-
Question 1
Incorrect
-
A 60-year-old male patient complains of chronic productive cough and difficulty breathing. He has been smoking 10 cigarettes per day for the past 30 years. What is the number of pack years equivalent to his smoking history?
Your Answer: 300
Correct Answer: 15
Explanation:Pack Year Calculation
Pack year calculation is a tool used to estimate the risk of tobacco exposure. It is calculated by multiplying the number of packs of cigarettes smoked per day by the number of years of smoking. One pack of cigarettes contains 20 cigarettes. For instance, if a person smoked half a pack of cigarettes per day for 30 years, their pack year history would be 15 (1/2 x 30 = 15).
The pack year calculation is a standardized method of measuring tobacco exposure. It helps healthcare professionals to estimate the risk of developing smoking-related diseases such as lung cancer, chronic obstructive pulmonary disease (COPD), and heart disease. The higher the pack year history, the greater the risk of developing these diseases. Therefore, it is important for individuals who smoke or have a history of smoking to discuss their pack year history with their healthcare provider to determine appropriate screening and prevention measures.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 29-year-old man visits his primary care physician with complaints of a malodorous discharge from his right ear for the past 3 weeks. The patient also reports experiencing ear pain for the past 2 weeks and occasional mild dizziness. Upon examination, the skin around the ear and pinna appear normal, but the ear canal is filled with debris. After removing the debris, a small perforation and waxy debris are observed on the tympanic membrane.
The Rinne test indicates that bone conduction is better than air conduction on the right, and the Weber test shows sound lateralization to the right. The patient has no significant medical history and has never presented with an ear problem before.
What is the most likely condition based on this patient's clinical presentation?Your Answer: Myringitis
Correct Answer: Cholesteatoma
Explanation:Cholesteatoma is a growth of non-cancerous squamous epithelium that can be observed as an ‘attic crust’ during otoscopy. This patient is displaying symptoms consistent with cholesteatoma, including ear discharge, earache, conductive hearing loss, and dizziness, which suggests that the inner ear has also been affected. It is important to distinguish cholesteatoma from otitis externa, as failure to diagnose cholesteatoma can lead to serious complications. Cholesteatoma can erode the ossicles bones, damage the inner ear and vestibulocochlear nerve, and even result in brain infections if it erodes through the skull bone.
Otitis externa is an inflammation of the outer ear canal that causes ear pain, which worsens with movement of the outer ear. It is often caused by the use of earplugs or swimming in unclean water. Otitis media is an inflammation of the middle ear that can lead to fluid accumulation and perforation of the tympanic membrane. It is common in children and often follows a viral upper respiratory tract infection. Myringitis is a condition associated with otitis media that causes small vesicles or cysts to form on the surface of the eardrum, resulting in severe pain and hearing impairment. It is caused by viral or bacterial infections and is treated with pain relief and antibiotics.
Understanding Cholesteatoma
Cholesteatoma is a benign growth of squamous epithelium that can cause damage to the skull base. It is most commonly found in individuals between the ages of 10 and 20 years old. Those born with a cleft palate are at a higher risk of developing cholesteatoma, with a 100-fold increase in risk.
The main symptoms of cholesteatoma include a persistent discharge with a foul odor and hearing loss. Other symptoms may occur depending on the extent of the growth, such as vertigo, facial nerve palsy, and cerebellopontine angle syndrome.
During otoscopy, a characteristic attic crust may be seen in the uppermost part of the eardrum.
Management of cholesteatoma involves referral to an ear, nose, and throat specialist for surgical removal. Early detection and treatment are important to prevent further damage to the skull base and surrounding structures.
In summary, cholesteatoma is a non-cancerous growth that can cause significant damage if left untreated. It is important to be aware of the symptoms and seek medical attention promptly if they occur.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Correct
-
A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.
What specific lung volume would accurately describe the clinician's observation?Your Answer: Tidal volume (TV)
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Incorrect
-
A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'
What is the probable causative organism in this case?Your Answer: Pneumocystis jiroveci
Correct Answer: Klebsiella pneumoniae
Explanation:The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.
Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.
Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.
Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.
Understanding Klebsiella Pneumoniae
Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.
The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Correct
-
How many fissures can be found in the right lung?
At what age do these fissures typically develop?Your Answer: Two
Explanation:The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Incorrect
-
A 55-year-old man presents to his doctor with complaints of vertigo, which worsens when he rolls over in bed. The doctor diagnoses him with benign paroxysmal positional vertigo.
What treatment options are available to alleviate the symptoms of this condition?Your Answer: Dix-Hallpike manoeuvre
Correct Answer: Epley manoeuvre
Explanation:The Epley manoeuvre is a treatment for BPPV, while the Dix-Hallpike manoeuvre is used for diagnosis. The Epley manoeuvre aims to move fluid in the inner ear to dislodge otoliths, while the Dix-Hallpike manoeuvre involves observing the patient for nystagmus when swiftly lowered from a sitting to supine position. Tinel’s sign is positive in those with carpal tunnel syndrome, where tapping the median nerve over the flexor retinaculum causes paraesthesia. The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.
Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.
Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
A 35-year-old female patient presents to the GP with complaints of headaches, nasal congestion, and facial pain that worsens upon leaning forward. Sinusitis is suspected. Which sinus is typically affected in this condition?
Your Answer: Frontal
Correct Answer: Maxillary
Explanation:The maxillary sinus is susceptible to infections due to its drainage from the top. This sinus is the most frequently affected in cases of sinusitis. While frontal sinusitis can lead to intracranial complications, it is still less common than maxillary sinusitis.
The petrosal sinus is not a bone cavity, but rather a venous structure situated beneath the brain.
Acute sinusitis is a condition where the mucous membranes of the paranasal sinuses become inflamed. This inflammation is usually caused by infectious agents such as Streptococcus pneumoniae, Haemophilus influenzae, and rhinoviruses. Certain factors can predispose individuals to this condition, including nasal obstruction, recent local infections, swimming/diving, and smoking. Symptoms of acute sinusitis include facial pain, nasal discharge, and nasal obstruction. Treatment options include analgesia, intranasal decongestants or nasal saline, and intranasal corticosteroids. Oral antibiotics may be necessary for severe presentations, but they are not typically required. In some cases, an initial viral sinusitis can worsen due to secondary bacterial infection, which is known as double-sickening.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 65-year-old man presents with a persistent dry cough and unintentional weight loss of 5kg over the past 3 months. He denies experiencing chest pain, dyspnoea, fever or haemoptysis. The patient has a history of smoking 10 cigarettes a day for the last 50 years and has been diagnosed with COPD. A nodule is detected on chest x-ray, and biopsy results indicate a tumour originating from the bronchial glands.
What is the most probable diagnosis?Your Answer: Squamous cell carcinoma of the lung
Correct Answer: Adenocarcinoma of the lung
Explanation:Adenocarcinoma has become the most prevalent form of lung cancer, originating from the bronchial glands as a type of non-small-cell lung cancer.
While a bronchogenic cyst may cause chest pain and dysphagia, it is typically diagnosed during childhood and does not stem from the bronchial glands.
Sarcoidosis may result in a persistent cough and weight loss, but it typically affects multiple systems and does not involve nodules originating from the bronchial glands.
Small cell carcinoma of the lung is a significant consideration, but given the description of a tumor originating from the bronchial glands, adenocarcinoma is the more probable diagnosis.
Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?
Your Answer: Inversely proportional to the radius of the alveolus
Explanation:The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology
In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, and they will collapse first. This phenomenon explains why, when two balloons are attached together by their ends, the smaller balloon will empty into the bigger balloon.
In the lungs, this same principle applies to lung units, causing atelectasis and collapse when surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. Therefore, surfactant plays a crucial role in maintaining the proper functioning of the lungs and preventing respiratory distress. the relationship between alveolar size and surface tension is essential in respiratory physiology and can help in the development of treatments for lung diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
A 50-year-old man visits the GP clinic for a routine hearing examination. He reports no issues with his hearing and has no significant medical history or medication use. After conducting Rinne and Weber tests on the patient, you determine that his hearing is within normal limits.
What are the test findings for this patient?Your Answer: Rinne: bone conduction > air conduction bilaterally; Weber: equal in both ears
Correct Answer: Rinne: air conduction > bone conduction bilaterally; Weber: equal in both ears
Explanation:The patient’s hearing exam results indicate normal hearing. The Rinne test showed more air conduction than bone conduction in both ears, which is typical for normal hearing. The Weber test also showed equal results in both ears, indicating no significant difference in hearing between the ears.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Incorrect
-
A 35-year-old woman presents to the medical assessment unit with sudden onset shortness of breath. She reports no cough or fever and has no other associated symptoms. She recently returned from a hiking trip in France and takes the oral contraceptive pill but no other regular medications. She smokes 10 cigarettes a day but drinks no alcohol. On examination, she is tachypnoeic and tachycardic with an elevated JVP. Her calves are soft and non-tender with no pitting oedema. Initial blood tests show a positive D-dimer and elevated CRP. What is the appropriate treatment for this patient?
Your Answer: Intravenous unfractionated heparin
Correct Answer: Low molecular weight heparin
Explanation:Treatment for Suspected Pulmonary Embolism
When a patient presents with risk factors for pulmonary embolism (PE) such as recent travel and oral contraceptive pill use, along with symptoms like tachypnea, tachycardia, and hypoxia, it is important to consider the possibility of a significant PE. In such cases, treatment with low molecular weight heparin should be given promptly to prevent further complications. A low-grade fever is also common in venothromboembolic disease. Elevated JVP signifies significant right heart strain due to a significant PE, but maintained blood pressure is a positive sign.
The most common ECG finding in PE is an isolated sinus tachycardia, while the CXR may be clear, but prominent pulmonary arteries reflect pulmonary hypertension due to clot load in the pulmonary tree. A D-dimer test is recommended if the Wells score for PE is less than 4.
According to NICE guidelines on venous thromboembolic diseases, low molecular weight heparin is the appropriate initial treatment for suspected PE. It is important not to delay treatment to await CTPA unless it can be performed immediately. There is no evidence of pneumonia to warrant IV antibiotics. Unfractionated heparin may be considered for patients with an eGFR of less than 30, high risk of bleeding, or those undergoing thrombolysis, but this is not the case with this patient. Thrombolysis is not indicated unless there is haemodynamic instability, even in suspected large PEs.
In summary, prompt treatment with low molecular weight heparin is crucial in suspected cases of PE, and other treatment options should be considered based on individual patient factors.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
Mrs. Johnson is an 82-year-old woman who visited her General practitioner complaining of gradual worsening shortness of breath over the past two months. During the medical history, it was discovered that she has had Chronic Obstructive Pulmonary Disease (COPD) for 20 years.
Upon examination, there are no breath sounds at both lung bases and a stony dull note to percussion over the same areas. Based on this clinical scenario, what is the probable cause of her recent exacerbation of shortness of breath?Your Answer: Pulmonary oedema secondary to heart failure
Correct Answer: Pleural transudate effusion secondary to cor pulmonale
Explanation:The most likely cause of a pleural transudate is heart failure. This is due to the congestion of blood into the systemic venous circulation, which can result from long-standing COPD and increase in pulmonary vascular resistance leading to right-sided heart failure or cor pulmonale. Other options such as infective exacerbation of COPD or pulmonary edema secondary to heart failure are less likely to explain the clinical signs. Pleural exudate effusion secondary to cor pulmonale is also not the most appropriate answer as it would cause a transudate pleural effusion, not an exudate.
Understanding the Causes and Features of Pleural Effusion
Pleural effusion is a medical condition characterized by the accumulation of fluid in the pleural space, which is the area between the lungs and the chest wall. The causes of pleural effusion can be classified into two types: transudate and exudate. Transudate is characterized by a protein concentration of less than 30g/L and is commonly caused by heart failure, hypoalbuminemia, liver disease, and other conditions. On the other hand, exudate is characterized by a protein concentration of more than 30g/L and is commonly caused by infections, pneumonia, tuberculosis, and other conditions.
The symptoms of pleural effusion may include dyspnea, non-productive cough, and chest pain. Upon examination, patients may exhibit dullness to percussion, reduced breath sounds, and reduced chest expansion. It is important to identify the underlying cause of pleural effusion to determine the appropriate treatment plan. Early diagnosis and treatment can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Correct
-
A senior citizen who has been a lifelong smoker visits the respiratory clinic for a check-up on his emphysema. What alterations in his lung function test results would you anticipate?
Your Answer: Increased residual volume and reduced vital capacity
Explanation:Emphysema causes an increase in residual volume, leading to a decrease in vital capacity. This is due to damage to the alveolar walls, which results in the formation of large air sacs called bullae. The lungs lose their compliance, making it difficult to fully exhale and causing air to become trapped in the bullae. As a result, the total volume that can be exhaled is reduced, leading to a decrease in vital capacity.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 25-year-old female patient visits your clinic complaining of hearing loss. According to her, her hearing has been declining for about two years, with her left ear being worse than the right. She struggles to hear her partner when he is on her left side. Additionally, she has been experiencing tinnitus in her left ear for a year. She mentions that her mother also has hearing difficulties and uses hearing aids on both ears. During the examination, the Rinne test shows a negative result on the left and a positive result on the right. On the other hand, the Weber test indicates that the sound is louder on the left. What is the probable impairment?
Your Answer: Conductive hearing loss on the right.
Correct Answer: Conductive hearing loss on the left.
Explanation:Based on the results of the Weber and Rinne tests, the patient in the question is likely experiencing conductive hearing loss on the left side. The Weber test revealed that the patient hears sound better on the left side, which could indicate a conductive hearing loss or sensorineural hearing loss on the right side. However, the Rinne test was negative on the left side, indicating a conductive hearing loss. This is further supported by the patient’s reported symptoms of hearing loss in the left ear. This presentation, along with a family history of hearing loss, suggests a possible diagnosis of otosclerosis, a condition that affects the stapes bone and can lead to severe or total hearing loss.
Understanding the Different Causes of Deafness
Deafness can be caused by various factors, with ear wax, otitis media, and otitis externa being the most common. However, there are other conditions that can lead to hearing loss, each with its own characteristic features. Presbycusis, for instance, is age-related sensorineural hearing loss that often makes it difficult for patients to follow conversations. Otosclerosis, on the other hand, is an autosomal dominant condition that replaces normal bone with vascular spongy bone, causing conductive deafness, tinnitus, and a flamingo tinge in the tympanic membrane. Glue ear, also known as otitis media with effusion, is the most common cause of conductive hearing loss in children, while Meniere’s disease is characterized by recurrent episodes of vertigo, tinnitus, and sensorineural hearing loss. Drug ototoxicity, noise damage, and acoustic neuroma are other factors that can lead to deafness.
Understanding the different causes of deafness is crucial in diagnosing and treating the condition. By knowing the characteristic features of each condition, healthcare professionals can determine the appropriate interventions to help patients manage their hearing loss. It is also important for individuals to protect their hearing by avoiding exposure to loud noises and seeking medical attention when they experience any symptoms of hearing loss. With proper care and management, people with deafness can still lead fulfilling lives.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Correct
-
An 87-year-old man with a history of interstitial lung disease is admitted with fever, productive cough, and difficulty breathing. His inflammatory markers are elevated, and a chest x-ray reveals focal patchy consolidation in the right lung. He requires oxygen supplementation as his oxygen saturation level is 87% on room air. What factor causes a decrease in haemoglobin's affinity for oxygen?
Your Answer: Increase in temperature
Explanation:What effect does pyrexia have on the oxygen dissociation curve?
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Correct
-
A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.
Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?Your Answer: C3-C6
Explanation:The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Correct
-
Control of ventilation. Which statement is false?
Your Answer: Central chemoreceptors respond to changes in O2
Explanation:The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.
The Control of Ventilation in the Human Body
The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.
The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.
Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.
Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Correct
-
A 65-year-old man is undergoing an upper GI endoscopy due to difficulty swallowing. During the procedure, a suspicious-looking blockage is found at 33 cm from the incisors. The endoscopist tries to widen the area with a balloon, but the tumor causes a rupture in the oesophageal wall. Where will the contents of the oesophagus now drain?
Your Answer: Posterior mediastinum
Explanation:The oesophagus is expected to remain within the thoracic cavity and situated in the posterior mediastinum at this point.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Correct
-
A 26-year-old man has been referred to ENT by his doctor as he has swallowed a small chicken bone that feels stuck in his throat. During laryngoscopy, a chicken bone is observed lodged in the piriform recess. Which of the following nerves is most likely to be affected by the chicken bone?
Your Answer: Internal laryngeal nerve
Explanation:When foreign objects get stuck in the piriform recess, particularly sharp items like bones from fish or chicken, they can harm the internal laryngeal nerve that lies beneath the mucous membrane in that area. Retrieving these objects also poses a risk of damaging the internal laryngeal nerve. However, the other nerves are not likely to be impacted.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
You are clerking a 45-year-old patient on the neurosurgery ward who is scheduled to undergo a pituitary tumour removal surgery. During your conversation, the patient inquires about the procedure. As you are aware, the neurosurgeon gains access to the pituitary gland through the patient's nasal cavity, specifically through one of the paranasal sinuses. Can you identify which of the paranasal sinuses is situated on the roof of the posterior nasal cavity, below the pituitary gland?
Your Answer: Ethmoid air cells
Correct Answer: Sphenoid sinus
Explanation:Paranasal Air Sinuses and Carotid Sinus
The paranasal air sinuses are air-filled spaces found in the bones of the skull. They are named after the bone in which they are located and all communicate with the nasal cavity. The four paired paranasal air sinuses are the frontal sinuses, maxillary sinuses, ethmoid air cells, and sphenoid sinuses. The frontal sinuses are located above each eye on the forehead, while the maxillary sinuses are the largest and found in the maxillary bone below the orbit. The ethmoidal air cells are a collection of smaller air cells located lateral to the anterior superior nasal cavity, while the sphenoid sinuses are found in the posterior portion of the roof of the nasal cavity.
On the other hand, the carotid sinus is not a paranasal air sinus. It is a dilatation of the internal carotid artery, located just beyond the bifurcation of the common carotid artery. It contains baroreceptors that enable it to detect changes in arterial pressure.
Overall, understanding the location and function of these sinuses and the carotid sinus is important in various medical procedures and conditions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Incorrect
-
A 10-year-old boy comes to your clinic with a complaint of ear pain that started last night and kept him awake. He missed school today because of the pain and reports muffled sounds on the affected side. During otoscopy, you observe a bulging tympanic membrane with visible fluid behind it, indicating a middle ear infection. Can you identify which nerves pass through the middle ear?
Your Answer: Vestibulocochlear nerve
Correct Answer: Chorda tympani
Explanation:The chorda tympani is the correct answer. It is a branch of the seventh cranial nerve, the facial nerve, and carries parasympathetic and taste fibers. It passes through the middle ear before exiting and joining with the lingual nerve to reach the tongue and salivary glands.
The vestibulocochlear nerve is the eighth cranial nerve and carries balance and hearing information.
The maxillary nerve is the second division of the fifth cranial nerve and carries sensation from the upper teeth, nasal cavity, and skin.
The mandibular nerve is the third division of the fifth cranial nerve and carries sensation from the lower teeth, tongue, mandible, and skin. It also carries motor fibers to certain muscles.
The glossopharyngeal nerve is the ninth cranial nerve and carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas. It also carries motor and parasympathetic fibers.
The patient in the question has ear pain, likely due to otitis media, as evidenced by a bulging tympanic membrane and fluid level on otoscopy.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Incorrect
-
A 75-year-old man presents to the Emergency Department with acute shortness of breath following a 4-day febrile illness. On initial assessment, his oxygen saturation is 70% on room air with a PaO2 of 4.2kpa on an arterial blood gas.
What would be the anticipated physiological response in this patient?Your Answer: Reduced tidal volume with increased respiratory rate
Correct Answer: Pulmonary artery vasoconstriction
Explanation:When faced with hypoxia, the pulmonary arteries undergo vasoconstriction, which redirects blood flow away from poorly oxygenated areas of the lungs and towards well-oxygenated regions. In cases where patients remain hypoxic despite optimal mechanical ventilation, inhaled nitric oxide can be used to induce pulmonary vasodilation and reverse this response.
The statement that increased tidal volume with decreased respiratory rate is a response to hypoxia is incorrect. While an increase in tidal volume may occur, it is typically accompanied by an increase in respiratory rate.
Pulmonary artery vasodilation is also incorrect. Hypoxia actually induces vasoconstriction in the pulmonary vasculature, as explained above.
Similarly, reduced tidal volume with increased respiratory rate is not a direct response to hypoxia. While respiratory rate may increase, tidal volumes typically increase in response to hypoxia.
In contrast to the pulmonary vessels, the systemic vasculature vasodilates in response to hypoxia.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Incorrect
-
A 35-year-old man arrives at the emergency department following an assault with a baseball bat. He has significant swelling around his eye, which has caused him to lose vision in that eye. A CT scan reveals a fracture in the floor of the orbit. This type of fracture creates an unusual connection between the orbit and which of the following facial regions?
Your Answer: Frontal sinus
Correct Answer: Maxillary sinus
Explanation:The correct answer is the maxillary sinus, which is the largest of the paranasal air sinuses found in the maxillary bone below the orbit. Fractures of the orbit’s floor can lead to herniation of the orbital contents into the maxillary sinus. The ethmoidal air cells are smaller air cells in the ethmoid bone, separated from the orbit by a thin plate of bone called the lamina papyracea. Fractures of the medial wall of the orbit can lead to communication between the ethmoidal air cells and the orbit. The frontal sinuses are located in the frontal bones above the orbits and fractures of the roof of the orbit can lead to communication between the frontal sinus and orbit. The sphenoid sinuses are found in the sphenoid bone and are located in the posterior portion of the roof of the nasal cavity. The nasal cavity is located more medial and inferior than the orbits and is not adjacent to the orbit.
Paranasal Air Sinuses and Carotid Sinus
The paranasal air sinuses are air-filled spaces found in the bones of the skull. They are named after the bone in which they are located and all communicate with the nasal cavity. The four paired paranasal air sinuses are the frontal sinuses, maxillary sinuses, ethmoid air cells, and sphenoid sinuses. The frontal sinuses are located above each eye on the forehead, while the maxillary sinuses are the largest and found in the maxillary bone below the orbit. The ethmoidal air cells are a collection of smaller air cells located lateral to the anterior superior nasal cavity, while the sphenoid sinuses are found in the posterior portion of the roof of the nasal cavity.
On the other hand, the carotid sinus is not a paranasal air sinus. It is a dilatation of the internal carotid artery, located just beyond the bifurcation of the common carotid artery. It contains baroreceptors that enable it to detect changes in arterial pressure.
Overall, understanding the location and function of these sinuses and the carotid sinus is important in various medical procedures and conditions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Correct
-
A 25-year-old man comes to the doctor complaining of frequent urination, unquenchable thirst, and recent weight loss of around 5 kilograms in the last 2 months. The patient reports feeling extremely tired, although he acknowledges that work has been stressful lately, and his eating habits have been poor. The patient has a medical history of cystic fibrosis, with a Pseudomonas aeruginosa flare-up last year that required a brief hospital stay.
What could be the probable reason for this patient's clinical presentation?Your Answer: Diabetes mellitus
Explanation:Cystic fibrosis can lead to the development of a unique type of diabetes mellitus known as cystic fibrosis-related diabetes mellitus. This is caused by the destruction of pancreatic islets due to abnormal chloride channel function, which leads to thickened bodily secretions that damage the exocrine pancreas over time. As a result, there is a gradual reduction in islet cell function and relative insulin deficiency, which can cause symptoms such as polydipsia, polyuria, fatigue, and weight loss.
It is important to note that this type of diabetes is distinct from type 1 or type 2 diabetes. Additionally, it is not associated with other conditions such as diabetes insipidus, primary hyperparathyroidism, or prostatitis, which have their own unique symptoms and causes.
Understanding Cystic Fibrosis: Symptoms and Other Features
Cystic fibrosis is a genetic disorder that affects various organs in the body, particularly the lungs and digestive system. The symptoms of cystic fibrosis can vary from person to person, but some common presenting features include recurrent chest infections, malabsorption, and liver disease. In some cases, infants may experience meconium ileus or prolonged jaundice. It is important to note that while many patients are diagnosed during newborn screening or early childhood, some may not be diagnosed until adulthood.
Aside from the presenting features, there are other symptoms and features associated with cystic fibrosis. These include short stature, diabetes mellitus, delayed puberty, rectal prolapse, nasal polyps, and infertility. It is important for individuals with cystic fibrosis to receive proper medical care and management to address these symptoms and improve their quality of life.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Incorrect
-
An 80-year-old man is brought to the emergency department in respiratory arrest. According to his partner, he has a history of congestive heart failure and has recently been battling an infection. After being placed on mechanical ventilation, you observe that the patient has decreased lung compliance.
What could be the cause of this observation?Your Answer: Loss of lung connective tissue with age
Correct Answer: Pulmonary oedema
Explanation:Reduced lung compliance is a common consequence of pulmonary edema, which occurs when fluid accumulates in the alveoli and exerts mechanical stress on the air-filled alveoli. This can happen in patients with acute decompensation of congestive cardiac failure, often triggered by an infection. On the other hand, emphysema can increase compliance due to long-term damage that reduces the elastic recoil of the lungs. Additionally, lung surfactant produced by type II pneumocytes can increase lung compliance. Finally, aging can also lead to increased compliance as the loss of lung connective tissue can reduce elastic recoil.
Understanding Lung Compliance in Respiratory Physiology
Lung compliance refers to the extent of change in lung volume in response to a change in airway pressure. An increase in lung compliance can be caused by factors such as aging and emphysema, which is characterized by the loss of alveolar walls and associated elastic tissue. On the other hand, a decrease in lung compliance can be attributed to conditions such as pulmonary edema, pulmonary fibrosis, pneumonectomy, and kyphosis. These conditions can affect the elasticity of the lungs and make it more difficult for them to expand and contract properly. Understanding lung compliance is important in respiratory physiology as it can help diagnose and manage various respiratory conditions. Proper management of lung compliance can improve lung function and overall respiratory health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Incorrect
-
Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness and blurred vision. She works as a librarian, drinks about 15 units of alcohol per week, and has smoked about 25 cigarettes a day for 35 years.
During the examination, her blood pressure is found to be elevated at 152/98 mmHg. There are reduced breath sounds over the area of the right lower lobe. Some of her blood test results are as follows:
- Hb 120 g/L (Female: 115-160)
- Platelets 420 * 109/L (150-400)
- WBC 9.1 * 109/L (4.0-11.0)
- Na+ 148 mmol/L (135-145)
- K+ 3.2 mmol/L (3.5-5.0)
- Urea 8.5 mmol/L (2.0-7.0)
- Creatinine 150 ”mol/L (55-120)
- 24-hour urine free cortisol 260 ug/l (10-100)
- Glucose 17.8 mmol/l (4.0-7.0)
She mentions that, aside from a persistent cough due to smoking, which occasionally produces blood, she feels fine.
What is the most probable diagnosis?Your Answer: Adenocarcinoma of the lung
Correct Answer: Small cell lung carcinoma
Explanation:A small cell lung carcinoma that secretes ACTH can lead to Cushing’s syndrome, as seen in this patient. The history and examination findings suggest lung cancer, and the raised cortisol level can be explained by the paraneoplastic syndrome caused by ACTH release. Muscle weakness and blurred vision are typical symptoms of Cushing’s syndrome. Squamous cell lung carcinoma and adrenal adenoma are less likely causes, while Cushing’s disease is not applicable in this case.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Correct
-
A 20-year-old woman comes to your general practice complaining of hearing difficulties for the past month. She was previously diagnosed with tinnitus by one of your colleagues at the practice 11 months ago. The patient reports that she can hear better when outside but struggles in quiet environments. Upon otoscopy, no abnormalities are found. Otosclerosis is one of the differential diagnoses for this patient, which primarily affects the ossicle that connects to the cochlea. What is the name of the ossicle that attaches to the cochlea at the oval window?
Your Answer: Stapes
Explanation:The stapes bone is the correct answer.
The ossicles are three bones located in the middle ear. They are arranged from lateral to medial and include the malleus, incus, and stapes. The malleus is the most lateral bone and its handle and lateral process attach to the tympanic membrane, making it visible on otoscopy. The head of the malleus articulates with the incus. The stapes bone is the most medial of the ossicles and is also known as the stirrup.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Correct
-
A 20-year-old man presents to the emergency department with diabetic ketoacidosis. After early treatment, an arterial blood gas is taken, which shows the following results.
ABG result - temperature 35.0 ÂșC:
pH 7.30 (7.35 - 7.45)
PaCO2 3.5 kPa (4.7 - 6.0)
PaO2 10 kPa (11 - 13)
HCO3- 16 mEq/L (22 - 26)
Na+ 138 mmol/L (135 - 145)
K+ 3.3 mmol/L (3.5 - 5.0)
What physiological change is occurring in this patient?Your Answer: Metabolic acidosis is causing a decreased affinity of haemoglobin for oxygen
Explanation:In acidosis, the oxyhaemoglobin dissociation curve shifts to the right, indicating a decrease in affinity of haemoglobin for oxygen. This is due to an increase in the number of [H+] ions, reflecting greater metabolic activity. Low [H+] levels cause a shift to the left. The low HCO3- in this patient can be explained by metabolic acidosis, but it does not cause a shift in the oxyhaemoglobin dissociation curve. Hypokalaemia may be a result of treatment for diabetic ketoacidosis, but it does not cause a shift in the oxygen dissociation curve. When temperature increases, the oxyhaemoglobin dissociation curve also shifts to the right, causing a decrease in haemoglobin affinity for oxygen. Hypothermia causes a shift to the left, indicating an increased affinity of haemoglobin for oxygen.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
A 65-year-old man with uncontrolled diabetes complains of severe otalgia and headaches. During examination, granulation tissue is observed in the external auditory meatus. What is the probable causative agent of the infection?
Your Answer: Staphylococcus aureus
Correct Answer: Pseudomonas aeruginosa
Explanation:The primary cause of malignant otitis externa is typically Pseudomonas aeruginosa. Symptoms of this condition include intense pain, headaches, and the presence of granulation tissue in the external auditory meatus. Individuals with diabetes mellitus are at a higher risk for developing this condition.
Malignant Otitis Externa: A Rare but Serious Infection
Malignant otitis externa is a type of ear infection that is uncommon but can be serious. It is typically found in individuals who are immunocompromised, with 90% of cases occurring in diabetics. The infection starts in the soft tissues of the external auditory meatus and can progress to involve the soft tissues and bony ear canal, eventually leading to temporal bone osteomyelitis.
Key features in the patient’s history include diabetes or immunosuppression, severe and persistent ear pain, temporal headaches, and purulent otorrhea. In some cases, patients may also experience dysphagia, hoarseness, and facial nerve dysfunction.
Diagnosis is typically done through a CT scan, and non-resolving otitis externa with worsening pain should be referred urgently to an ENT specialist. Treatment involves intravenous antibiotics that cover pseudomonal infections.
In summary, malignant otitis externa is a rare but serious infection that requires prompt diagnosis and treatment. Patients with diabetes or immunosuppression should be particularly vigilant for symptoms and seek medical attention if they experience persistent ear pain or other related symptoms.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
A 29-year-old man comes to the clinic with a complaint of ear pain. He mentions that the pain started yesterday and has been preventing him from working. He also reports experiencing dizziness and muffled sounds on the affected side. During the examination, you notice that he has a fever and a bulging tympanic membrane with visible fluid. Based on these symptoms, you suspect that he has a middle ear infection. Now, you wonder which ossicle the tensor tympani muscle inserts into.
Which ossicle does the tensor tympani muscle insert into?Your Answer: Trapezium
Correct Answer: Malleus
Explanation:The tensor tympani muscle is located in a bony canal above the pharyngotympanic tube and originates from the cartilaginous portion of the tube, the bony canal, and the greater wing of the sphenoid bone. Its function is to reduce the magnitude of vibrations transmitted into the middle ear by pulling the handle of the malleus medially when contracted. This muscle is innervated by the nerve to tensor tympani, which arises from the mandibular nerve.
The middle ear contains three ossicles, which are the malleus, incus, and stapes. The malleus is the most lateral and attaches to the tympanic membrane, while the incus lies between and articulates with the other two ossicles. The stapes is the most medial and is connected to the oval window of the cochlea. The stapedius muscle is associated with the stapes. The lunate and trapezium are not bones of the middle ear but are carpal bones.
A patient with ear pain, difficulty hearing, dizziness, and fever may have otitis media, which is confirmed on otoscopy by a bulging tympanic membrane and visible fluid level.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)