00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - Which symptom is most commonly associated with occlusion of the posterior cerebral artery?...

    Correct

    • Which symptom is most commonly associated with occlusion of the posterior cerebral artery?

      Your Answer: Contralateral homonymous hemianopia with macular sparing

      Explanation:

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      43.1
      Seconds
  • Question 2 - Which of the following cannot trigger abnormal wave patterns on the EEG? ...

    Incorrect

    • Which of the following cannot trigger abnormal wave patterns on the EEG?

      Your Answer: Selected medications

      Correct Answer: Cold environments

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      58.4
      Seconds
  • Question 3 - You are asked to review a child on the ward who the staff...

    Correct

    • You are asked to review a child on the ward who the staff noted had a sudden and brief (one minute) episode whereby they went into what they described as a trance-like state. During this time the child was unresponsive and was seen to be picking aimlessly at their clothes. Following this episode the child did not recall being unresponsive but did report that before this happened they felt a strange sense of unfamiliarity. Which of the following epilepsy types would you most suspect?:

      Your Answer: Complex partial seizure

      Explanation:

      The indication of a complex partial seizure is strongly implied by the absence of knowledge regarding aura.

      Epilepsy and Aura

      An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.

      In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.

      Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.

    • This question is part of the following fields:

      • Neurosciences
      34
      Seconds
  • Question 4 - Who is the neurologist that created a map of the cortex surface with...

    Correct

    • Who is the neurologist that created a map of the cortex surface with specific areas?

      Your Answer: Korbinian Brodmann

      Explanation:

      The Cerebral Cortex and Neocortex

      The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.

    • This question is part of the following fields:

      • Neurosciences
      7.8
      Seconds
  • Question 5 - Which CNS histopathological characteristic is the most distinctive for prion diseases? ...

    Incorrect

    • Which CNS histopathological characteristic is the most distinctive for prion diseases?

      Your Answer: Amyloid plaques

      Correct Answer: Spongiform (vacuolation) change

      Explanation:

      The presence of spongiform (vacuolation) change is a highly specific indicator of prion diseases. While neuronal loss and gliosis are common in many CNS disorders, spongiform change is unique to prion diseases. This change is characterized by the appearance of vacuoles in the deep cortical layers, cerebellar cortex, of subcortical grey matter. Scar formation and acute immune responses are associated with reactive proliferation of astrocytes and microglia, respectively. In contrast, Alzheimer’s dementia is characterized by the presence of amyloid plaques.

    • This question is part of the following fields:

      • Neurosciences
      20.9
      Seconds
  • Question 6 - What indicators would suggest the existence of a lower motor neuron lesion rather...

    Correct

    • What indicators would suggest the existence of a lower motor neuron lesion rather than an upper motor neuron lesion?

      Your Answer: Fasciculations

      Explanation:

      Motor Neuron Lesions

      Signs of an upper motor neuron lesion include weakness, increased reflexes, increased tone (spasticity), mild atrophy, an upgoing plantar response (Babinski reflex), and clonus. On the other hand, signs of a lower motor neuron lesion include atrophy, weakness, fasciculations, decreased reflexes, and decreased tone. It is important to differentiate between the two types of lesions as they have different underlying causes and require different treatment approaches. A thorough neurological examination can help identify the location and extent of the lesion, which can guide further diagnostic testing and management.

    • This question is part of the following fields:

      • Neurosciences
      36.7
      Seconds
  • Question 7 - What is a typical EEG finding in individuals with Creutzfeldt-Jakob disease? ...

    Correct

    • What is a typical EEG finding in individuals with Creutzfeldt-Jakob disease?

      Your Answer: Slow background rhythm with paroxysmal sharp waves

      Explanation:

      Creutzfeldt-Jakob disease is characterized by a slow background rhythm accompanied by paroxysmal sharp waves on EEG, while the remaining options are typical EEG features of the aging process.

    • This question is part of the following fields:

      • Neurosciences
      15.8
      Seconds
  • Question 8 - What is a true statement about the neocortex? ...

    Correct

    • What is a true statement about the neocortex?

      Your Answer: It contains both pyramidal and nonpyramidal cells

      Explanation:

      The Cerebral Cortex and Neocortex

      The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.

    • This question is part of the following fields:

      • Neurosciences
      23.4
      Seconds
  • Question 9 - In which region of the brain is Broca's area located? ...

    Correct

    • In which region of the brain is Broca's area located?

      Your Answer: Brodmann areas 44 and 45

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      8.7
      Seconds
  • Question 10 - What is the most accurate way to describe the speech of an individual...

    Incorrect

    • What is the most accurate way to describe the speech of an individual with Broca's aphasia?

      Your Answer: Fluent aphasia

      Correct Answer: Non fluent aphasia

      Explanation:

      Broca’s aphasia is also known as non-fluent aphasia, while Wernicke’s aphasia is referred to as fluent aphasia.

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      44.5
      Seconds
  • Question 11 - What street drug inhibits the monoamine transporter SERT? ...

    Incorrect

    • What street drug inhibits the monoamine transporter SERT?

      Your Answer:

      Correct Answer: Amphetamine

      Explanation:

      Cannabis attaches to cannabinoid receptors, while heroin acts as an opioid agonist and alters the function of dopamine.

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 12 - What condition is most commonly associated with slow (<2.5 Hz) generalized spike-and-wave discharges...

    Incorrect

    • What condition is most commonly associated with slow (<2.5 Hz) generalized spike-and-wave discharges on the EEG?

      Your Answer:

      Correct Answer: Atypical absence seizures

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 13 - From which amino acid is norepinephrine synthesized? ...

    Incorrect

    • From which amino acid is norepinephrine synthesized?

      Your Answer:

      Correct Answer: Tyrosine

      Explanation:

      Norepinephrine: Synthesis, Release, and Breakdown

      Norepinephrine is synthesized from tyrosine through a series of enzymatic reactions. The first step involves the conversion of tyrosine to L-DOPA by tyrosine hydroxylase. L-DOPA is then converted to dopamine by DOPA decarboxylase. Dopamine is further converted to norepinephrine by dopamine beta-hydroxylase. Finally, norepinephrine is converted to epinephrine by phenylethanolamine-N-methyltransferase.

      The primary site of norepinephrine release is the locus coeruleus, also known as the blue spot, which is located in the pons. Once released, norepinephrine is broken down by two enzymes: catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO). These enzymes play a crucial role in regulating the levels of norepinephrine in the body.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 14 - Which cranial nerve is solely responsible for sensory functions? ...

    Incorrect

    • Which cranial nerve is solely responsible for sensory functions?

      Your Answer:

      Correct Answer: Vestibulocochlear

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 15 - What statement accurately describes ionotropic receptors? ...

    Incorrect

    • What statement accurately describes ionotropic receptors?

      Your Answer:

      Correct Answer: GABA-A is an example of an ionotropic receptor

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 16 - In what circumstances are neurofibrillary tangles less commonly observed? ...

    Incorrect

    • In what circumstances are neurofibrillary tangles less commonly observed?

      Your Answer:

      Correct Answer: Vascular dementia

      Explanation:

      Tauopathies exhibit tangles, but vascular dementia is not classified as one.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 17 - What is a true statement about histamine? ...

    Incorrect

    • What is a true statement about histamine?

      Your Answer:

      Correct Answer: It is metabolised by histamine methyltransferase

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 18 - What is a true statement about cerebrovascular accidents? ...

    Incorrect

    • What is a true statement about cerebrovascular accidents?

      Your Answer:

      Correct Answer: Cerebral infarction commonly occurs during sleep

      Explanation:

      During sleep, strokes are more likely to occur as blood pressure decreases and areas of the brain with poor blood flow (caused by arterial damage in arteriopaths) become oxygen-deprived. Women with pre-existing cardiovascular disease should avoid taking oral contraceptives as they can raise the risk of stroke and DVTs.

      Cerebrovascular accidents (CVA), also known as strokes, are defined by the World Health Organization as a sudden onset of focal neurological symptoms lasting more than 24 hours and presumed to be of vascular origin. Strokes can be caused by either infarction of hemorrhage, with infarction being more common. Hemorrhagic strokes tend to be more severe. Intracranial hemorrhage can be primary, caused mainly by hypertension, of subarachnoid, caused by the rupture of an aneurysm of angioma. Primary intracranial hemorrhage is most common in individuals aged 60-80 and often occurs during exertion. Infarction can be caused by thrombosis of embolism, with thrombosis being more common. Atherosclerosis, often caused by hypertension, is the main cause of infarction. CT scanning is the preferred diagnostic tool during the first 48 hours after a stroke as it can distinguish between infarcts and hemorrhages. Recovery from embolism is generally quicker and more complete than from thrombosis due to the availability of collateral channels.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 19 - From where does the nerve that originates in the medulla oblongata come? ...

    Incorrect

    • From where does the nerve that originates in the medulla oblongata come?

      Your Answer:

      Correct Answer: Vagus

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 20 - What EEG waveform corresponds to a frequency range of 12-30Hz? ...

    Incorrect

    • What EEG waveform corresponds to a frequency range of 12-30Hz?

      Your Answer:

      Correct Answer: Beta

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 21 - Through which route does the caudate nucleus obtain its blood supply? ...

    Incorrect

    • Through which route does the caudate nucleus obtain its blood supply?

      Your Answer:

      Correct Answer: Anterior and middle cerebral arteries

      Explanation:

      The blood supply to the caudate nucleus primarily comes from the deep penetrators of the anterior and middle cerebral arteries. The effects of caudate infarcts can differ depending on the study, but typically include behavioral symptoms such as abulia and agitation, loss of executive function, and motor weakness.

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 22 - What is a true statement about the cingulate gyrus? ...

    Incorrect

    • What is a true statement about the cingulate gyrus?

      Your Answer:

      Correct Answer: It is involved in reward-based decision making

      Explanation:

      The fusiform gyrus is essential for recognizing faces and bodies, while damage to the angular gyrus can result in Gerstmann syndrome.

      The Cingulate Gyrus: A Hub for Emotions and Decision Making

      The cingulate gyrus is a cortical fold located on the medial aspect of the cerebral hemisphere, adjacent to the corpus callosum. As part of the limbic system, it plays a crucial role in processing emotions and regulating the body’s endocrine and autonomic responses to emotional stimuli. Additionally, it is involved in reward-based decision making. Essentially, the cingulate gyrus acts as a hub that connects emotions, sensations, and actions. The term cingulate comes from the Latin word for belt of girdle, which reflects the way in which it wraps around the corpus callosum.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 23 - An agitated elderly patient requires restraint. Following the restraint, your examination of the...

    Incorrect

    • An agitated elderly patient requires restraint. Following the restraint, your examination of the patient reveals an inability to shrug the shoulders. Which nerve is most likely to have been damaged?

      Accessory

      91%

      Hypoglossal

      4%

      Abducent

      4%

      Oculomotor

      0%

      Glossopharyngeal

      1%

      This elderly patient has most likely suffered a traumatic injury to the accessory nerve.

      Your Answer:

      Correct Answer: Accessory

      Explanation:

      It is probable that this individual has experienced a traumatic injury affecting the accessory nerve.

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 24 - A child is referred to a neurologist. On entering the neurologist's room, the...

    Incorrect

    • A child is referred to a neurologist. On entering the neurologist's room, the child is observed to have a broad-based gait. When introduced, the child's speech is noted to be abnormal. When the child attempts to shake the doctor's hand, a tremor is observed. Which area of the brain is likely to be dysfunctional?

      Your Answer:

      Correct Answer: Cerebellum

      Explanation:

      Cerebellar Dysfunction: Symptoms and Signs

      Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).

      Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.

      Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.

      Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 25 - What food item is rich in choline? ...

    Incorrect

    • What food item is rich in choline?

      Your Answer:

      Correct Answer: Egg yolk

      Explanation:

      Choline, which is essential for the synthesis of the neurotransmitter acetylcholine, can be obtained in significant quantities from vegetables, seeds, egg yolk, and liver. However, it is only present in small amounts in most fruits, egg whites, and many beverages.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 26 - What substances are found at higher levels in individuals with depression and bipolar...

    Incorrect

    • What substances are found at higher levels in individuals with depression and bipolar affective disorder?

      Your Answer:

      Correct Answer: Cortisol

      Explanation:

      HPA Axis Dysfunction in Mood Disorders

      The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.

      In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.

      Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.

      In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.

      Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 27 - Which structure is thought to play a major role in processing rewards? ...

    Incorrect

    • Which structure is thought to play a major role in processing rewards?

      Your Answer:

      Correct Answer: Nucleus accumbens

      Explanation:

      Drug addiction is closely linked to reward processing, which is primarily regulated by the nucleus accumbens and the ventral tegmental area (VTA).

      The Basal Ganglia: Functions and Disorders

      The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.

      The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.

      However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.

      In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 28 - In what conditions are Kuru plaques occasionally observed? ...

    Incorrect

    • In what conditions are Kuru plaques occasionally observed?

      Your Answer:

      Correct Answer: Creutzfeldt-Jakob disease

      Explanation:

      Pathology Findings in Psychiatry

      There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.

      Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.

      Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.

      Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.

      Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.

      LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.

      Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.

      Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 29 - From which amino acids is serotonin produced? ...

    Incorrect

    • From which amino acids is serotonin produced?

      Your Answer:

      Correct Answer: Tryptophan

      Explanation:

      The synthesis of serotonin involves the conversion of tryptophan to 5-hydroxy-L-tryptophan (5-HTP) by tryptophan hydroxylase (TPH), followed by the conversion of 5-HTP to serotonin by pyridoxal phosphate and aromatic amino acid decarboxylase. Tryptophan, which is found in most protein-based foods, is the precursor for serotonin synthesis. While exogenous serotonin cannot cross the blood-brain barrier, tryptophan and 5-HTP can be taken as dietary supplements to increase serotonin levels.

      Dopamine, on the other hand, is synthesized from phenylalanine and tyrosine. The major pathway involves the conversion of phenylalanine to tyrosine, then to L-Dopa, and finally to dopamine. Noradrenaline and adrenaline are derived from further metabolic modification of dopamine. Serine and alanine are other amino acids that are not directly involved in catecholamine synthesis.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 30 - What is a true statement about the falx cerebri? ...

    Incorrect

    • What is a true statement about the falx cerebri?

      Your Answer:

      Correct Answer: It is a layer of dura mater which separates the two cerebral hemispheres

      Explanation:

      Dura Mater

      The dura mater is one of the three membranes, known as meninges, that cover the brain and spinal cord. It is the outermost and most fibrous layer, with the pia mater and arachnoid mater making up the remaining layers. The pia mater is the innermost layer.

      The dura mater is folded at certain points, including the falx cerebri, which separates the two cerebral hemispheres of the brain, the tentorium cerebelli, which separates the cerebellum from the cerebrum, the falx cerebelli, which separates the cerebellar hemispheres, and the sellar diaphragm, which covers the pituitary gland and forms a roof over the hypophyseal fossa.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 31 - The patient, a 25-year-old male who was recently started on risperidone, presents to...

    Incorrect

    • The patient, a 25-year-old male who was recently started on risperidone, presents to the clinic with complaints of decreased libido and gynecomastia. These symptoms may be attributed to the blockade of D-2 receptors in which of the following pathways?

      Your Answer:

      Correct Answer: Tuberoinfundibular

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 32 - What illness is brought about by prions? ...

    Incorrect

    • What illness is brought about by prions?

      Your Answer:

      Correct Answer: Creutzfeldt-Jakob disease

      Explanation:

      Prions are responsible for causing Creutzfeldt-Jakob disease (CJD), a fatal and uncommon condition that leads to progressive neurodegeneration. The disease is characterized by swiftly advancing dementia as one of its primary symptoms.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 33 - From which substance is gamma-aminobutyric acid synthesized? ...

    Incorrect

    • From which substance is gamma-aminobutyric acid synthesized?

      Your Answer:

      Correct Answer: Glutamate

      Explanation:

      Glutamate is the precursor for the synthesis of GABA.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 34 - What is the main component of pick bodies? ...

    Incorrect

    • What is the main component of pick bodies?

      Your Answer:

      Correct Answer: Tau

      Explanation:

      Pyramidal cell neurons known as Betz cells are situated in the grey matter of the motor cortex.

      Frontotemporal Lobar Degeneration (FTLD) is a pathological term that refers to a group of neurodegenerative disorders that affect the frontal and temporal lobes of the brain. FTLD is classified into several subtypes based on the main protein component of neuronal and glial abnormal inclusions and their distribution. The three main proteins associated with FTLD are Tau, TDP-43, and FUS. Each FTD clinical phenotype has been associated with different proportions of these proteins. Macroscopic changes in FTLD include atrophy of the frontal and temporal lobes, with focal gyral atrophy that resembles knives. Microscopic changes in FTLD-Tau include neuronal and glial tau aggregation, with further sub-classification based on the existence of different isoforms of tau protein. FTLD-TDP is characterized by cytoplasmic inclusions of TDP-43 in neurons, while FTLD-FUS is characterized by cytoplasmic inclusions of FUS.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 35 - Which artery blockage is most likely to cause Broca's aphasia? ...

    Incorrect

    • Which artery blockage is most likely to cause Broca's aphasia?

      Your Answer:

      Correct Answer: Middle cerebral

      Explanation:

      Brain Blood Supply and Consequences of Occlusion

      The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 36 - What is the enzyme that breaks down APP into harmless protein fragments? ...

    Incorrect

    • What is the enzyme that breaks down APP into harmless protein fragments?

      Your Answer:

      Correct Answer: Alpha-secretase

      Explanation:

      Alpha-Secretase: A Potential Treatment for Alzheimer’s Disease

      Alpha-secretase is a promising avenue for preventing and treating Alzheimer’s disease. When amyloid precursor protein (APP) crosses the cell membrane, it can be cleaved by various enzymes. Alpha-secretase cleaves APP in a way that produces non-toxic protein fragments. However, beta and gamma-secretase are two other enzymes that can cleave APP, resulting in shorter, stickier fragments called beta-amyloid. These fragments can join together to form insoluble amyloid plaques. Researchers are developing drugs that can either stimulate alpha-secretase of block beta- and gamma-secretase, with the hope of preventing or treating Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 37 - A 42 year old, overweight woman presents with recurring episodes of one-sided vision...

    Incorrect

    • A 42 year old, overweight woman presents with recurring episodes of one-sided vision loss accompanied by pain over the last 24 months. She is curious if her use of fluoxetine, which you prescribed for her depression, could be a contributing factor. What is your primary suspicion regarding her symptoms?

      Your Answer:

      Correct Answer: Multiple sclerosis

      Explanation:

      The symptoms experienced by the woman are most indicative of optic neuritis, which is characterized by inflammation of the optic nerve where it connects to the eye. This typically results in temporary loss of vision in one eye, accompanied by pain during eye movement. Optic neuritis is commonly associated with multiple sclerosis. It is unlikely that the woman is experiencing an arterial occlusion, as this would cause permanent and painless vision loss. A pituitary adenoma would affect both eyes and result in permanent vision loss. The possibility of a somatoform disorder is unlikely, as the women’s symptoms align with a recognized medical diagnosis. Endophthalmitis is a serious condition that can cause permanent vision loss and requires immediate medical attention.

      Multiple Sclerosis: An Overview

      Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.

      The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.

      Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 38 - A 65-year-old woman passed away unexpectedly due to a heart attack. She had...

    Incorrect

    • A 65-year-old woman passed away unexpectedly due to a heart attack. She had been experiencing significant difficulties with her short-term memory, which had been impacting her daily activities. Upon conducting an autopsy of her brain, it was discovered that she had widespread cerebral atrophy, as well as numerous neurofibrillary tangles and neuritic plaques. What is the probable diagnosis?

      Your Answer:

      Correct Answer: Alzheimer's disease

      Explanation:

      Neurofibrillary tangles and neuritic (senile) plaques are commonly found in the brains of elderly individuals, but they are not present in Lewy body dementia. Pick’s disease is characterized by the presence of Pick’s bodies and knife blade atrophy. Creutzfeldt-Jakob disease (CJD) is identified by the spongy appearance of the grey matter in the cerebral cortex due to multiple vacuoles. If an individual experiences short-term memory problems that affect their daily life, it may indicate the presence of dementia. Alzheimer’s disease is characterized by extensive tangles and plaques in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 39 - What is the primary component of alpha-synuclein? ...

    Incorrect

    • What is the primary component of alpha-synuclein?

      Your Answer:

      Correct Answer: Lewy bodies

      Explanation:

      Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.

      Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.

      In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.

      Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 40 - Which of the following conditions is not associated with a distinct EEG pattern?...

    Incorrect

    • Which of the following conditions is not associated with a distinct EEG pattern?

      Your Answer:

      Correct Answer: Variant CJD

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 41 - Which type of cells in the central nervous system are most vulnerable to...

    Incorrect

    • Which type of cells in the central nervous system are most vulnerable to HIV?

      Your Answer:

      Correct Answer: Microglia

      Explanation:

      The vulnerability of microglia to HIV infection is highest among all the cell types in the brain. This is because the CD4 and CCR5 receptors required for HIV cell entry are expressed in both parenchymal microglia and perivascular microglia/macrophages. Although there have been some reports of HIV infection in endothelial cells, neurons, and oligodendrocytes, it is generally accepted that such infections are rare and unlikely to play a significant role in HIV-related CNS disorders. Astrocytes are thought to be capable of only a limited form of HIV infection.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 42 - Which of the following neuroanatomical structures is larger on the left in a...

    Incorrect

    • Which of the following neuroanatomical structures is larger on the left in a healthy right-handed female aged 25-30 years?

      Your Answer:

      Correct Answer: Transverse temporal gyrus

      Explanation:

      The Heschl gyrus, also known as the transverse temporal gyrus, is a component of the primary auditory complex located in the temporal lobe. It is noteworthy that the left Heschl gyrus is typically larger than the right. This structure is responsible for processing incoming auditory information and is unique in its mediolateral orientation. The brain hemispheres exhibit structural differences, with the left hemisphere (in over 90% of right-handed individuals) specializing in language function. Another structure within the primary auditory complex, the planum temporale, is also typically larger on the left side (up to ten times larger). Conversely, the amygdala, caudate nucleus, cingulate sulcus, and hippocampus are typically larger on the right side.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 43 - Which cranial nerve nuclei would be affected by a midbrain lesion? ...

    Incorrect

    • Which cranial nerve nuclei would be affected by a midbrain lesion?

      Your Answer:

      Correct Answer: Oculomotor

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 44 - Which structure's degeneration is believed to cause the absence of cholinergic innervation observed...

    Incorrect

    • Which structure's degeneration is believed to cause the absence of cholinergic innervation observed in Alzheimer's disease?

      Your Answer:

      Correct Answer: Nucleus of Meynert

      Explanation:

      The primary origin of acetylcholine in the brain is the Meynert nucleus, which is observed to be atrophied in individuals with Alzheimer’s disease. This clarifies the deficiency of acetylcholine in this disorder and the effectiveness of cholinesterase inhibitors.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 45 - A hoarse voice and difficulty swallowing (dysphagia) are symptoms of a lesion in...

    Incorrect

    • A hoarse voice and difficulty swallowing (dysphagia) are symptoms of a lesion in which cranial nerve?

      Your Answer:

      Correct Answer: Vagus

      Explanation:

      Lesions of the vagus nerve commonly result in the following symptoms: a raspy of weak voice, difficulty swallowing, absence of the gag reflex, deviation of the uvula away from the affected side, and an inability to elevate the palate.

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 46 - At what threshold does the membrane potential of a cell need to reach...

    Incorrect

    • At what threshold does the membrane potential of a cell need to reach in order to trigger an action potential?

      Your Answer:

      Correct Answer: -55 mV

      Explanation:

      Understanding Action Potentials in Neurons and Muscle Cells

      The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.

      To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 47 - What is the primary role of the dentate gyrus? ...

    Incorrect

    • What is the primary role of the dentate gyrus?

      Your Answer:

      Correct Answer: Episodic memory

      Explanation:

      A gyrus is a ridge on the cerebral cortex, and there are several important gyri to be aware of in exams. These include the angular gyrus in the parietal lobe for language, mathematics, and cognition; the cingulate gyrus adjacent to the corpus callosum for emotion, learning, and memory; the fusiform gyrus in the temporal lobe for face and body recognition, as well as word and number recognition; the precentral gyrus in the frontal lobe for voluntary movement control; the postcentral gyrus in the parietal lobe for touch; the lingual gyrus in the occipital lobe for dreaming and word recognition; the superior frontal gyrus in the frontal lobe for laughter and self-awareness; the superior temporal gyrus in the temporal lobe for language and sensation of sound; the parahippocampal gyrus surrounding the hippocampus for memory; and the dentate gyrus in the hippocampus for the formation of episodic memory.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 48 - What are the roles of purposes of the amygdala? ...

    Incorrect

    • What are the roles of purposes of the amygdala?

      Your Answer:

      Correct Answer: All of the above

      Explanation:

      The Amygdala: A Key Player in Emotional Processing

      The amygdala is a small, almond-shaped structure located in the anterior temporal lobe of the brain. As a core component of the limbic system, it plays a crucial role in emotional processing and regulation.

      To better understand its function, we can use the metaphor of a car being driven on the road. The frontal lobe of the brain acts as the driver, making decisions and navigating the environment. The amygdala, on the other hand, serves as the dashboard, providing the driver with important information about the car’s status, such as temperature and fuel levels. In this way, the amygdala gives emotional meaning to sensory input, allowing us to respond appropriately to potential threats of opportunities.

      One of the amygdala’s primary functions is to activate the fight or flight response in response to perceived danger. It does this by sending signals to the hypothalamus, which in turn triggers the release of stress hormones like adrenaline and cortisol. This prepares the body to either confront the threat of flee from it.

      In addition to its role in the fight or flight response, the amygdala also plays a role in regulating appetite and eating behavior. Studies have shown that damage to the amygdala can lead to overeating and obesity, suggesting that it may be involved in the hypothalamic control of feeding behavior.

      Overall, the amygdala is a key player in emotional processing and regulation, helping us to respond appropriately to the world around us.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 49 - Which prion disease exhibits minimal of no spongiform alteration? ...

    Incorrect

    • Which prion disease exhibits minimal of no spongiform alteration?

      Your Answer:

      Correct Answer: Fatal familial insomnia (FFI)

      Explanation:

      Fatal familial insomnia (FFI) is characterized by minimal spongiform change, but notable thalamic atrophy and astrogliosis. Diagnosis of FFI relies heavily on immunohistochemistry and genotyping. In contrast, spongiform change is a hallmark of CJD and Kuru. The majority of CJD cases (85%) are sporadic, while only a small percentage are caused by consuming contaminated food (variant CJD of vCJD).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 50 - What is a true statement about the endocannabinoid system? ...

    Incorrect

    • What is a true statement about the endocannabinoid system?

      Your Answer:

      Correct Answer: CB2 receptors are expressed at much lower levels in the central nervous system compared to CB1

      Explanation:

      The Endocannabinoid System and its Role in Psychosis

      The endocannabinoid system (ECS) plays a crucial role in regulating various physiological functions in the body, including cognition, sleep, energy metabolism, and inflammation. It is composed of endogenous cannabinoids, cannabinoid receptors, and proteins that transport, synthesize, and degrade endocannabinoids. The two best-characterized cannabinoid receptors are CB1 and CB2, which primarily couple to inhibitory G proteins and modulate different neurotransmitter systems in the brain.

      Impairment of the ECS after cannabis consumption has been linked to an increased risk of psychotic illness. However, enhancing the ECS with cannabidiol (CBD) has shown anti-inflammatory and antipsychotic outcomes in both healthy study participants and in preliminary clinical trials on people with psychotic illness of at high risk of developing psychosis. Studies have also found increased anandamide levels in the cerebrospinal fluid and blood, as well as increased CB1 expression in peripheral immune cells of people with psychotic illness compared to healthy controls. Overall, understanding the role of the ECS in psychosis may lead to new therapeutic approaches for treating this condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 51 - An individual's EEG shows widespread flattening with the existence of theta (θ) and...

    Incorrect

    • An individual's EEG shows widespread flattening with the existence of theta (θ) and delta (δ) waves of low amplitude. What is the most probable diagnosis based on this information?

      Your Answer:

      Correct Answer: Huntington's disease

      Explanation:

      The EEG findings for Huntington’s disease typically show a widespread decrease in activity with low amplitude theta (θ) and delta (δ) waves. In contrast, CJD is characterized by bilateral, synchronous generalised irregular spike wave complexes occurring at a rate of 1-2/second, often accompanied by myoclonic jerks. Hepatic encephalopathy is associated with widespread slowing and triphasic waves, while herpes simplex encephalitis is linked to repetitive episodic discharges and temporal lobe focal slow waves. HIV typically demonstrates diffuse slowing on EEG.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 52 - In which sleep stage are K complexes mostly observed? ...

    Incorrect

    • In which sleep stage are K complexes mostly observed?

      Your Answer:

      Correct Answer: II

      Explanation:

      Sleep Stages

      Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.

      Sleep stage
      Approx % of time spent in stage
      EEG findings
      Comment

      I
      5%
      Theta waves (4-7 Hz)
      The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.

      II
      45%
      Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
      Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.

      III
      15%
      Delta waves (0-4 Hz)
      Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.

      IV
      15%
      Mixed, predominantly beta
      High dream activity.

      The percentage of REM sleep decreases with age.

      It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.

      REM sleep has certain characteristics that separate it from NREM

      Characteristics of REM sleep

      – Autonomic instability (variability in heart rate, respiratory rate, and BP)
      – Loss of muscle tone
      – Dreaming
      – Rapid eye movements
      – Penile erection

      Deafness:

      (No information provided on deafness in relation to sleep stages)

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 53 - Where are Lewy bodies commonly located within the basal ganglia in individuals with...

    Incorrect

    • Where are Lewy bodies commonly located within the basal ganglia in individuals with Parkinson's disease?

      Your Answer:

      Correct Answer: The pars compacta

      Explanation:

      The midbrain contains a section called the pars compacta, which is made up of neurons that produce dopamine and is situated next to the pars reticulata. Parkinson’s disease is identified by the loss of these dopamine-producing neurons in this area.

      Parkinson’s Disease Pathology

      Parkinson’s disease is a neurodegenerative disorder that affects the central nervous system. The pathology of Parkinson’s disease is very similar to that of Lewy body dementia. The macroscopic features of Parkinson’s disease include pallor of the substantia nigra (midbrain) and locus coeruleus (pons). The microscopic changes include the presence of Lewy bodies, which are intracellular aggregates of alpha-synuclein. Additionally, there is a loss of dopaminergic cells from the substantia nigra pars compacta. These changes contribute to the motor symptoms of Parkinson’s disease, such as tremors, rigidity, and bradykinesia. Understanding the pathology of Parkinson’s disease is crucial for developing effective treatments and improving the quality of life for those affected by this condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 54 - Which area of the cerebellum is responsible for regulating precise and delicate movements...

    Incorrect

    • Which area of the cerebellum is responsible for regulating precise and delicate movements of the body?

      Your Answer:

      Correct Answer: Spinocerebellum

      Explanation:

      The Cerebellum: Anatomy and Function

      The cerebellum is a part of the brain that consists of two hemispheres and a median vermis. It is separated from the cerebral hemispheres by the tentorium cerebelli and connected to the brain stem by the cerebellar peduncles. Anatomically, it is divided into three lobes: the flocculonodular lobe, anterior lobe, and posterior lobe. Functionally, it is divided into three regions: the vestibulocerebellum, spinocerebellum, and cerebrocerebellum.

      The vestibulocerebellum, located in the flocculonodular lobe, is responsible for balance and spatial orientation. The spinocerebellum, located in the medial section of the anterior and posterior lobes, is involved in fine-tuned body movements. The cerebrocerebellum, located in the lateral section of the anterior and posterior lobes, is involved in planning movement and the conscious assessment of movement.

      Overall, the cerebellum plays a crucial role in motor coordination and control. Its different regions and lobes work together to ensure smooth and precise movements of the body.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 55 - What is the precursor amino acid for dopamine synthesis? ...

    Incorrect

    • What is the precursor amino acid for dopamine synthesis?

      Your Answer:

      Correct Answer: Tyrosine

      Explanation:

      Tyrosine is converted to L-DOPA by the enzyme tyrosine hydroxylase. L-DOPA is then converted to dopamine by the enzyme dopa decarboxylase.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 56 - Which of the following lower brain structures can cause either decreased or increased...

    Incorrect

    • Which of the following lower brain structures can cause either decreased or increased appetite when damaged?

      Your Answer:

      Correct Answer: Hypothalamus

      Explanation:

      Hunger and thirst are regulated by the hypothalamus, while emotional responses and perceptions of others’ emotions are controlled by the amygdala. The brainstem is responsible for arousal, while the cerebellum controls voluntary movement and balance. The medulla, on the other hand, controls breathing and heartbeat.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 57 - Which type of white matter tract is categorized as a commissural tract? ...

    Incorrect

    • Which type of white matter tract is categorized as a commissural tract?

      Your Answer:

      Correct Answer: Corpus callosum

      Explanation:

      White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 58 - Which structure is not included in the neocortex? ...

    Incorrect

    • Which structure is not included in the neocortex?

      Your Answer:

      Correct Answer: Caudate nucleus

      Explanation:

      The Cerebral Cortex and Neocortex

      The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 59 - In what type of epilepsy is it most common to experience an aura?...

    Incorrect

    • In what type of epilepsy is it most common to experience an aura?

      Your Answer:

      Correct Answer: Temporal lobe

      Explanation:

      This question is presented in two variations on the exam, with one implying that auras are primarily linked to temporal lobe epilepsy and the other to complex partial seizures. In reality, partial seizures are most commonly associated with auras compared to other types of seizures. While partial seizures can originate in any lobe of the brain, those that arise in the temporal lobe are most likely to produce an aura. Therefore, both versions of the question are accurate.

      Epilepsy and Aura

      An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.

      In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.

      Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 60 - Which waves are present at the onset of stage 2 sleep, in addition...

    Incorrect

    • Which waves are present at the onset of stage 2 sleep, in addition to k-complexes?

      Your Answer:

      Correct Answer: Sigma

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 61 - Through which opening in the skull does the cranial nerve exit that is...

    Incorrect

    • Through which opening in the skull does the cranial nerve exit that is known as the superior orbital fissure?

      Your Answer:

      Correct Answer: Abducens (VI)

      Explanation:

      Overview of Cranial Nerves and Their Functions

      The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.

      The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.

      The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.

      The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.

      The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.

      The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.

      The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.

      The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 62 - In addition to alcohol, what other substance is metabolized by aldehyde dehydrogenase? ...

    Incorrect

    • In addition to alcohol, what other substance is metabolized by aldehyde dehydrogenase?

      Your Answer:

      Correct Answer: Serotonin

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 63 - Your consultant calls you into his room to show you an interesting case....

    Incorrect

    • Your consultant calls you into his room to show you an interesting case. When you enter you see a middle-aged female sat in a chair. The consultant places a hairbrush next to her which she immediately picks up and starts brushing her hair with. Which of the following terms best describes this observation?:

      Your Answer:

      Correct Answer: Utilization behaviour

      Explanation:

      Abnormal Motor Behaviours Associated with Utilization Behaviour

      Utilization behaviour (UB) is a condition where patients exhibit exaggerated and inappropriate motor responses to environmental cues and objects. This behaviour is automatic and instrumentally correct, but not contextually appropriate. For instance, a patient may start brushing their teeth when presented with a toothbrush, even in a setting where it is not expected. UB is caused by frontal lobe lesions that result in a loss of inhibitory control.

      Other motor abnormalities associated with UB include imitation behaviour, where patients tend to imitate the examiner’s behaviour, and the alien hand sign, where patients experience bizarre hand movements that they cannot control. Manual groping behaviour is also observed, where patients automatically manipulate objects placed in front of them. The grasp reflex, which is normal in infants, should not be present in children and adults. It is an automatic tendency to grip objects of stimuli, such as the examiner’s hand.

      Environmental Dependency Syndrome is another condition associated with UB. It describes deficits in personal control of action and an overreliance on social and physical environmental stimuli to guide behaviour in a social context. For example, a patient may start commenting on pictures in an examiner’s office, believing it to be an art gallery.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 64 - What type of apraxia is indicated when a patient is given a pencil...

    Incorrect

    • What type of apraxia is indicated when a patient is given a pencil during a neurological examination and they attempt to use it to brush their teeth after looking at it for a minute?

      Your Answer:

      Correct Answer: Ideomotor

      Explanation:

      The inability to carry out complex instructions is referred to as Ideational Apraxia, while the inability to perform previously learned actions with the appropriate tools is known as Ideomotor Apraxia.

      Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements

      Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.

      Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.

      Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.

      Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.

      Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.

      Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.

      Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 65 - In which part of the body is the nucleus of Meynert situated? ...

    Incorrect

    • In which part of the body is the nucleus of Meynert situated?

      Your Answer:

      Correct Answer: Substantia innominata

      Explanation:

      The nucleus of Meynert, located in the substantia innominata of the basal forebrain beneath the thalamus and lentiform nucleus, is a cluster of neurons that serves as the primary source of acetylcholine in the brain. In Alzheimer’s disease, the nucleus of Meynert undergoes atrophy, resulting in a decrease in acetylcholine levels. This explains why cholinesterase inhibitors, which increase acetylcholine levels, are effective in treating Alzheimer’s.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 66 - Which one of these pathways is not associated with dopamine? ...

    Incorrect

    • Which one of these pathways is not associated with dopamine?

      Your Answer:

      Correct Answer: Limbostriatal pathway

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 67 - If a man experiences a severe road traffic accident resulting in substantial damage...

    Incorrect

    • If a man experiences a severe road traffic accident resulting in substantial damage to his frontal lobe, what symptoms would you anticipate him to exhibit?

      Your Answer:

      Correct Answer: Contralateral hemiplegia

      Explanation:

      Cerebral Dysfunction: Lobe-Specific Features

      When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 68 - Which cranial nerve reflex is most likely to be impacted by a vagus...

    Incorrect

    • Which cranial nerve reflex is most likely to be impacted by a vagus nerve lesion?

      Your Answer:

      Correct Answer: Gag

      Explanation:

      Cranial Nerve Reflexes

      When it comes to questions on cranial nerve reflexes, it is important to match the reflex to the nerves involved. Here are some examples:

      – Pupillary light reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Accommodation reflex: involves the optic nerve (sensory) and oculomotor nerve (motor).
      – Jaw jerk: involves the trigeminal nerve (sensory and motor).
      – Corneal reflex: involves the trigeminal nerve (sensory) and facial nerve (motor).
      – Vestibulo-ocular reflex: involves the vestibulocochlear nerve (sensory) and oculomotor, trochlear, and abducent nerves (motor).

      Another example of a cranial nerve reflex is the gag reflex, which involves the glossopharyngeal nerve (sensory) and the vagus nerve (motor). This reflex is important for protecting the airway from foreign objects of substances that may trigger a gag reflex. It is also used as a diagnostic tool to assess the function of these nerves.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 69 - Which enzyme converts L-DOPA to dopamine? ...

    Incorrect

    • Which enzyme converts L-DOPA to dopamine?

      Your Answer:

      Correct Answer: DOPA decarboxylase

      Explanation:

      Tyrosine is converted to L-DOPA by the enzyme tyrosine hydroxylase. L-DOPA is then converted to dopamine by the enzyme dopa decarboxylase.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 70 - What is a true statement about Anton-Babinski syndrome? ...

    Incorrect

    • What is a true statement about Anton-Babinski syndrome?

      Your Answer:

      Correct Answer: Confabulation is a characteristic feature

      Explanation:

      Anton’s syndrome, also known as Anton-Babinski syndrome, is a condition that results from damage to the occipital lobe. People with this syndrome are cortically blind, but they are not aware of it and deny having any problem, a condition known as anosognosia. They may start falling over furniture as they cannot see, but they believe they can still see and describe their surroundings in detail, even though their descriptions are incorrect (confabulation). This syndrome is characterized by a lack of awareness of visual impairment, which can lead to significant difficulties in daily life.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 71 - What is located within Brodmann area 22? ...

    Incorrect

    • What is located within Brodmann area 22?

      Your Answer:

      Correct Answer: Wernicke's area

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 72 - What type of lesion is most likely to cause bitemporal hemianopia? ...

    Incorrect

    • What type of lesion is most likely to cause bitemporal hemianopia?

      Your Answer:

      Correct Answer: Pituitary tumour

      Explanation:

      Bitemporal hemianopia is a condition in which an individual experiences a loss of vision in the outer (temporal of lateral) half of both their left and right visual fields. This condition is typically caused by damage to the optic chiasm.

      Cerebral Dysfunction: Lobe-Specific Features

      When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 73 - What is located within Brodmann area 22? ...

    Incorrect

    • What is located within Brodmann area 22?

      Your Answer:

      Correct Answer: Wernicke's area

      Explanation:

      Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 74 - What is the cell type that offers structural support in the central nervous...

    Incorrect

    • What is the cell type that offers structural support in the central nervous system?

      Your Answer:

      Correct Answer: Astrocyte

      Explanation:

      Glial Cells: The Support System of the Central Nervous System

      The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.

      Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.

      Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.

      Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.

      Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.

      In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 75 - Which cognitive function is primarily evaluated by the task of copying intersecting pentagons...

    Incorrect

    • Which cognitive function is primarily evaluated by the task of copying intersecting pentagons in the MMSE?

      Your Answer:

      Correct Answer: Constructional apraxia

      Explanation:

      The primary purpose of intersecting pentagons is to evaluate constructional apraxia, with attention being a secondary factor.

      Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements

      Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.

      Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.

      Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.

      Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.

      Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.

      Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.

      Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 76 - Which condition can be diagnosed based on an atypical tonsillar biopsy result? ...

    Incorrect

    • Which condition can be diagnosed based on an atypical tonsillar biopsy result?

      Your Answer:

      Correct Answer: Variant CJD

      Explanation:

      To confirm a diagnosis of variant CJD, a tonsillar biopsy is performed as it is the only form of CJD that impacts the lymph nodes.

      Creutzfeldt-Jakob Disease: Differences between vCJD and CJD

      Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.

      vCJD:
      – Longer duration from onset of symptoms to death (a year of more)
      – Presents with psychiatric and behavioral symptoms before neurological symptoms
      – MRI shows pulvinar sign
      – EEG shows generalized slowing
      – Originates from infected meat products
      – Affects younger people (age 25-30)

      CJD:
      – Shorter duration from onset of symptoms to death (a few months)
      – Presents with neurological symptoms
      – MRI shows bilateral anterior basal ganglia high signal
      – EEG shows biphasic and triphasic waves 1-2 per second
      – Originates from genetic mutation (bad luck)
      – Affects older people (age 55-65)

      Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 77 - The dopamine hypothesis of schizophrenia suggests that an overabundance of dopamine in which...

    Incorrect

    • The dopamine hypothesis of schizophrenia suggests that an overabundance of dopamine in which specific pathway is accountable for the heightened importance placed on trivial thoughts and events?

      Your Answer:

      Correct Answer: Mesolimbic pathway

      Explanation:

      The mesolimbic pathway is the correct answer, as it is associated with an excess of dopamine in individuals with addiction. This excess is accompanied by a relative deficiency of dopamine in the frontal lobes. The limbopituitary pathway is not a recognized dopamine pathway, so it should not be considered. The other options listed are all established dopamine pathways.

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 78 - A young girl who has had herpes encephalitis develops a severe carbohydrate craving...

    Incorrect

    • A young girl who has had herpes encephalitis develops a severe carbohydrate craving and weight gain. What would be your suspicion?

      Your Answer:

      Correct Answer: Klüver-Bucy syndrome

      Explanation:

      Kluver-Bucy Syndrome: Causes and Symptoms

      Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.

      The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 79 - What is a common target for deep brain stimulation (DBS) in individuals with...

    Incorrect

    • What is a common target for deep brain stimulation (DBS) in individuals with Parkinson's disease?

      Your Answer:

      Correct Answer: Globus pallidus interna

      Explanation:

      DBS is primarily used to treat Parkinson’s disease by targeting the Globus pallidus interna and subthalamic nucleus. However, for treatment-resistant depression (TRD), the subcallosal cingulate was the first area investigated for DBS, while vagal nerve stimulation has also been used. Psychosurgical treatment for refractory OCD and TRD involves targeting the anterior limb of the internal capsule. Although the caudate nucleus is part of the basal ganglia and associated with Parkinson’s disease, it is not a primary target for DBS.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 80 - Which type of nerve fiber lacks a myelin sheath? ...

    Incorrect

    • Which type of nerve fiber lacks a myelin sheath?

      Your Answer:

      Correct Answer: C

      Explanation:

      Primary Afferent Axons: Conveying Information about Touch and Pain

      Primary afferent axons play a crucial role in conveying information about touch and pain from the surface of the body to the spinal cord and brain. These axons can be classified into four types based on their functions: A-alpha (proprioception), A-beta (touch), A-delta (pain and temperature), and C (pain, temperature, and itch). While all A axons are myelinated, C fibers are unmyelinated.

      A-delta fibers are responsible for the sharp initial pain, while C fibers are responsible for the slow, dull, longer-lasting second pain. Understanding the different types of primary afferent axons and their functions is essential in diagnosing and treating various sensory disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 81 - A 3-year-old girl wakes up crying in the middle of the night. This...

    Incorrect

    • A 3-year-old girl wakes up crying in the middle of the night. This typically occurs shortly after she has fallen asleep. Her parents report that she sits up in bed and appears to be awake but does not acknowledge them. The episodes last for a few minutes before the child falls back asleep. The parents have checked her pulse during these episodes and note that it is very rapid. This started happening around six months ago and lasted for about two weeks before resolving on its own. What is the likely diagnosis?

      Your Answer:

      Correct Answer: Night terrors

      Explanation:

      Night terrors are a type of sleep disorder that typically occur during the first few hours of sleep. They are characterized by sudden and intense feelings of fear, panic, of terror that can cause the person to scream, thrash around, of even try to escape from their bed. Unlike nightmares, which occur during REM sleep and are often remembered upon waking, night terrors occur during non-REM sleep and are usually not remembered. Night terrors are most common in children, but can also occur in adults. They are thought to be caused by a combination of genetic and environmental factors, and may be triggered by stress, anxiety, of sleep deprivation. Treatment for night terrors may include improving sleep hygiene, reducing stress, and in some cases, medication.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 82 - What is the most consistently observed pathology in schizophrenia? ...

    Incorrect

    • What is the most consistently observed pathology in schizophrenia?

      Your Answer:

      Correct Answer: Reduced total grey matter volume

      Explanation:

      Alzheimer’s disease is associated with the presence of Hirano bodies.

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 83 - What condition has been associated with decreased small interneurons in cortical layer II...

    Incorrect

    • What condition has been associated with decreased small interneurons in cortical layer II of the prefrontal cortex, which are believed to be related to the GABA system?

      Your Answer:

      Correct Answer: Schizophrenia

      Explanation:

      The key to answering this question is identifying that it pertains to the prefrontal cortex, which is strongly linked to schizophrenia. Other conditions that are associated with abnormalities in this region include ADHD and bipolar disorder. Schizophrenia is characterized by changes in GABA function, including both release and uptake. Additionally, a decrease in small interneurons in cortical layer II of the prefrontal cortex is believed to contribute to these alterations. Sedvall’s 2002 work on the pathophysiological mechanisms of schizophrenia provides further insight into these issues.

      Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 84 - During which stage of sleep do sleep spindles appear on an EEG in...

    Incorrect

    • During which stage of sleep do sleep spindles appear on an EEG in a typical individual?

      Your Answer:

      Correct Answer: Stage 2

      Explanation:

      Sleep is a complex process that involves different stages. These stages are categorized into Non-REM (NREM) and Rapid Eye Movement (REM) sleep. Each cycle of NREM and REM sleep takes around 90 to 110 minutes.

      Stage 1 is the lightest stage of sleep, where the sleeper may experience sudden muscle contractions and a sense of falling. The brain waves during this stage are called theta waves.

      In Stage 2, eye movement stops, and brain waves become lower. Sleep spindles and K complexes, which are rapid bursts of 12-14 Hz waves, are seen during this stage.

      Stages 3 and 4 are referred to as deep sleep of delta sleep. There is no eye movement of muscle activity during these stages. Children may experience night terrors of somnambulism during these stages.

      REM sleep is characterized by rapid, shallow breathing and rapid, jerky eye movements. Most dreaming occurs during REM sleep.

      Overall, the different stages of sleep are important for the body to rest and rejuvenate. Understanding these stages can help individuals improve their sleep quality and overall health.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 85 - What brain region has been identified as a target for deep brain stimulation...

    Incorrect

    • What brain region has been identified as a target for deep brain stimulation (DBS) in individuals with treatment-resistant depression?

      Your Answer:

      Correct Answer: Nucleus accumbens

      Explanation:

      Deep brain stimulation (DBS) for treatment resistant depression targets specific brain regions based on their known involvement in pleasure, reward, and mood regulation. The nucleus accumbens is targeted due to its role in pleasure and reward processing. The inferior thalamic peduncle is targeted based on PET studies showing hyperactivity in depression. The lateral habenula is chosen due to observed hypermetabolism in depressed patients. The subgenual cingulate gyrus is targeted due to its hyperactivity in depression. The ventral capsule/ventral striatum is chosen based on its association with improved mood and reduced depressive symptoms following ablation treatments for OCD and depression.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 86 - Which receptor's agonist effect is most likely responsible for anorgasmia caused by SSRIs?...

    Incorrect

    • Which receptor's agonist effect is most likely responsible for anorgasmia caused by SSRIs?

      Your Answer:

      Correct Answer: 5HT2C

      Explanation:

      As an AI language model, I cannot provide a response without knowing the context of the rewrite you are referring to. Please provide more information of context so that I can assist you better.

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 87 - Which of these is a feature of Balint's syndrome? ...

    Incorrect

    • Which of these is a feature of Balint's syndrome?

      Your Answer:

      Correct Answer: Simultagnosia

      Explanation:

      Simultagnosia is a condition where an individual is unable to focus on more than one aspect of a complex scene at a time. This condition, along with optic ataxia and oculomotor apraxia, is part of Balint’s syndrome.

      Gerstmann syndrome is characterized by four symptoms: dysgraphia/agraphia, dyscalculia/acalculia, finger agnosia, and left-right disorientation. This syndrome is linked to a lesion in the dominant parietal lobe, specifically the left side of the angular and supramarginal gyri. It is rare for an individual to present with all four symptoms of the tetrad.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 88 - Which of these is not a typical symptom of epilepsy in the temporal...

    Incorrect

    • Which of these is not a typical symptom of epilepsy in the temporal lobe?

      Your Answer:

      Correct Answer: Visual aura

      Explanation:

      – Visual aura is not expected in temporal lobe epilepsy
      – Visual aura may occur in occipital seizures
      – Temporal lobe epilepsy is characterized by automatisms, altered consciousness, déjà vu, complex partial seizures, and olfactory hallucinations
      – Occipital epilepsy can cause visual phenomena and headaches
      – Occipital epilepsy should be differentiated from migraine

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 89 - Who received the Nobel prize for their discovery of dopamine's function as a...

    Incorrect

    • Who received the Nobel prize for their discovery of dopamine's function as a neurotransmitter?

      Your Answer:

      Correct Answer: Carlsson

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 90 - What is a true statement about the planum temporale? ...

    Incorrect

    • What is a true statement about the planum temporale?

      Your Answer:

      Correct Answer: Planum temporale asymmetry is more prominent in males than in females

      Explanation:

      Cerebral Asymmetry in Planum Temporale and its Implications in Language and Auditory Processing

      The planum temporale, a triangular region in the posterior superior temporal gyrus, is a highly lateralized brain structure involved in language and music processing. Studies have shown that the planum temporale is up to ten times larger in the left cerebral hemisphere than the right, with this asymmetry being more prominent in men. This asymmetry can be observed in gestation and is present in up to 70% of right-handed individuals.

      Recent research suggests that the planum temporale also plays an important role in auditory processing, specifically in representing the location of sounds in space. However, reduced planum temporale asymmetry has been observed in individuals with dyslexia, stuttering, and schizophrenia. These findings highlight the importance of cerebral asymmetry in the planum temporale and its implications in language and auditory processing.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 91 - In which region of the brain is the ventral tegmental area situated? ...

    Incorrect

    • In which region of the brain is the ventral tegmental area situated?

      Your Answer:

      Correct Answer: Midbrain

      Explanation:

      The Role of the Ventral Tegmental Area in Reward and Pleasure

      The midbrain contains a cluster of dopaminergic cells known as the ventral tegmental area (VTA), which plays a crucial role in the experience of reward and pleasure. These cells are involved in the release of dopamine, a neurotransmitter that is associated with feelings of pleasure and motivation. The VTA is activated in response to various stimuli, such as food, sex, and drugs, and is responsible for the pleasurable sensations that accompany these experiences. Dysfunction in the VTA has been linked to addiction and other disorders related to reward processing. Understanding the role of the VTA in reward and pleasure is essential for developing effective treatments for these conditions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 92 - What is the most effective tool to use when suspecting a brain hemorrhage...

    Incorrect

    • What is the most effective tool to use when suspecting a brain hemorrhage in an emergency situation?

      Your Answer:

      Correct Answer: CT

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 93 - Which of the following is a catecholamine? ...

    Incorrect

    • Which of the following is a catecholamine?

      Your Answer:

      Correct Answer: Adrenaline

      Explanation:

      Catecholamines are a group of chemical compounds that have a distinct structure consisting of a benzene ring with two hydroxyl groups, an intermediate ethyl chain, and a terminal amine group. These compounds play an important role in the body and are involved in various physiological processes. The three main catecholamines found in the body are dopamine, adrenaline, and noradrenaline. All of these compounds are derived from the amino acid tyrosine. Overall, catecholamines are essential for maintaining proper bodily functions and are involved in a wide range of physiological processes.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 94 - From which part of the embryonic brain does the cerebellum originate? ...

    Incorrect

    • From which part of the embryonic brain does the cerebellum originate?

      Your Answer:

      Correct Answer: Metencephalon

      Explanation:

      Development of the cerebellum commences from the metencephalon in the sixth week.

      Neurodevelopment: Understanding Brain Development

      The development of the central nervous system begins with the neuroectoderm, a specialized region of ectoderm. The embryonic brain is divided into three areas: the forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon). The prosencephalon further divides into the telencephalon and diencephalon, while the hindbrain subdivides into the metencephalon and myelencephalon.

      The telencephalon, of cerebrum, consists of the cerebral cortex, underlying white matter, and the basal ganglia. The diencephalon includes the prethalamus, thalamus, hypothalamus, subthalamus, epithalamus, and pretectum. The mesencephalon comprises the tectum, tegmentum, ventricular mesocoelia, cerebral peduncles, and several nuclei and fasciculi.

      The rhombencephalon includes the medulla, pons, and cerebellum, which can be subdivided into a variable number of transversal swellings called rhombomeres. In humans, eight rhombomeres can be distinguished, from caudal to rostral: Rh7-Rh1 and the isthmus. Rhombomeres Rh7-Rh4 form the myelencephalon, while Rh3-Rh1 form the metencephalon.

      Understanding neurodevelopment is crucial in comprehending brain development and its complexities. By studying the different areas of the embryonic brain, we can gain insight into the formation of the central nervous system and its functions.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 95 - In what type of epilepsy is it most common to experience an aura?...

    Incorrect

    • In what type of epilepsy is it most common to experience an aura?

      Your Answer:

      Correct Answer: Complex partial

      Explanation:

      This question is presented in two variations on the exam, with one implying that auras are primarily linked to temporal lobe epilepsy and the other to complex partial seizures. In reality, partial seizures are most commonly associated with auras compared to other types of seizures. While partial seizures can originate in any lobe of the brain, those that arise in the temporal lobe are most likely to produce an aura. Therefore, both versions of the question are accurate.

      Epilepsy and Aura

      An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.

      In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.

      Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 96 - Which type of seizure is most commonly associated with a polyspike and wave...

    Incorrect

    • Which type of seizure is most commonly associated with a polyspike and wave discharge pattern in the range of 3-6 Hz?

      Your Answer:

      Correct Answer: Myoclonic

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 97 - With what condition of disease are Hirano bodies commonly linked? ...

    Incorrect

    • With what condition of disease are Hirano bodies commonly linked?

      Your Answer:

      Correct Answer: Alzheimer's

      Explanation:

      Hirano bodies are considered to be a general indication of neuronal degeneration and are primarily observed in cases of Alzheimer’s disease.

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 98 - Which lobe of the brain is responsible for causing Gerstmann's syndrome when it...

    Incorrect

    • Which lobe of the brain is responsible for causing Gerstmann's syndrome when it malfunctions?

      Your Answer:

      Correct Answer: Dominant parietal

      Explanation:

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 99 - By which process is dopamine broken down? ...

    Incorrect

    • By which process is dopamine broken down?

      Your Answer:

      Correct Answer: Monoamine oxidase

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 100 - What is the association with theta rhythms? ...

    Incorrect

    • What is the association with theta rhythms?

      Your Answer:

      Correct Answer: Seen in meditative practice

      Explanation:

      Electroencephalography

      Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.

      Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.

      Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.

      Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.

      Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.

      Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 101 - Age-related plaques are made up of what substances? ...

    Incorrect

    • Age-related plaques are made up of what substances?

      Your Answer:

      Correct Answer: Beta amyloid

      Explanation:

      Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 102 - Disinhibition is most likely to occur as a result of dysfunction in which...

    Incorrect

    • Disinhibition is most likely to occur as a result of dysfunction in which of the following regions?

      Your Answer:

      Correct Answer: Right frontal lobe

      Explanation:

      Psychiatric and behavioral disturbances in individuals with frontal lobe lesions show a pattern of lateralization. Lesions in the left hemisphere are more commonly linked to depression, especially if they affect the prefrontal cortex’s dorsolateral region. Conversely, lesions in the right hemisphere are linked to impulsivity, disinhibition, and aggression.

      Cerebral Dysfunction: Lobe-Specific Features

      When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 103 - How would you describe the condition of a patient who, after experiencing a...

    Incorrect

    • How would you describe the condition of a patient who, after experiencing a stroke, is unable to identify familiar objects despite having no sensory impairment?

      Your Answer:

      Correct Answer: Visual agnosia

      Explanation:

      Visual Agnosia: Inability to Recognize Familiar Objects

      Visual agnosia is a neurological condition that affects a person’s ability to recognize familiar objects, even though their sensory apparatus is functioning normally. This disorder can be further classified into different subtypes, with two of the most important being prosopagnosia and simultanagnosia.

      Prosopagnosia is the inability to identify faces, which can make it difficult for individuals to recognize family members, friends, of even themselves in a mirror. Simultanagnosia, on the other hand, is the inability to recognize a whole image, even though individual details may be recognized. This can make it challenging for individuals to understand complex scenes of navigate their environment.

      Visual agnosia can be caused by various factors, including brain damage from injury of disease. Treatment options for this condition are limited, but some individuals may benefit from visual aids of cognitive therapy to improve their ability to recognize objects.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 104 - Which of the following is not considered a characteristic of Klüver-Bucy syndrome? ...

    Incorrect

    • Which of the following is not considered a characteristic of Klüver-Bucy syndrome?

      Your Answer:

      Correct Answer: Visual apraxia

      Explanation:

      Kluver-Bucy Syndrome: Causes and Symptoms

      Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.

      The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 105 - Which receptor is most likely to cause a feeling of nausea when stimulated?...

    Incorrect

    • Which receptor is most likely to cause a feeling of nausea when stimulated?

      Your Answer:

      Correct Answer: 5HT-3

      Explanation:

      Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 106 - Which of the options below does not act as a blocker for the...

    Incorrect

    • Which of the options below does not act as a blocker for the serotonin transporter (SERT), also known as the monoamine transporter?

      Your Answer:

      Correct Answer: Monoamine oxidase inhibitors

      Explanation:

      Serotonin: Synthesis and Breakdown

      Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.

      The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.

      Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 107 - What are the differences between CT and MRI? ...

    Incorrect

    • What are the differences between CT and MRI?

      Your Answer:

      Correct Answer: CT is very good for imaging bone structures

      Explanation:

      Neuroimaging techniques can be divided into structural and functional types, although this distinction is becoming less clear as new techniques emerge. Structural techniques include computed tomography (CT) and magnetic resonance imaging (MRI), which use x-rays and magnetic fields, respectively, to produce images of the brain’s structure. Functional techniques, on the other hand, measure brain activity by detecting changes in blood flow of oxygen consumption. These include functional MRI (fMRI), emission tomography (PET and SPECT), perfusion MRI (pMRI), and magnetic resonance spectroscopy (MRS). Some techniques, such as diffusion tensor imaging (DTI), combine both structural and functional information to provide a more complete picture of the brain’s anatomy and function. DTI, for example, uses MRI to estimate the paths that water takes as it diffuses through white matter, allowing researchers to visualize white matter tracts.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 108 - What distinguishing characteristics indicate a diagnosis of dissociative non-epileptic attacks (pseudoseizures) instead of...

    Incorrect

    • What distinguishing characteristics indicate a diagnosis of dissociative non-epileptic attacks (pseudoseizures) instead of generalized tonic-clonic seizures?

      Your Answer:

      Correct Answer: Gradual onset of episode

      Explanation:

      The presence of a gradual onset may indicate non-epileptic attacks, while other symptoms suggest genuine generalised tonic clonic seizures. Additional characteristics of pseudoseizures include a higher incidence in females (8:1), a history of previous illness behavior, and childhood physical and/of sexual abuse. Diagnosis can be challenging, but video EEG can be a useful tool in confirming the presence of pseudoseizures.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 109 - What is a substance that activates GABA-B receptors called? ...

    Incorrect

    • What is a substance that activates GABA-B receptors called?

      Your Answer:

      Correct Answer: Baclofen

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 110 - What signs of symptoms might indicate the presence of Balint's syndrome? ...

    Incorrect

    • What signs of symptoms might indicate the presence of Balint's syndrome?

      Your Answer:

      Correct Answer: Simultanagnosia

      Explanation:

      Parietal Lobe Dysfunction: Types and Symptoms

      The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.

      Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.

      Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.

      In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 111 - Which of the following eosinophilic inclusion bodies are observed as a neuropathological discovery...

    Incorrect

    • Which of the following eosinophilic inclusion bodies are observed as a neuropathological discovery in individuals with Alzheimer's disease?

      Your Answer:

      Correct Answer: Hirano bodies

      Explanation:

      Hirano bodies, Pick bodies, Lewy bodies, Negri bodies, and Barr bodies are all types of inclusion bodies that can be seen in various cells. Hirano bodies are rod-shaped structures found in the cytoplasm of neurons, composed of actin and other proteins. They are commonly seen in the hippocampus, along with granulovacuolar degeneration, which may represent lysosomal accumulations within neuronal cytoplasm. The clinical significance of these microscopic features is not yet fully understood. Pick bodies are masses of cytoskeletal elements seen in Pick’s disease, while Lewy bodies are abnormal protein aggregates that develop in nerve cells in Lewy body disease. Negri bodies are inclusion bodies seen in rabies, and Barr bodies are inactive X chromosomes in a female somatic cell.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 112 - Which of the following is categorized as a projection tract in relation to...

    Incorrect

    • Which of the following is categorized as a projection tract in relation to white matter?

      Your Answer:

      Correct Answer: Geniculocalcarine tract

      Explanation:

      White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.

    • This question is part of the following fields:

      • Neurosciences
      0
      Seconds
  • Question 113 - Which of the options below does not belong to the category of small...

    Incorrect

    • Which of the options below does not belong to the category of small molecule neurotransmitters?

      Your Answer:

      Correct Answer: Prolactin

      Explanation:

      Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.

    • This question is part of the following fields:

      • Neurosciences
      0