is a tear in the inner layer of the aorta’s wall. Hypertension is the most significant risk factor, but it can also be associated with trauma, bicuspid aortic valve, and certain genetic disorders. Symptoms of aortic dissection include severe and sharp chest or back pain, weak or absent pulses, hypertension, and aortic regurgitation. Specific arteries’ involvement can cause other symptoms such as angina, paraplegia, or limb ischemia. The Stanford classification divides aortic dissection into type A, which affects the ascending aorta, and type B, which affects the descending aorta. The DeBakey classification further divides type A into type I, which extends to the aortic arch and beyond, and type II, which is confined to the ascending aorta. Type III originates in the descending aorta and rarely extends proximally.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 9 - A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness...

    Incorrect

    • A 45-year-old woman presents to the cardiology clinic complaining of palpitations and shortness of breath for the past 6 weeks. She has a medical history of rheumatic fever and eczema.

      During the physical examination, the patient exhibits a malar flush and a loud S1 with an opening snap is heard upon auscultation. Her heart rhythm is irregularly irregular. A chest x-ray is ordered and reveals a double heart border.

      What other symptom is this patient likely to encounter?

      Your Answer:

      Correct Answer: Difficulty swallowing

      Explanation:

      The statement about left atrial enlargement compressing the esophagus in mitral stenosis is correct. This can lead to difficulty swallowing. The patient’s medical history of rheumatic fever, along with clinical signs such as malar flush, a loud S1 with opening snap, and an irregularly irregular heart rhythm (likely atrial fibrillation), suggest a diagnosis of mitral stenosis. This condition obstructs the outflow of blood from the left atrium into the left ventricle, causing the left atrium to enlarge and compress surrounding structures. Left atrial enlargement can also increase the risk of developing arrhythmias like atrial fibrillation.

      The statements about arm and facial swelling, constipation, and neck pain are incorrect. Arm and facial swelling occur due to compression of the superior vena cava, which is not caused by left atrial enlargement. Constipation is not a symptom of mitral stenosis, but patients may experience abdominal discomfort due to right-sided heart failure. Neck pain is not associated with mitral stenosis, but neck vein distention may be observed.

      Understanding Mitral Stenosis

      Mitral stenosis is a condition where the mitral valve, which controls blood flow from the left atrium to the left ventricle, becomes obstructed. This leads to an increase in pressure within the left atrium, pulmonary vasculature, and right side of the heart. The most common cause of mitral stenosis is rheumatic fever, but it can also be caused by other rare conditions such as mucopolysaccharidoses, carcinoid, and endocardial fibroelastosis.

      Symptoms of mitral stenosis include dyspnea, hemoptysis, a mid-late diastolic murmur, a loud S1, and a low volume pulse. Severe cases may also present with an increased length of murmur and a closer opening snap to S2. Chest x-rays may show left atrial enlargement, while echocardiography can confirm a cross-sectional area of less than 1 sq cm for a tight mitral stenosis.

      Management of mitral stenosis depends on the severity of the condition. Asymptomatic patients are monitored with regular echocardiograms, while symptomatic patients may undergo percutaneous mitral balloon valvotomy or mitral valve surgery. Patients with associated atrial fibrillation require anticoagulation, with warfarin currently recommended for moderate/severe cases. However, there is an emerging consensus that direct-acting anticoagulants may be suitable for mild cases with atrial fibrillation.

      Overall, understanding mitral stenosis is important for proper diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 10 - A nursing student is being consented for a parathyroidectomy for symptomatic hyperparathyroidism. The...

    Incorrect

    • A nursing student is being consented for a parathyroidectomy for symptomatic hyperparathyroidism. The parathyroid gland consists of 2 superior and 2 inferior glands. The patient is informed that all four glands will be removed in order to achieve a complete resolution of her symptoms. You explain to her that the superior and inferior glands are derived from different structures.

      From which one of the following embryological structures are the superior parathyroid glands derived from?

      Your Answer:

      Correct Answer: Fourth pharyngeal pouch

      Explanation:

      The superior parathyroid glands are formed from the fourth pharyngeal pouch during embryonic development. The pharyngeal pouches develop between the branchial arches, with the first pouch located between the first and second arches. There are four pairs of pouches, with the fifth pouch being either absent or very small. A helpful mnemonic to remember the derivatives of the four pharyngeal pouches is 1A, 2P, 3 TIP, 4 SUB. This stands for the auditory tube, middle ear cavity, and mastoid antrum for the first pouch; the crypts of the palatine tonsil for the second pouch; the thymus and inferior parathyroid gland for the third pouch; and the superior parathyroid gland and ultimobranchial body for the fourth pouch.

      Anatomy and Development of the Parathyroid Glands

      The parathyroid glands are four small glands located posterior to the thyroid gland within the pretracheal fascia. They develop from the third and fourth pharyngeal pouches, with those derived from the fourth pouch located more superiorly and associated with the thyroid gland, while those from the third pouch lie more inferiorly and may become associated with the thymus.

      The blood supply to the parathyroid glands is derived from the inferior and superior thyroid arteries, with a rich anastomosis between the two vessels. Venous drainage is into the thyroid veins. The parathyroid glands are surrounded by various structures, with the common carotid laterally, the recurrent laryngeal nerve and trachea medially, and the thyroid anteriorly. Understanding the anatomy and development of the parathyroid glands is important for their proper identification and preservation during surgical procedures.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 11 - A 34-year-old woman visits her doctor after discovering she is pregnant. She is...

    Incorrect

    • A 34-year-old woman visits her doctor after discovering she is pregnant. She is currently taking the following medications:

      - Loratadine 10mg once daily
      - Omeprazole 10mg once daily
      - Metformin 500mg three times daily
      - Warfarin 5 mg once daily
      - Senna 15mg at night

      Which medication(s) should she discontinue during her pregnancy?

      Your Answer:

      Correct Answer: Warfarin

      Explanation:

      Understanding Warfarin: Mechanism of Action, Indications, Monitoring, Factors, and Side-Effects

      Warfarin is an oral anticoagulant that has been widely used for many years to manage venous thromboembolism and reduce stroke risk in patients with atrial fibrillation. However, it has been largely replaced by direct oral anticoagulants (DOACs) due to their ease of use and lack of need for monitoring. Warfarin works by inhibiting epoxide reductase, which prevents the reduction of vitamin K to its active hydroquinone form. This, in turn, affects the carboxylation of clotting factor II, VII, IX, and X, as well as protein C.

      Warfarin is indicated for patients with mechanical heart valves, with the target INR depending on the valve type and location. Mitral valves generally require a higher INR than aortic valves. It is also used as a second-line treatment after DOACs for venous thromboembolism and atrial fibrillation, with target INRs of 2.5 and 3.5 for recurrent cases. Patients taking warfarin are monitored using the INR, which may take several days to achieve a stable level. Loading regimes and computer software are often used to adjust the dose.

      Factors that may potentiate warfarin include liver disease, P450 enzyme inhibitors, cranberry juice, drugs that displace warfarin from plasma albumin, and NSAIDs that inhibit platelet function. Warfarin may cause side-effects such as haemorrhage, teratogenic effects, skin necrosis, temporary procoagulant state, thrombosis, and purple toes.

      In summary, understanding the mechanism of action, indications, monitoring, factors, and side-effects of warfarin is crucial for its safe and effective use in patients. While it has been largely replaced by DOACs, warfarin remains an important treatment option for certain patients.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 12 - A 25-year-old man has been diagnosed with an abnormal electrical connection in his...

    Incorrect

    • A 25-year-old man has been diagnosed with an abnormal electrical connection in his heart, resulting in frequent palpitations, dizzy spells, and shortness of breath. Delta waves are also evident on his ECG. Would ablation of the coronary sinus be a viable treatment option for this condition?

      From which embryological structure is the target for this surgery derived?

      Your Answer:

      Correct Answer: Left horn of the sinus venosus

      Explanation:

      The sinus venosus has two horns, left and right. The left horn gives rise to the coronary sinus, while the right horn forms the smooth part of the right atrium. In patients with Wolff-Parkinson-White syndrome, an abnormal conduction pathway exists in the heart. To eliminate this pathway, a treatment called ablation of the coronary sinus is used. This involves destroying the conducting pathway that runs through the coronary sinus, which is formed from the left horn of the sinus venosus during embryonic development.

      During cardiovascular embryology, the heart undergoes significant development and differentiation. At around 14 days gestation, the heart consists of primitive structures such as the truncus arteriosus, bulbus cordis, primitive atria, and primitive ventricle. These structures give rise to various parts of the heart, including the ascending aorta and pulmonary trunk, right ventricle, left and right atria, and majority of the left ventricle. The division of the truncus arteriosus is triggered by neural crest cell migration from the pharyngeal arches, and any issues with this migration can lead to congenital heart defects such as transposition of the great arteries or tetralogy of Fallot. Other structures derived from the primitive heart include the coronary sinus, superior vena cava, fossa ovalis, and various ligaments such as the ligamentum arteriosum and ligamentum venosum. The allantois gives rise to the urachus, while the umbilical artery becomes the medial umbilical ligaments and the umbilical vein becomes the ligamentum teres hepatis inside the falciform ligament. Overall, cardiovascular embryology is a complex process that involves the differentiation and development of various structures that ultimately form the mature heart.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 13 - A patient develops a broad complex tachycardia three days following a myocardial infarction....

    Incorrect

    • A patient develops a broad complex tachycardia three days following a myocardial infarction. What is the primary mechanism of action of intravenous amiodarone in this case?

      Your Answer:

      Correct Answer: Blocks voltage-gated potassium channels

      Explanation:

      Amiodarone’s mechanism of action involves the inhibition of potassium channels.

      Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 14 - A 72-year-old man arrives at the emergency department with severe chest pain that...

    Incorrect

    • A 72-year-old man arrives at the emergency department with severe chest pain that spreads to his left arm and jaw. After conducting an ECG, you observe ST-segment elevation in leads I, aVL, and V4-V6, leading to a diagnosis of anterolateral ST-elevation MI. What is the primary artery that provides blood to the lateral region of the left ventricle?

      Your Answer:

      Correct Answer: Left circumflex artery

      Explanation:

      When the right coronary artery is blocked, it can lead to inferior myocardial infarction (MI) and changes in leads II, III, and aVF on an electrocardiogram (ECG). This is because the right coronary artery typically supplies blood to the sinoatrial (SA) and atrioventricular (AV) nodes, which can result in arrhythmias. The right marginal artery, which branches off from the right coronary artery near the bottom of the heart, runs along the heart’s lower edge towards the apex.

      The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.

      Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 15 - A 75-year-old man presents to the emergency department with acute chest pain that...

    Incorrect

    • A 75-year-old man presents to the emergency department with acute chest pain that is radiating to his left shoulder. He has a medical history of a previous transient ischaemic attack three years ago and is currently taking aspirin 75mg OD.

      Upon initial assessment, an ECG reveals ST-segment elevation in V1-V3. The patient undergoes percutaneous coronary intervention with a drug-eluting stent and is stable post-procedure. His treatment plan includes ramipril, ticagrelor, simvastatin, and atenolol.

      What is the mechanism of action of the newly prescribed antiplatelet medication?

      Your Answer:

      Correct Answer: Inhibit the binding of ADP to platelets

      Explanation:

      Ticagrelor and clopidogrel have a similar mechanism of action in inhibiting ADP binding to platelet receptors, which prevents platelet aggregation. In patients with STEMI who undergo percutaneous coronary intervention with a drug-eluting stent, dual antiplatelet therapy, beta-blockers, ACE inhibitors, and anti-hyperlipidemic drugs are commonly used for secondary management.

      Glycoprotein IIb/IIIa complex is a fibrinogen receptor found on platelets that, when activated, leads to platelet aggregation. Glycoprotein IIb/IIIa inhibitors, such as abciximab, bind to this receptor and prevent ligands like fibrinogen from accessing their binding site. Glycoprotein IIb/IIIa antagonists, like eptifibatide, compete with ligands for the receptor’s binding site, blocking the formation of thrombi.

      Dipyridamole inhibits platelet cAMP-phosphodiesterase, leading to increased intra-platelet cAMP and decreased arachidonic acid release, resulting in reduced thromboxane A2 formation. It also inhibits adenosine reuptake by vascular endothelial cells and erythrocytes, leading to increased adenosine concentration, activation of adenyl cyclase, and increased cAMP production.

      ADP receptor inhibitors, such as clopidogrel, prasugrel, ticagrelor, and ticlopidine, work by inhibiting the P2Y12 receptor, which leads to sustained platelet aggregation and stabilization of the platelet plaque. Clinical trials have shown that prasugrel and ticagrelor are more effective than clopidogrel in reducing short- and long-term ischemic events in high-risk patients with acute coronary syndrome or undergoing percutaneous coronary intervention. However, ticagrelor may cause dyspnea due to impaired clearance of adenosine, and there are drug interactions and contraindications to consider for each medication. NICE guidelines recommend dual antiplatelet treatment with aspirin and ticagrelor for 12 months as a secondary prevention strategy for ACS.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 16 - A 55-year-old male patient complains of sudden chest pain and is being evaluated...

    Incorrect

    • A 55-year-old male patient complains of sudden chest pain and is being evaluated for acute coronary syndrome. Upon fasting, his serum cholesterol level was found to be 7.1 mmol/L (<5.2). What is the best initial course of action for managing this patient?

      Your Answer:

      Correct Answer: Statin therapy

      Explanation:

      Statin Therapy for Hypercholesterolemia in Acute Coronary Syndrome

      Hypercholesterolemia is a common condition in patients with acute coronary syndrome. The initial treatment approach for such patients is statin therapy, which includes drugs like simvastatin, atorvastatin, and rosuvastatin. Statins have been proven to reduce mortality in both primary and secondary prevention studies. The target cholesterol concentration for patients with hypercholesterolemia and acute coronary syndrome is less than 5 mmol/L.

      According to NICE guidance, statins should be used more widely in conjunction with a QRISK2 score to stratify risk. This will help prevent cardiovascular disease and improve patient outcomes. The guidance recommends that statins be used in patients with a 10% or greater risk of developing cardiovascular disease within the next 10 years. By using statins in conjunction with risk stratification, healthcare professionals can provide more targeted and effective treatment for patients with hypercholesterolemia and acute coronary syndrome.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 17 - A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and...

    Incorrect

    • A 78-year-old woman visits her doctor complaining of increasing breathlessness at night and swollen ankles over the past 10 months. She has a medical history of ischaemic heart disease, but an echocardiogram reveals normal valve function. During the examination, the doctor detects a low-pitched sound at the start of diastole, following S2. What is the probable reason for this sound?

      Your Answer:

      Correct Answer: Rapid movement of blood entering ventricles from atria

      Explanation:

      S3 is an unusual sound that can be detected in certain heart failure patients. It is caused by the rapid movement and oscillation of blood into the ventricles.

      Another abnormal heart sound, S4, is caused by forceful atrial contraction and occurs later in diastole.

      While aortic regurgitation causes an early diastolic decrescendo murmur and mitral stenosis can cause a mid-diastolic rumble with an opening snap, these conditions are less likely as the echocardiogram reported normal valve function.

      A patent ductus arteriosus typically causes a continuous murmur and would present earlier in life.

      Heart sounds are the sounds produced by the heart during its normal functioning. The first heart sound (S1) is caused by the closure of the mitral and tricuspid valves, while the second heart sound (S2) is due to the closure of the aortic and pulmonary valves. The intensity of these sounds can vary depending on the condition of the valves and the heart. The third heart sound (S3) is caused by the diastolic filling of the ventricle and is considered normal in young individuals. However, it may indicate left ventricular failure, constrictive pericarditis, or mitral regurgitation in older individuals. The fourth heart sound (S4) may be heard in conditions such as aortic stenosis, HOCM, and hypertension, and is caused by atrial contraction against a stiff ventricle. The different valves can be best heard at specific sites on the chest wall, such as the left second intercostal space for the pulmonary valve and the right second intercostal space for the aortic valve.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 18 - One of the elderly patients at your general practice was recently hospitalized and...

    Incorrect

    • One of the elderly patients at your general practice was recently hospitalized and diagnosed with myeloma. It was discovered that they have severe chronic kidney disease. The patient comes in for an update on their condition. After reviewing their medications, you realize they are taking ramipril for hypertension, which is contraindicated in renal failure. What is the most accurate description of the effect of ACE inhibitors on glomerular filtration pressure?

      Your Answer:

      Correct Answer: Vasodilation of the efferent arteriole

      Explanation:

      The efferent arteriole experiences vasodilation as a result of ACE inhibitors and ARBs, which inhibit the production of angiotensin II and block its receptors. This leads to a decrease in glomerular filtration pressure and rate, particularly in individuals with renal artery stenosis. On the other hand, the afferent arteriole remains dilated due to the presence of prostaglandins. NSAIDs, which inhibit COX-1 and COX-2, can cause vasoconstriction of the afferent arteriole and a subsequent decrease in glomerular filtration pressure. In healthy individuals, the afferent arteriole remains dilated while the efferent arteriole remains constricted to maintain a balanced glomerular pressure. The patient in the scenario has been diagnosed with myeloma, a disease that arises from the malignant transformation of B-cells and is characterized by bone infiltration, hypercalcaemia, anaemia, and renal impairment.

      Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.

      While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.

      Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.

      The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 19 - A toddler is brought to the hospital at 18 months of age with...

    Incorrect

    • A toddler is brought to the hospital at 18 months of age with symptoms of increased work of breathing and difficulty while feeding. On examination, a continuous 'machinery' murmur is heard and is loudest at the left sternal edge. The cardiologist prescribes a dose of indomethacin. What is the mechanism of action of indomethacin?

      The baby was born prematurely at 36 weeks via an emergency cesarean section. Despite the early delivery, the baby appeared healthy and was given a dose of Vitamin K soon after birth. The mother lived in a cottage up in the mountains and was discharged the next day with her happy, healthy baby. However, six weeks later, the baby was brought back to the hospital with concerning symptoms.

      Your Answer:

      Correct Answer: Prostaglandin synthase inhibitor

      Explanation:

      Indomethacin is a medication that hinders the production of prostaglandins in infants with patent ductus arteriosus by inhibiting the activity of COX enzymes. On the other hand, bosentan, an endothelin receptor antagonist, is utilized to treat pulmonary hypertension by blocking the vasoconstricting effect of endothelin, leading to vasodilation. Although endothelin causes vasoconstriction by acting on endothelin receptors, it is not employed in managing PDA. Adenosine receptor antagonists like theophylline and caffeine are also not utilized in PDA management.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 20 - A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling...

    Incorrect

    • A 35-year-old man comes to the clinic complaining of occasional palpitations and feeling lightheaded. He reports no chest pain, shortness of breath, or swelling in his legs. Upon examination, no abnormalities are found. An ECG reveals a shortened PR interval and the presence of delta waves. What is the underlying pathophysiology of the most likely diagnosis?

      Your Answer:

      Correct Answer: Accessory pathway

      Explanation:

      The presence of intermittent palpitations and lightheadedness can be indicative of various conditions, but the detection of a shortened PR interval and delta wave on an ECG suggests the possibility of Wolff-Parkinson-White syndrome. This syndrome arises from an additional pathway connecting the atrium and ventricle.

      Understanding Wolff-Parkinson White Syndrome

      Wolff-Parkinson White (WPW) syndrome is a condition that occurs due to a congenital accessory conducting pathway between the atria and ventricles, leading to atrioventricular re-entry tachycardia (AVRT). This condition can cause AF to degenerate rapidly into VF as the accessory pathway does not slow conduction. The ECG features of WPW include a short PR interval, wide QRS complexes with a slurred upstroke known as a delta wave, and left or right axis deviation depending on the location of the accessory pathway. WPW is associated with various conditions such as HOCM, mitral valve prolapse, Ebstein’s anomaly, thyrotoxicosis, and secundum ASD.

      The definitive treatment for WPW is radiofrequency ablation of the accessory pathway. Medical therapy options include sotalol, amiodarone, and flecainide. However, sotalol should be avoided if there is coexistent atrial fibrillation as it may increase the ventricular rate and potentially deteriorate into ventricular fibrillation. WPW can be differentiated into type A and type B based on the presence or absence of a dominant R wave in V1. It is important to understand WPW and its associations to provide appropriate management and prevent potential complications.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 21 - A 55-year-old man with several cardiac risk factors arrives at the hospital with...

    Incorrect

    • A 55-year-old man with several cardiac risk factors arrives at the hospital with sudden onset chest pain in the center. The pain extends to his left arm and is accompanied by sweating and nausea.

      The patient's ECG reveals widespread T-wave inversion, which is a new finding compared to his previous ECGs. The level of troponin I in his serum is measured and confirmed to be elevated. The patient is initiated on treatment for acute coronary syndrome and transferred to a cardiac center.

      What is the target of this measured cardiac biomarker?

      Your Answer:

      Correct Answer: Actin

      Explanation:

      Troponin I is a cardiac biomarker that binds to actin, which holds the troponin-tropomyosin complex in place and regulates muscle contraction. It is the standard biomarker used in conjunction with ECGs and clinical findings to diagnose non-ST elevation myocardial infarction (NSTEMI). Troponin I is highly sensitive and specific for myocardial damage compared to other cardiac biomarkers. Troponin C, another subunit of troponin, plays a role in Ca2+-dependent regulation of muscle contraction and can also be used in the diagnosis of myocardial infarction, but it is less specific as it is found in both cardiac and skeletal muscle. Copeptin, an amino acid peptide, is released earlier than troponin during acute myocardial infarction but is not widely used in clinical practice and has no interaction with troponin. Myoglobin, an iron- and oxygen-binding protein found in both cardiac and skeletal muscle, has poor specificity for cardiac injury and is not involved in the troponin-tropomyosin complex.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 22 - A 36-year-old male comes to his GP complaining of chest pain that has...

    Incorrect

    • A 36-year-old male comes to his GP complaining of chest pain that has been present for a week. The pain worsens when he breathes in and is relieved when he sits forward. He also has a non-productive cough. He recently had a viral infection. An ECG was performed and showed global saddle-shaped ST elevation.

      Your Answer:

      Correct Answer: Acute pericarditis

      Explanation:

      Chest pain that is relieved by sitting or leaning forward is often a symptom of acute pericarditis. This condition is commonly caused by a viral infection and may also present with flu-like symptoms, non-productive cough, and dyspnea. ECG changes may show a saddle-shaped ST elevation.

      Cardiac tamponade, on the other hand, is characterized by Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds. Dyspnea and tachycardia may also be present.

      A myocardial infarction is unlikely if the chest pain has been present for a week, as it typically presents more acutely and with constant chest pain regardless of body positioning. ECG changes would also occur in specific territories rather than globally.

      A pneumothorax presents with sudden onset dyspnea, pleuritic chest pain, tachypnea, and sweating. No ECG changes would be observed.

      A pulmonary embolism typically presents with acute onset tachypnea, fever, tachycardia, and crackles. Signs of deep vein thrombosis may also be present.

      Acute Pericarditis: Causes, Features, Investigations, and Management

      Acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards. Other symptoms include non-productive cough, dyspnoea, and flu-like symptoms. Tachypnoea and tachycardia may also be present, along with a pericardial rub.

      The causes of acute pericarditis include viral infections, tuberculosis, uraemia, trauma, post-myocardial infarction, Dressler’s syndrome, connective tissue disease, hypothyroidism, and malignancy.

      Investigations for acute pericarditis include ECG changes, which are often global/widespread, as opposed to the ‘territories’ seen in ischaemic events. The ECG may show ‘saddle-shaped’ ST elevation and PR depression, which is the most specific ECG marker for pericarditis. All patients with suspected acute pericarditis should have transthoracic echocardiography.

      Management of acute pericarditis involves treating the underlying cause. A combination of NSAIDs and colchicine is now generally used as first-line treatment for patients with acute idiopathic or viral pericarditis.

      In summary, acute pericarditis is a possible diagnosis for patients presenting with chest pain. The condition is characterized by chest pain, which may be pleuritic and relieved by sitting forwards, along with other symptoms. The causes of acute pericarditis are varied, and investigations include ECG changes and transthoracic echocardiography. Management involves treating the underlying cause and using a combination of NSAIDs and colchicine as first-line treatment.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 23 - What is the correct description of the cardiac cycle in the middle of...

    Incorrect

    • What is the correct description of the cardiac cycle in the middle of diastole?

      Your Answer:

      Correct Answer: Aortic pressure is falling

      Explanation:

      the Cardiac Cycle

      The cardiac cycle is a complex process that involves the contraction and relaxation of the heart muscles to pump blood throughout the body. One important aspect of this cycle is the changes in aortic pressure during diastole and systole. During diastole, the aortic pressure falls as the heart relaxes and fills with blood. This is represented by the second heart sound, which signals the closing of the aortic and pulmonary valves.

      At the end of diastole and the beginning of systole, the mitral valve closes, marking the start of the contraction phase. This allows the heart to pump blood out of the left ventricle and into the aorta, increasing aortic pressure. the different phases of the cardiac cycle and the changes in pressure that occur during each phase is crucial for diagnosing and treating cardiovascular diseases. By studying the cardiovascular physiology concepts related to the cardiac cycle, healthcare professionals can better understand how the heart functions and how to maintain its health.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 24 - A 67-year-old man presents to the emergency department with chest pain. He describes...

    Incorrect

    • A 67-year-old man presents to the emergency department with chest pain. He describes this as crushing central chest pain which is associated with nausea and sweating.

      Blood results are as follows:

      Hb 148 g/L Male: (135-180)
      Female: (115 - 160)
      Platelets 268 * 109/L (150 - 400)
      WBC 14.6 * 109/L (4.0 - 11.0)
      Na+ 136 mmol/L (135 - 145)
      K+ 4.7 mmol/L (3.5 - 5.0)
      Urea 6.2 mmol/L (2.0 - 7.0)
      Creatinine 95 µmol/L (55 - 120)
      Troponin 4058 ng/L (< 14 ng/L)

      An ECG is performed which demonstrates:

      Current ECG Sinus rhythm, QRS 168ms, dominant S wave in V1
      Previous ECG 12 months ago No abnormality

      Which part of the heart's conduction system is likely to be affected?

      Your Answer:

      Correct Answer: Purkinje fibres

      Explanation:

      The Purkinje fibres have the highest conduction velocities in the heart, and a prolonged QRS (>120ms) with a dominant S wave in V1 may indicate left bundle branch block (LBBB). If a patient presents with chest pain, a raised troponin, and a previously normal ECG, LBBB should be considered as a possible cause and managed as an acute STEMI. LBBB is caused by damage to the left bundle branch and its associated Purkinje fibres.

      Understanding the Cardiac Action Potential and Conduction Velocity

      The cardiac action potential is a series of electrical events that occur in the heart during each heartbeat. It is responsible for the contraction of the heart muscle and the pumping of blood throughout the body. The action potential is divided into five phases, each with a specific mechanism. The first phase is rapid depolarization, which is caused by the influx of sodium ions. The second phase is early repolarization, which is caused by the efflux of potassium ions. The third phase is the plateau phase, which is caused by the slow influx of calcium ions. The fourth phase is final repolarization, which is caused by the efflux of potassium ions. The final phase is the restoration of ionic concentrations, which is achieved by the Na+/K+ ATPase pump.

      Conduction velocity is the speed at which the electrical signal travels through the heart. The speed varies depending on the location of the signal. Atrial conduction spreads along ordinary atrial myocardial fibers at a speed of 1 m/sec. AV node conduction is much slower, at 0.05 m/sec. Ventricular conduction is the fastest in the heart, achieved by the large diameter of the Purkinje fibers, which can achieve velocities of 2-4 m/sec. This allows for a rapid and coordinated contraction of the ventricles, which is essential for the proper functioning of the heart. Understanding the cardiac action potential and conduction velocity is crucial for diagnosing and treating heart conditions.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 25 - An 80-year-old man presents to the emergency department with complaints of chest pain,...

    Incorrect

    • An 80-year-old man presents to the emergency department with complaints of chest pain, dizziness, and palpitations. He has a medical history of mitral stenosis and denies any alcohol or smoking habits. Upon conducting an ECG, it is observed that lead I shows positively directed sawtooth deflections, while leads II, III, and aVF show negatively directed sawtooth deflections. What pathology does this finding suggest?

      Your Answer:

      Correct Answer: Atrial flutter

      Explanation:

      Atrial flutter is identified by a sawtooth pattern on the ECG and is a type of supraventricular tachycardia. It occurs when electrical activity from the sinoatrial node reenters the atria instead of being conducted to the ventricles. Valvular heart disease is a risk factor, and atrial flutter is managed similarly to atrial fibrillation.

      Left bundle branch block causes a delayed contraction of the left ventricle and is identified by a W pattern in V1 and an M pattern in V6 on an ECG. It does not produce a sawtooth pattern on the ECG.

      Ventricular fibrillation is characterized by chaotic electrical conduction in the ventricles, resulting in a lack of normal ventricular contraction. It can cause cardiac arrest and requires advanced life support management.

      Wolff-Parkinson-White syndrome is caused by an accessory pathway between the atria and the ventricles and is identified by a slurred upstroke at the beginning of the QRS complex, known as a delta wave. It can present with symptoms such as palpitations, shortness of breath, and syncope.

      Atrial flutter is a type of supraventricular tachycardia that is characterized by a series of rapid atrial depolarization waves. This condition can be identified through ECG findings, which show a sawtooth appearance. The underlying atrial rate is typically around 300 beats per minute, which can affect the ventricular or heart rate depending on the degree of AV block. For instance, if there is a 2:1 block, the ventricular rate will be 150 beats per minute. Flutter waves may also be visible following carotid sinus massage or adenosine.

      Managing atrial flutter is similar to managing atrial fibrillation, although medication may be less effective. However, atrial flutter is more sensitive to cardioversion, so lower energy levels may be used. For most patients, radiofrequency ablation of the tricuspid valve isthmus is curative.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 26 - A patient in their 60s develops complete heart block in hospital after experiencing...

    Incorrect

    • A patient in their 60s develops complete heart block in hospital after experiencing a myocardial infarction. Their ECG displays a heart rate of 37 beats per minute and desynchronisation of atrial and ventricular contraction. What is the most probable coronary artery that is occluded in heart block during a myocardial infarction, indicating damage to the AV node?

      Your Answer:

      Correct Answer: RIght coronary artery

      Explanation:

      The atrioventricular node is most likely supplied by the right coronary artery.

      The left coronary artery gives rise to the left anterior descending and circumflex arteries.

      An anterior myocardial infarction is caused by occlusion of the left anterior descending artery.

      The coronary sinus is a venous structure that drains blood from the heart and returns it to the right atrium.

      Understanding Coronary Circulation

      Coronary circulation refers to the blood flow that supplies the heart with oxygen and nutrients. The arterial supply of the heart is divided into two main branches: the left coronary artery (LCA) and the right coronary artery (RCA). The LCA originates from the left aortic sinus, while the RCA originates from the right aortic sinus. The LCA further divides into two branches, the left anterior descending (LAD) and the circumflex artery, while the RCA supplies the posterior descending artery.

      The LCA supplies the left ventricle, left atrium, and interventricular septum, while the RCA supplies the right ventricle and the inferior wall of the left ventricle. The SA node, which is responsible for initiating the heartbeat, is supplied by the RCA in 60% of individuals, while the AV node, which is responsible for regulating the heartbeat, is supplied by the RCA in 90% of individuals.

      On the other hand, the venous drainage of the heart is through the coronary sinus, which drains into the right atrium. During diastole, the coronary arteries fill with blood, allowing for the delivery of oxygen and nutrients to the heart muscles. Understanding the coronary circulation is crucial in the diagnosis and management of various heart diseases.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 27 - A 78-year-old woman has recently been diagnosed with heart failure following 10 months...

    Incorrect

    • A 78-year-old woman has recently been diagnosed with heart failure following 10 months of progressive breathlessness and swelling in her ankles. She has been prescribed several medications and provided with lifestyle recommendations. What are the two types of infections that she is most susceptible to due to her recent diagnosis?

      Your Answer:

      Correct Answer: Chest infections and ulcerated cellulitic legs

      Explanation:

      As a result of the volume overload caused by heart failure, she will have a higher susceptibility to chest infections due to pulmonary edema and leg infections due to peripheral edema.

      Chronic heart failure can be managed through drug treatment, according to updated guidelines issued by NICE in 2018. While loop diuretics are useful in managing fluid overload, they do not reduce mortality in the long term. The first-line treatment for all patients is a combination of an ACE-inhibitor and a beta-blocker, with clinical judgement used to determine which one to start first. Aldosterone antagonists are recommended as second-line treatment, but potassium levels should be monitored as both ACE inhibitors and aldosterone antagonists can cause hyperkalaemia. Third-line treatment should be initiated by a specialist and may include ivabradine, sacubitril-valsartan, hydralazine in combination with nitrate, digoxin, and cardiac resynchronisation therapy. Other treatments include annual influenzae and one-off pneumococcal vaccines. Those with asplenia, splenic dysfunction, or chronic kidney disease may require a booster every 5 years.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 28 - Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother...

    Incorrect

    • Sophie, a 6-week-old baby, presents to the emergency department for evaluation. Her mother has observed that Sophie has been experiencing shortness of breath for the past 3 weeks, particularly during feeding. Sophie was born at 36 weeks and her mother reports no other issues since birth.

      During the examination, a continuous machinery murmur with a left-sided sub-clavicular thrill is detected, and a diagnosis of patent ductus arteriosus is made. Surgery is not deemed necessary, but a medication that inhibits prostaglandin synthesis is recommended.

      What is the most probable pharmacological treatment that will be offered?

      Your Answer:

      Correct Answer: Indomethacin

      Explanation:

      The inhibition of prostaglandin synthesis in infants with patent ductus arteriosus is achieved through the use of indomethacin. This medication (or ibuprofen) is effective in promoting closure of the ductus arteriosus by inhibiting prostaglandin synthesis.

      Beta-blockers such as bisoprolol are not used in the management of PDA, making this answer incorrect.

      Steroids like dexamethasone and prednisolone are not typically used in the treatment of PDA, although they may be given to the mother if premature delivery is expected. Therefore, these answers are also incorrect.

      Understanding Patent Ductus Arteriosus

      Patent ductus arteriosus is a type of congenital heart defect that is generally classified as ‘acyanotic’. However, if left uncorrected, it can eventually result in late cyanosis in the lower extremities, which is termed differential cyanosis. This condition is caused by a connection between the pulmonary trunk and descending aorta. Normally, the ductus arteriosus closes with the first breaths due to increased pulmonary flow, which enhances prostaglandins clearance. However, in some cases, this connection remains open, leading to patent ductus arteriosus.

      This condition is more common in premature babies, those born at high altitude, or those whose mothers had rubella infection in the first trimester. The features of patent ductus arteriosus include a left subclavicular thrill, continuous ‘machinery’ murmur, large volume, bounding, collapsing pulse, wide pulse pressure, and heaving apex beat.

      The management of patent ductus arteriosus involves the use of indomethacin or ibuprofen, which are given to the neonate. These medications inhibit prostaglandin synthesis and close the connection in the majority of cases. If patent ductus arteriosus is associated with another congenital heart defect amenable to surgery, then prostaglandin E1 is useful to keep the duct open until after surgical repair. Understanding patent ductus arteriosus is important for early diagnosis and management of this condition.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 29 - A 40-year-old male patient complains of shortness of breath, weight loss, and night...

    Incorrect

    • A 40-year-old male patient complains of shortness of breath, weight loss, and night sweats for the past six weeks. Despite being generally healthy, he is experiencing these symptoms. During the examination, the patient's fingers show clubbing, and his temperature is 37.8°C. His pulse is 88 beats per minute, and his blood pressure is 128/80 mmHg. Upon listening to his heart, a pansystolic murmur is audible. What signs are likely to be found in this patient?

      Your Answer:

      Correct Answer: Splinter haemorrhages

      Explanation:

      Symptoms and Diagnosis of Infective Endocarditis

      This individual has a lengthy medical history of experiencing night sweats and has developed clubbing of the fingers, along with a murmur. These symptoms are indicative of infective endocarditis. In addition to splinter hemorrhages in the nails, other symptoms that may be present include Roth spots in the eyes, Osler’s nodes and Janeway lesions in the palms and fingers of the hands, and splenomegaly instead of cervical lymphadenopathy. Cyanosis is not typically associated with clubbing and may suggest idiopathic pulmonary fibrosis or cystic fibrosis in younger individuals. However, this individual has no prior history of cystic fibrosis and has only been experiencing symptoms for six weeks.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds
  • Question 30 - A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives...

    Incorrect

    • A 65-year-old man with a history of hypertension, diabetes and high cholesterol arrives at the hospital complaining of severe chest pain that spreads to his jaw. He has vomited twice and feels lightheaded.

      An electrocardiogram (ECG) reveals widespread ST elevation with reciprocal ST-segment depression. A troponin T serum level is obtained and confirms an elevated reading.

      What is the target of this cardiac biomarker?

      Your Answer:

      Correct Answer: Tropomyosin

      Explanation:

      The troponin-tropomyosin complex is formed when troponin T binds to tropomyosin. In cases of ST-elevation myocardial infarction (STEMI), elevated levels of troponin T in the bloodstream can confirm the presence of cardiac tissue damage. This biomarker plays a role in regulating muscle contraction by binding to tropomyosin. However, troponin I, not troponin T, binds to actin to hold the troponin-tropomyosin complex in place. While troponin T is released in cases of cardiac cell damage, it is considered less sensitive and specific than troponin I in diagnosing myocardial infarction.

      Understanding Troponin: The Proteins Involved in Muscle Contraction

      Troponin is a group of three proteins that play a crucial role in the contraction of skeletal and cardiac muscles. These proteins work together to regulate the interaction between actin and myosin, which is essential for muscle contraction. The three subunits of troponin are troponin C, troponin T, and troponin I.

      Troponin C is responsible for binding to calcium ions, which triggers the contraction of muscle fibers. Troponin T binds to tropomyosin, forming a complex that helps regulate the interaction between actin and myosin. Finally, troponin I binds to actin, holding the troponin-tropomyosin complex in place and preventing muscle contraction when it is not needed.

      Understanding the role of troponin is essential for understanding how muscles work and how they can be affected by various diseases and conditions. By regulating the interaction between actin and myosin, troponin plays a critical role in muscle contraction and is a key target for drugs used to treat conditions such as heart failure and skeletal muscle disorders.

    • This question is part of the following fields:

      • Cardiovascular System
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Cardiovascular System (3/7) 43%
Passmed