-
Question 1
Incorrect
-
Which statement about the anatomy of the basal ganglia is accurate?
Your Answer: The thalamus is part of the basal ganglia
Correct Answer: The subthalamic nucleus is part of the basal ganglia
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 2
Incorrect
-
Which area is believed to have the primary role in psychosis due to an overabundance of dopaminergic activity?
Your Answer: Prefrontal cortex
Correct Answer: Striatum
Explanation:The Dopamine Hypothesis is a theory that suggests that dopamine and dopaminergic mechanisms are central to schizophrenia. This hypothesis was developed based on observations that antipsychotic drugs provide at least some degree of D2-type dopamine receptor blockade and that it is possible to induce a psychotic episode in healthy subjects with pharmacological dopamine agonists. The hypothesis was further strengthened by the finding that antipsychotic drugs’ clinical effectiveness was directly related to their affinity for dopamine receptors. Initially, the belief was that the problem related to an excess of dopamine in the brain. However, later studies showed that the relationship between hypofrontality and low cerebrospinal fluid (CSF) dopamine metabolite levels indicates low frontal dopamine levels. Thus, there was a move from a one-sided dopamine hypothesis explaining all facets of schizophrenia to a regionally specific prefrontal hypodopaminergia and a subcortical hyperdopaminergia. In summary, psychosis appears to result from excessive dopamine activity in the striatum, while the negative symptoms seen in schizophrenia appear to result from too little dopamine activity in the frontal lobe. Antipsychotic medications appear to help by countering the effects of increased dopamine by blocking postsynaptic D2 receptors in the striatum.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 3
Correct
-
What is a substance that activates GABA-B receptors called?
Your Answer: Baclofen
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 4
Correct
-
In what type of epilepsy is it most common to experience an aura?
Your Answer: Complex partial
Explanation:This question is presented in two variations on the exam, with one implying that auras are primarily linked to temporal lobe epilepsy and the other to complex partial seizures. In reality, partial seizures are most commonly associated with auras compared to other types of seizures. While partial seizures can originate in any lobe of the brain, those that arise in the temporal lobe are most likely to produce an aura. Therefore, both versions of the question are accurate.
Epilepsy and Aura
An aura is a subjective sensation that is a type of simple partial seizure. It typically lasts only a few seconds and can help identify the site of cortical onset. There are eight recognized types of auras, including somatosensory, visual, auditory, gustatory, olfactory, autonomic, abdominal, and psychic.
In about 80% of cases, auras precede temporal lobe seizures. The most common auras in these seizures are abdominal and psychic, which can cause a rising epigastric sensation of feelings of fear, déjà vu, of jamais vu. Parietal lobe seizures may begin with a contralateral sensation, usually of the positive type, such as an electrical sensation of tingling. Occipital lobe seizures may begin with contralateral visual changes, such as colored lines, spots, of shapes, of even a loss of vision. Temporal-parietal-occipital seizures may produce more formed auras.
Complex partial seizures are defined by impairment of consciousness, which means decreased responsiveness and awareness of oneself and surroundings. During a complex partial seizure, a patient is unresponsive and does not remember events that occurred.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 5
Incorrect
-
Which language assessment is considered a neuropsychological test?
Your Answer: Verbal fluency
Correct Answer: Token test
Explanation:The neuropsychological assessment includes the token test, which is a language test that uses various tokens, such as differently coloured rectangles and circular discs. The subject is given verbal instructions of increasing complexity to perform tasks with these tokens, and it is a sensitive measure of language comprehension impairment, particularly in cases of aphasia. Additionally, there are several tests of executive function that assess frontal lobe function, including the Stroop test, Tower of London test, Wisconsin card sorting test, Cognitive estimates test, Six elements test, Multiple errands task, and Trails making test.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 6
Incorrect
-
Through which opening in the skull does the cranial nerve exit that is known as the superior orbital fissure?
Your Answer:
Correct Answer: Abducens (VI)
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 7
Incorrect
-
What is a true statement about the cingulate gyrus?
Your Answer:
Correct Answer: It is involved in reward-based decision making
Explanation:The fusiform gyrus is essential for recognizing faces and bodies, while damage to the angular gyrus can result in Gerstmann syndrome.
The Cingulate Gyrus: A Hub for Emotions and Decision Making
The cingulate gyrus is a cortical fold located on the medial aspect of the cerebral hemisphere, adjacent to the corpus callosum. As part of the limbic system, it plays a crucial role in processing emotions and regulating the body’s endocrine and autonomic responses to emotional stimuli. Additionally, it is involved in reward-based decision making. Essentially, the cingulate gyrus acts as a hub that connects emotions, sensations, and actions. The term cingulate comes from the Latin word for belt of girdle, which reflects the way in which it wraps around the corpus callosum.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 8
Incorrect
-
What is a true statement about neurofibrillary tangles?
Your Answer:
Correct Answer: They are composed of Tau protein
Explanation:Neurofibrillary tangles consist of insoluble clumps of Tau protein, which are made up of multiple strands. Since Tau is a microtubule-associated protein that plays a role in the structural processes of neurons, these tangles are always found within the cell.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 9
Incorrect
-
In which region of the brain are most dopamine neurons found?
Your Answer:
Correct Answer: Substantia nigra
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 10
Incorrect
-
Disinhibition is most likely to occur as a result of dysfunction in which of the following regions?
Your Answer:
Correct Answer: Right frontal lobe
Explanation:Psychiatric and behavioral disturbances in individuals with frontal lobe lesions show a pattern of lateralization. Lesions in the left hemisphere are more commonly linked to depression, especially if they affect the prefrontal cortex’s dorsolateral region. Conversely, lesions in the right hemisphere are linked to impulsivity, disinhibition, and aggression.
Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 11
Incorrect
-
What factors contribute to the potency of a drug?
Your Answer:
Correct Answer: Efficacy and affinity
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 12
Incorrect
-
Which of the following is not a component of the syndrome of frontotemporal lobe degeneration (FTLD)?
Your Answer:
Correct Answer: Posterior cortical atrophy
Explanation:Frontotemporal lobe degeneration (FTLD) encompasses various syndromes, such as Pick’s disease, primary progressive aphasia (which impacts speech), semantic dementia (affecting conceptual knowledge), and corticobasal degeneration (characterized by asymmetrical akinetic-rigid syndrome and apraxia). It is important to note that posterior cortical atrophy, which involves tissue loss in the posterior regions and affects higher visual processing, is not considered a part of the FTLD syndrome.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 13
Incorrect
-
Which of the following is an exocannabinoid?
Your Answer:
Correct Answer: Delta-9-tetrahydrocannabinol
Explanation:The Endocannabinoid System and its Role in Psychosis
The endocannabinoid system (ECS) plays a crucial role in regulating various physiological functions in the body, including cognition, sleep, energy metabolism, and inflammation. It is composed of endogenous cannabinoids, cannabinoid receptors, and proteins that transport, synthesize, and degrade endocannabinoids. The two best-characterized cannabinoid receptors are CB1 and CB2, which primarily couple to inhibitory G proteins and modulate different neurotransmitter systems in the brain.
Impairment of the ECS after cannabis consumption has been linked to an increased risk of psychotic illness. However, enhancing the ECS with cannabidiol (CBD) has shown anti-inflammatory and antipsychotic outcomes in both healthy study participants and in preliminary clinical trials on people with psychotic illness of at high risk of developing psychosis. Studies have also found increased anandamide levels in the cerebrospinal fluid and blood, as well as increased CB1 expression in peripheral immune cells of people with psychotic illness compared to healthy controls. Overall, understanding the role of the ECS in psychosis may lead to new therapeutic approaches for treating this condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 14
Incorrect
-
Can you identify the brain structure that is not found in both cerebral hemispheres?
Your Answer:
Correct Answer: Pineal gland
Explanation:Neuroanatomical Structures
The pineal gland is a unique structure in the brain that is not present bilaterally. It is a small endocrine gland responsible for producing melatonin, a hormone derived from serotonin. Along with the pituitary gland and circumventricular organs, the pineal gland is one of the few unpaired structures in the brain.
In contrast, the caudate nucleus is a paired structure located within the basal ganglia. It is present bilaterally and plays a crucial role in motor control and learning.
The midbrain contains the Mammillary body, which is also a paired structure involved in long-term memory formation. These structures work together to help us remember and recall past experiences.
Finally, the supraoptic nucleus is duplicated in each cerebral hemisphere. This structure is involved in regulating water balance and plays a critical role in maintaining homeostasis in the body.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 15
Incorrect
-
Which type of cells in the central nervous system are most vulnerable to HIV?
Your Answer:
Correct Answer: Microglia
Explanation:The vulnerability of microglia to HIV infection is highest among all the cell types in the brain. This is because the CD4 and CCR5 receptors required for HIV cell entry are expressed in both parenchymal microglia and perivascular microglia/macrophages. Although there have been some reports of HIV infection in endothelial cells, neurons, and oligodendrocytes, it is generally accepted that such infections are rare and unlikely to play a significant role in HIV-related CNS disorders. Astrocytes are thought to be capable of only a limited form of HIV infection.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 16
Incorrect
-
Which nuclei in the hypothalamus are responsible for the production and release of dopamine that is transported to the pituitary gland through the infundibulum?
Your Answer:
Correct Answer: Arcuate
Explanation:Functions of the Hypothalamus
The hypothalamus is a vital part of the brain that plays a crucial role in regulating various bodily functions. It receives and integrates sensory information about the internal environment and directs actions to control internal homeostasis. The hypothalamus contains several nuclei and fiber tracts, each with specific functions.
The suprachiasmatic nucleus (SCN) is responsible for regulating circadian rhythms. Neurons in the SCN have an intrinsic rhythm of discharge activity and receive input from the retina. The SCN is considered the body’s master clock, but it has multiple connections with other hypothalamic nuclei.
Body temperature control is mainly under the control of the preoptic, anterior, and posterior nuclei, which have temperature-sensitive neurons. As the temperature goes above 37ºC, warm-sensitive neurons are activated, triggering parasympathetic activity to promote heat loss. As the temperature goes below 37ºC, cold-sensitive neurons are activated, triggering sympathetic activity to promote conservation of heat.
The hypothalamus also plays a role in regulating prolactin secretion. Dopamine is tonically secreted by dopaminergic neurons that project from the arcuate nucleus of the hypothalamus into the anterior pituitary gland via the tuberoinfundibular pathway. The dopamine that is released acts on lactotrophic cells through D2-receptors, inhibiting prolactin synthesis. In the absence of pregnancy of lactation, prolactin is constitutively inhibited by dopamine. Dopamine antagonists result in hyperprolactinemia, while dopamine agonists inhibit prolactin secretion.
In summary, the hypothalamus is a complex structure that regulates various bodily functions, including circadian rhythms, body temperature, and prolactin secretion. Dysfunction of the hypothalamus can lead to various disorders, such as sleep-rhythm disorder, diabetes insipidus, hyperprolactinemia, and obesity.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 17
Incorrect
-
What SPECT finding is indicative of Alzheimer's disease?
Your Answer:
Correct Answer: Decreased temporal perfusion
Explanation:Given the medial temporal lobe atrophy commonly observed in Alzheimer’s disease, a reduction in perfusion of the temporal lobe would be anticipated.
Alzheimer’s disease can be differentiated from healthy older individuals by using SPECT imaging to detect temporal and parietal hypoperfusion, according to studies such as one conducted by W. Jagust in 2001. Additionally, SPECT imaging has proven to be a useful tool in distinguishing between Alzheimer’s disease and Lewy body dementia, as demonstrated in a study by Vaamonde-Gamo in 2005. The image provided shows a SPECT scan of a patient with Alzheimer’s disease compared to one with Lewy body dementia, with the latter showing lower perfusion in the occipital cortex and the former showing lower perfusion in medial temporal areas.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 18
Incorrect
-
What EEG alterations are observed in individuals with Creutzfeldt-Jakob disease?
Your Answer:
Correct Answer: Periodic sharp wave complexes
Explanation:The typical EEG pattern for CJD includes periodic sharp wave complexes, which is a diagnostic criterion. Lewy body dementia may show generalized slow wave activity, but if it is more prominent in the temporal and parietal regions, it may indicate Alzheimer’s disease. Toxic encephalopathies, such as lithium toxicity, may show periodic triphasic waves on EEG. For more information, see Smith SJ’s article EEG in neurological conditions other than epilepsy: when does it help, what does it add? (2005).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 19
Incorrect
-
Which type of nerve fiber lacks a myelin sheath?
Your Answer:
Correct Answer: C
Explanation:Primary Afferent Axons: Conveying Information about Touch and Pain
Primary afferent axons play a crucial role in conveying information about touch and pain from the surface of the body to the spinal cord and brain. These axons can be classified into four types based on their functions: A-alpha (proprioception), A-beta (touch), A-delta (pain and temperature), and C (pain, temperature, and itch). While all A axons are myelinated, C fibers are unmyelinated.
A-delta fibers are responsible for the sharp initial pain, while C fibers are responsible for the slow, dull, longer-lasting second pain. Understanding the different types of primary afferent axons and their functions is essential in diagnosing and treating various sensory disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 20
Incorrect
-
In the field of neurology, which specific region of the brain did the case of Phineas Gage contribute to our understanding of?
Your Answer:
Correct Answer: Frontal lobe
Explanation:The Case of Phineas Gage and the Importance of the Frontal Lobe
Phineas Gage was a railroad worker who experienced a traumatic accident where an iron pole went through his frontal lobe. Despite surviving the incident, his personality underwent a significant change. This case was crucial in advancing our knowledge of the frontal lobe’s function.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 21
Incorrect
-
What symptom indicates the presence of a cerebellar lesion?
Your Answer:
Correct Answer: Nystagmus
Explanation:Cerebellar Dysfunction: Symptoms and Signs
Cerebellar dysfunction is a condition that affects the cerebellum, a part of the brain responsible for coordinating movement and balance. The symptoms and signs of cerebellar dysfunction include ataxia, intention tremor, nystagmus, broad-based gait, slurred speech, dysdiadochokinesis, and dysmetria (lack of finger-nose coordination).
Ataxia refers to the lack of coordination of voluntary movements, resulting in unsteady gait, difficulty with balance, and clumsiness. Intention tremor is a type of tremor that occurs during voluntary movements, such as reaching for an object. Nystagmus is an involuntary movement of the eyes, characterized by rapid, jerky movements.
Broad-based gait refers to a wide stance while walking, which is often seen in individuals with cerebellar dysfunction. Slurred speech, also known as dysarthria, is a common symptom of cerebellar dysfunction, which affects the ability to articulate words clearly. Dysdiadochokinesis is the inability to perform rapid alternating movements, such as tapping the fingers on the palm of the hand.
Dysmetria refers to the inability to accurately judge the distance and direction of movements, resulting in errors in reaching for objects of touching the nose with the finger. These symptoms and signs of cerebellar dysfunction can be caused by a variety of conditions, including stroke, multiple sclerosis, and alcoholism. Treatment depends on the underlying cause and may include medications, physical therapy, and surgery.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 22
Incorrect
-
What neurotransmitter is recognized for its significant role in triggering hunger?
Your Answer:
Correct Answer: Orexin
Explanation:Neurotransmitters and their functions:
Orexin, which is derived from the Greek word for ‘appetite’, is responsible for regulating arousal, wakefulness, and appetite. It is also known as hypocretin and is produced in the hypothalamus. Orexin increases the craving for food.
Glutamate is an excitatory amino acid that plays a crucial role in the nervous system. It is responsible for transmitting signals between nerve cells and is involved in learning and memory.
Prolactin is a neurotransmitter produced by the hypothalamus. It is also known as ‘dopamine inhibitory factor’ and is important in the regulation of sexual function. Prolactin levels increase during pregnancy and breastfeeding.
Serotonin is a monoamine neurotransmitter that has a range of actions, including decreasing appetite. It is involved in regulating mood, sleep, and appetite. Low levels of serotonin have been linked to depression and anxiety.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 23
Incorrect
-
Which statement about variant CJD is accurate?
Your Answer:
Correct Answer: It is associated with the pulvinar sign on the MRI
Explanation:Creutzfeldt-Jakob Disease: Differences between vCJD and CJD
Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.
vCJD:
– Longer duration from onset of symptoms to death (a year of more)
– Presents with psychiatric and behavioral symptoms before neurological symptoms
– MRI shows pulvinar sign
– EEG shows generalized slowing
– Originates from infected meat products
– Affects younger people (age 25-30)CJD:
– Shorter duration from onset of symptoms to death (a few months)
– Presents with neurological symptoms
– MRI shows bilateral anterior basal ganglia high signal
– EEG shows biphasic and triphasic waves 1-2 per second
– Originates from genetic mutation (bad luck)
– Affects older people (age 55-65)Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 24
Incorrect
-
What is a true statement about GABA?
Your Answer:
Correct Answer: Flumazenil is a GABA-A antagonist
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 25
Incorrect
-
A 65-year-old individual reports a sudden inability to chew food and upon examination, displays weakened masseter muscles. What nerve damage do you suspect?
Your Answer:
Correct Answer: Cranial nerve V
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 26
Incorrect
-
In dementia pugilistica, which structure is commonly found to be abnormal?
Your Answer:
Correct Answer: Septum pellucidum
Explanation:A fenestrated cavum septum pellucidum is linked to dementia pugilistica.
Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 27
Incorrect
-
What is another name for the forebrain in the developing embryo?
Your Answer:
Correct Answer: Prosencephalon
Explanation:Neurodevelopment: Understanding Brain Development
The development of the central nervous system begins with the neuroectoderm, a specialized region of ectoderm. The embryonic brain is divided into three areas: the forebrain (prosencephalon), midbrain (mesencephalon), and hindbrain (rhombencephalon). The prosencephalon further divides into the telencephalon and diencephalon, while the hindbrain subdivides into the metencephalon and myelencephalon.
The telencephalon, of cerebrum, consists of the cerebral cortex, underlying white matter, and the basal ganglia. The diencephalon includes the prethalamus, thalamus, hypothalamus, subthalamus, epithalamus, and pretectum. The mesencephalon comprises the tectum, tegmentum, ventricular mesocoelia, cerebral peduncles, and several nuclei and fasciculi.
The rhombencephalon includes the medulla, pons, and cerebellum, which can be subdivided into a variable number of transversal swellings called rhombomeres. In humans, eight rhombomeres can be distinguished, from caudal to rostral: Rh7-Rh1 and the isthmus. Rhombomeres Rh7-Rh4 form the myelencephalon, while Rh3-Rh1 form the metencephalon.
Understanding neurodevelopment is crucial in comprehending brain development and its complexities. By studying the different areas of the embryonic brain, we can gain insight into the formation of the central nervous system and its functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 28
Incorrect
-
What is the entity that carries out phagocytosis in the central nervous system?
Your Answer:
Correct Answer: Microglia
Explanation:Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 29
Incorrect
-
Which type of white matter tract is categorized as a commissural tract?
Your Answer:
Correct Answer: Corpus callosum
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 30
Incorrect
-
What are the potential consequences of damage to the dominant cerebral hemisphere?
Your Answer:
Correct Answer: Right-left disorientation
Explanation:Hemispheric Damage: Selected Deficits in Dominant and Non-Dominant Hemispheres
Many functions are performed by both the right and left cerebral hemispheres. However, certain functions are localized, and damage to a specific hemisphere can result in deficits in specific areas. The following table outlines selected deficits seen in hemispheric damage.
Dominant Hemisphere (usually left):
– Aphasia: difficulty with language and communication
– Limb apraxia: difficulty with skilled movements of limbs
– Finger agnosia: difficulty recognizing fingers
– Dysgraphia (aphasic): difficulty with writing and spelling
– Dyscalculia (number alexia): difficulty with reading and understanding numbers
– Constructional apraxia: difficulty with constructing objects of copying designs
– Right-left disorientation: difficulty distinguishing left from rightNon-Dominant Hemisphere (usually right):
– Visuospatial deficits: difficulty with spatial perception and orientation
– Impaired visual perception: difficulty with recognizing and interpreting visual information
– Neglect: lack of awareness of one side of the body of environment
– Dysgraphia (spatial neglect): difficulty with writing on one side of the page
– Dyscalculia (spatial): difficulty with spatial reasoning and understanding of shapes and sizes
– Constructional apraxia (Gestalt): difficulty with assembling parts into a whole
– Dressing apraxia: difficulty with dressing oneself
– Anosognosia: lack of awareness of denial of one’s own deficits of condition. -
This question is part of the following fields:
- Neurosciences
-
-
Question 31
Incorrect
-
What does the following describe: A clinical manifestation that quickly appears and indicates a localized disruption in brain function, believed to be caused by a vascular issue and lasting for more than 24 hours.
Your Answer:
Correct Answer: Stroke
Explanation:Cerebrovascular accidents (CVA), also known as strokes, are defined by the World Health Organization as a sudden onset of focal neurological symptoms lasting more than 24 hours and presumed to be of vascular origin. Strokes can be caused by either infarction of hemorrhage, with infarction being more common. Hemorrhagic strokes tend to be more severe. Intracranial hemorrhage can be primary, caused mainly by hypertension, of subarachnoid, caused by the rupture of an aneurysm of angioma. Primary intracranial hemorrhage is most common in individuals aged 60-80 and often occurs during exertion. Infarction can be caused by thrombosis of embolism, with thrombosis being more common. Atherosclerosis, often caused by hypertension, is the main cause of infarction. CT scanning is the preferred diagnostic tool during the first 48 hours after a stroke as it can distinguish between infarcts and hemorrhages. Recovery from embolism is generally quicker and more complete than from thrombosis due to the availability of collateral channels.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 32
Incorrect
-
What type of lesion is most likely to cause bitemporal hemianopia?
Your Answer:
Correct Answer: Pituitary tumour
Explanation:Bitemporal hemianopia is a condition in which an individual experiences a loss of vision in the outer (temporal of lateral) half of both their left and right visual fields. This condition is typically caused by damage to the optic chiasm.
Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 33
Incorrect
-
A 50-year-old woman comes to the clinic with complaints of memory problems, frequent falls, and disrupted REM sleep. What is the most probable diagnosis?
Your Answer:
Correct Answer: Lewy body dementia
Explanation:In addition to fluctuating cognition and visual hallucinations, Lewy body dementia often involves sensitivity to neuroleptics. Patients may also experience falls and REM sleep disorder as common symptoms.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 34
Incorrect
-
Which substance is secreted by the paraventricular nucleus during the stress response?
Your Answer:
Correct Answer: Corticotropin-releasing hormone
Explanation:When under stress, the paraventricular nucleus of the hypothalamus releases two hormones: corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP).
HPA Axis Dysfunction in Mood Disorders
The HPA axis, which includes regulatory neural inputs and a feedback loop involving the hypothalamus, pituitary, and adrenal glands, plays a central role in the stress response. Excessive secretion of cortisol, a glucocorticoid hormone, can lead to disruptions in cellular functioning and widespread physiologic dysfunction. Dysregulation of the HPA axis is implicated in mood disorders such as depression and bipolar affective disorder.
In depressed patients, cortisol levels often do not decrease as expected in response to the administration of dexamethasone, a synthetic corticosteroid. This abnormality in the dexamethasone suppression test is thought to be linked to genetic of acquired defects of glucocorticoid receptors. Tricyclic antidepressants have been shown to increase expression of glucocorticoid receptors, whereas this is not the case for SSRIs.
Early adverse experiences can produce long standing changes in HPA axis regulation, indicating a possible neurobiological mechanism whereby childhood trauma could be translated into increased vulnerability to mood disorder. In major depression, there is hypersecretion of cortisol, corticotropin-releasing factor (CRF), and ACTH, and associated adrenocortical enlargement. HPA abnormalities have also been found in other psychiatric disorders including Alzheimer’s and PTSD.
In bipolar disorder, dysregulation of ACTH and cortisol response after CRH stimulation have been reported. Abnormal DST results are found more often during depressive episodes in the course of bipolar disorder than in unipolar disorder. Reduced pituitary volume secondary to LHPA stimulation, resulting in pituitary hypoactivity, has been observed in bipolar patients.
Overall, HPA axis dysfunction is implicated in mood disorders, and understanding the underlying mechanisms may lead to new opportunities for treatments.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 35
Incorrect
-
What is the name of the neurotransmitter that has an inhibitory effect?
Your Answer:
Correct Answer: GABA
Explanation:Excitatory neurotransmitters include glutamate, histamine, acetylcholine, and noradrenaline, as they increase ion flow and the likelihood of action potential in neurons. However, GABA functions as an inhibitory neurotransmitter, reducing ion flow and decreasing the probability of action potential.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 36
Incorrect
-
Which part of a neuron is accountable for generating energy?
Your Answer:
Correct Answer: Mitochondria
Explanation:Melanin
Melanin is a pigment found in various parts of the body, including the skin, hair, and eyes. It is produced by specialized cells called melanocytes, which are located in the skin’s basal layer. The function of melanin in the body is not fully understood, but it is thought to play a role in protecting the skin from the harmful effects of ultraviolet (UV) radiation from the sun. Additionally, melanin may be a by-product of neurotransmitter synthesis, although this function is not well established. Overall, the role of melanin in the body is an area of ongoing research.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 37
Incorrect
-
What are the roles of purposes of the amygdala?
Your Answer:
Correct Answer: All of the above
Explanation:The Amygdala: A Key Player in Emotional Processing
The amygdala is a small, almond-shaped structure located in the anterior temporal lobe of the brain. As a core component of the limbic system, it plays a crucial role in emotional processing and regulation.
To better understand its function, we can use the metaphor of a car being driven on the road. The frontal lobe of the brain acts as the driver, making decisions and navigating the environment. The amygdala, on the other hand, serves as the dashboard, providing the driver with important information about the car’s status, such as temperature and fuel levels. In this way, the amygdala gives emotional meaning to sensory input, allowing us to respond appropriately to potential threats of opportunities.
One of the amygdala’s primary functions is to activate the fight or flight response in response to perceived danger. It does this by sending signals to the hypothalamus, which in turn triggers the release of stress hormones like adrenaline and cortisol. This prepares the body to either confront the threat of flee from it.
In addition to its role in the fight or flight response, the amygdala also plays a role in regulating appetite and eating behavior. Studies have shown that damage to the amygdala can lead to overeating and obesity, suggesting that it may be involved in the hypothalamic control of feeding behavior.
Overall, the amygdala is a key player in emotional processing and regulation, helping us to respond appropriately to the world around us.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 38
Incorrect
-
From which amino acid is serotonin synthesized?
Your Answer:
Correct Answer: Tryptophan
Explanation:Serotonin: Synthesis and Breakdown
Serotonin, also known as 5-Hydroxytryptamine (5-HT), is synthesized in the central nervous system (CNS) in the raphe nuclei located in the brainstem, as well as in the gastrointestinal (GI) tract in enterochromaffin cells. The amino acid L-tryptophan, obtained from the diet, is used to synthesize serotonin. L-tryptophan can cross the blood-brain barrier, but serotonin cannot.
The transformation of L-tryptophan into serotonin involves two steps. First, hydroxylation to 5-hydroxytryptophan is catalyzed by tryptophan hydroxylase. Second, decarboxylation of 5-hydroxytryptophan to serotonin (5-hydroxytryptamine) is catalyzed by L-aromatic amino acid decarboxylase.
Serotonin is taken up from the synapse by a monoamine transporter (SERT). Substances that block this transporter include MDMA, amphetamine, cocaine, TCAs, and SSRIs. Serotonin is broken down by monoamine oxidase (MAO) and then by aldehyde dehydrogenase to 5-Hydroxyindoleacetic acid (5-HIAA).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 39
Incorrect
-
A 30-year-old woman is diagnosed with damage to the Broca's area after experiencing expressive aphasia following a car accident. Where is the Broca's area located in the brain?
Your Answer:
Correct Answer: Inferior frontal gyrus
Explanation:Broca’s area, located in the inferior frontal gyrus of the dominant hemisphere, is a crucial region for language production. It controls the motor functions necessary for speech production, and damage to this area can result in difficulties forming words and speaking. While language comprehension remains intact, the individual may experience expressive dysphasia, struggling to produce speech.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 40
Incorrect
-
Which statement accurately describes the role of the basal ganglia?
Your Answer:
Correct Answer: Degeneration of the basal ganglia is associated with movement problems
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 41
Incorrect
-
What statement accurately describes the trigeminal nerve?
Your Answer:
Correct Answer: It is a mixed nerve with both sensory and motor functions
Explanation:The trigeminal nerve, which is the largest cranial nerve, serves both sensory and motor functions. It is composed of three primary branches, namely the ophthalmic, maxillary, and mandibular branches. This nerve is responsible for providing sensory information to the face and head, while also controlling the muscles involved in chewing. On the other hand, the facial nerve is responsible for controlling the muscles that enable facial expressions and transmitting information from the front two-thirds of the tongue.
Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 42
Incorrect
-
Which area of the brain is most likely to be damaged in order to result in prosopagnosia?
Your Answer:
Correct Answer: Fusiform gyrus
Explanation:Understanding Prosopagnosia: The Inability to Recognize Faces
Prosopagnosia, also known as face blindness, is a condition where individuals are unable to recognize faces. This complex process involves various areas of the brain, with the fusiform gyrus in the temporal lobe being the most significant. The inability to recognize faces can be caused by damage to this area of the brain of can be a result of a developmental disorder.
The condition can be challenging for individuals as it can affect their ability to recognize familiar faces, including family members and friends. It can also impact their social interactions and make it difficult to navigate social situations. While there is no cure for prosopagnosia, individuals can learn to use other cues such as voice, clothing, and context to recognize people.
Understanding prosopagnosia is crucial in providing support and accommodations for individuals who experience this condition. It is essential to raise awareness and promote research to develop effective interventions to help individuals with face blindness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 43
Incorrect
-
Which of the following diseases is not considered a prion disease?
Your Answer:
Correct Answer: Dhat
Explanation:Dhat is a syndrome that is specific to Indian culture and affects men. Those who suffer from it experience anxiety about the presence of semen in their urine, which they believe leads to a loss of energy.
Creutzfeldt-Jakob Disease: Differences between vCJD and CJD
Creutzfeldt-Jakob Disease (CJD) is a prion disease that includes scrapie, BSE, and Kuru. However, there are important differences between sporadic (also known as classic) CJD and variant CJD. The table below summarizes these differences.
vCJD:
– Longer duration from onset of symptoms to death (a year of more)
– Presents with psychiatric and behavioral symptoms before neurological symptoms
– MRI shows pulvinar sign
– EEG shows generalized slowing
– Originates from infected meat products
– Affects younger people (age 25-30)CJD:
– Shorter duration from onset of symptoms to death (a few months)
– Presents with neurological symptoms
– MRI shows bilateral anterior basal ganglia high signal
– EEG shows biphasic and triphasic waves 1-2 per second
– Originates from genetic mutation (bad luck)
– Affects older people (age 55-65)Overall, understanding the differences between vCJD and CJD is important for diagnosis and treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 44
Incorrect
-
Patients who attempt suicide often have decreased levels of which substance in their CSF?
Your Answer:
Correct Answer: 5-HIAA
Explanation:Depression, suicidality, and aggression have been linked to decreased levels of 5-HIAA in the CSF.
The Significance of 5-HIAA in Depression and Aggression
During the 1980s, there was a brief period of interest in 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Studies found that up to a third of people with depression had low concentrations of 5-HIAA in their cerebrospinal fluid (CSF), while very few normal controls did. This suggests that 5-HIAA may play a role in depression.
Furthermore, individuals with low CSF levels of 5-HIAA have been found to respond less effectively to antidepressants and are more likely to commit suicide. This finding has been replicated in multiple studies, indicating the significance of 5-HIAA in depression.
Low levels of 5-HIAA are also associated with increased levels of aggression. This suggests that 5-HIAA may play a role in regulating aggressive behavior. Overall, the research on 5-HIAA highlights its potential importance in understanding and treating depression and aggression.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 45
Incorrect
-
Which condition is most likely to exhibit a hyperkinetic gait?
Your Answer:
Correct Answer: Sydenham chorea
Explanation:Gait disorders can be caused by a variety of conditions, including neurological, muscular, and structural abnormalities. One common gait disorder is hemiplegic gait, which is characterized by unilateral weakness on the affected side, with the arm flexed, adducted, and internally rotated, and the leg on the same side in extension with plantar flexion of the foot and toes. When walking, the patient may hold their arm to one side and drag their affected leg in a semicircle (circumduction) due to weakness of leg flexors and extended foot. Hemiplegic gait is often seen in patients who have suffered a stroke.
Other gait disorders include ataxic gait, spastic gait, and steppage gait, each with their own unique characteristics and associated conditions. Accurate diagnosis and treatment of gait disorders is important for improving mobility and quality of life for affected individuals.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 46
Incorrect
-
In what conditions are Kuru plaques occasionally observed?
Your Answer:
Correct Answer: Creutzfeldt-Jakob disease
Explanation:Pathology Findings in Psychiatry
There are several pathology findings that are associated with various psychiatric conditions. Papp-Lantos bodies, for example, are visible in the CNS and are associated with multisystem atrophy. Pick bodies, on the other hand, are large, dark-staining aggregates of proteins in neurological tissue and are associated with frontotemporal dementia.
Lewy bodies are another common pathology finding in psychiatry and are associated with Parkinson’s disease and Lewy Body dementia. These are round, concentrically laminated, pale eosinophilic cytoplasmic inclusions that are aggregates of alpha-synuclein.
Other pathology findings include asteroid bodies, which are associated with sarcoidosis and berylliosis, and are acidophilic, stellate inclusions in giant cells. Barr bodies are associated with stains of X chromosomes and are inactivated X chromosomes that appear as a dark staining mass in contact with the nuclear membrane.
Mallory bodies are another common pathology finding and are associated with alcoholic hepatitis, alcoholic cirrhosis, Wilson’s disease, and primary-biliary cirrhosis. These are eosinophilic intracytoplasmic inclusions in hepatocytes that are made up of intermediate filaments, predominantly prekeratin.
Other pathology findings include Schaumann bodies, which are associated with sarcoidosis and berylliosis, and are concentrically laminated inclusions in giant cells. Zebra bodies are associated with Niemann-Pick disease, Tay-Sachs disease, of any of the mucopolysaccharidoses and are palisaded lamellated membranous cytoplasmic bodies seen in macrophages.
LE bodies, also known as hematoxylin bodies, are associated with SLE (lupus) and are nuclei of damaged cells with bound anti-nuclear antibodies that become homogeneous and loose chromatin pattern. Verocay bodies are associated with Schwannoma (Neurilemoma) and are palisades of nuclei at the end of a fibrillar bundle.
Hirano bodies are associated with normal aging but are more numerous in Alzheimer’s disease. These are eosinophilic, football-shaped inclusions seen in neurons of the brain. Neurofibrillary tangles are another common pathology finding in Alzheimer’s disease and are made up of microtubule-associated proteins and neurofilaments.
Kayser-Fleischer rings are associated with Wilson’s disease and are rings of discoloration on the cornea. Finally, Kuru plaques are associated with Kuru and Gerstmann-Sträussler syndrome and are sometimes present in patients with Creutzfeldt-Jakob disease (CJD). These are composed partly of a host-encoded prion protein.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 47
Incorrect
-
Which one of these pathways is not associated with dopamine?
Your Answer:
Correct Answer: Limbostriatal pathway
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 48
Incorrect
-
What is a distinguishing characteristic of normal pressure hydrocephalus?
Your Answer:
Correct Answer: Incontinence
Explanation:Headache, nausea, vomiting, papilledema, and ocular palsies are symptoms of increased intracranial pressure, which are not typically present in cases of normal pressure hydrocephalus.
Normal Pressure Hydrocephalus
Normal pressure hydrocephalus is a type of chronic communicating hydrocephalus, which occurs due to the impaired reabsorption of cerebrospinal fluid (CSF) by the arachnoid villi. Although the CSF pressure is typically high, it remains within the normal range, and therefore, it does not cause symptoms of high intracranial pressure (ICP) such as headache and nausea. Instead, patients with normal pressure hydrocephalus usually present with a classic triad of symptoms, including incontinence, gait ataxia, and dementia, which is often referred to as wet, wobbly, and wacky. Unfortunately, this condition is often misdiagnosed as Parkinson’s of Alzheimer’s disease.
The classic triad of normal pressure hydrocephalus, also known as Hakim’s triad, includes gait instability, urinary incontinence, and dementia. On the other hand, non-communicating hydrocephalus results from the obstruction of CSF flow in the third of fourth ventricle, which causes symptoms of raised intracranial pressure, such as headache, vomiting, hypertension, bradycardia, altered consciousness, and papilledema.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 49
Incorrect
-
Which neuroimaging technique measures the amount of oxygenated hemoglobin in the blood?
Your Answer:
Correct Answer: Functional magnetic resonance imaging (fMRI)
Explanation:Functional Imaging Techniques
Functional imaging techniques are used to study brain activity by detecting changes in blood flow and oxygenation levels. One such technique is functional magnetic resonance imaging (fMRI), which measures the concentration of oxygenated haemoglobin in the blood. When neural activity increases in a specific area of the brain, blood flow to that area increases, leading to a higher concentration of haemoglobin.
Magnetic resonance imaging (MRI) is another technique that uses magnetic fields to create images of the brain’s structure. Magnetic resonance spectroscopy (MRS) is a related technique that can detect several odd-numbered nuclei.
To obtain a more accurate anatomical location for functional information, single photon emission computed tomography (SPECT) and positron emission tomography (PET) are used. SPECT and PET both provide information about brain activity by detecting the emission of particles. However, SPECT emits a single particle, while PET emits two particles. These techniques are useful for studying brain function in both healthy individuals and those with neurological disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 50
Incorrect
-
Which structure is most likely to show signs of atrophy in a patient with Alzheimer's disease?
Your Answer:
Correct Answer: Hippocampus
Explanation:Alzheimer’s disease often results in the shrinkage of the hippocampus, which is a component of the limbic system and is responsible for the formation and retention of long-term memories.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 51
Incorrect
-
Which process breaks down dopamine?
Your Answer:
Correct Answer: COMT, MAO-B and MAO-A
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 52
Incorrect
-
Which prion disease exhibits minimal of no spongiform alteration?
Your Answer:
Correct Answer: Fatal familial insomnia (FFI)
Explanation:Fatal familial insomnia (FFI) is characterized by minimal spongiform change, but notable thalamic atrophy and astrogliosis. Diagnosis of FFI relies heavily on immunohistochemistry and genotyping. In contrast, spongiform change is a hallmark of CJD and Kuru. The majority of CJD cases (85%) are sporadic, while only a small percentage are caused by consuming contaminated food (variant CJD of vCJD).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 53
Incorrect
-
From which amino acids is serotonin produced?
Your Answer:
Correct Answer: Tryptophan
Explanation:The synthesis of serotonin involves the conversion of tryptophan to 5-hydroxy-L-tryptophan (5-HTP) by tryptophan hydroxylase (TPH), followed by the conversion of 5-HTP to serotonin by pyridoxal phosphate and aromatic amino acid decarboxylase. Tryptophan, which is found in most protein-based foods, is the precursor for serotonin synthesis. While exogenous serotonin cannot cross the blood-brain barrier, tryptophan and 5-HTP can be taken as dietary supplements to increase serotonin levels.
Dopamine, on the other hand, is synthesized from phenylalanine and tyrosine. The major pathway involves the conversion of phenylalanine to tyrosine, then to L-Dopa, and finally to dopamine. Noradrenaline and adrenaline are derived from further metabolic modification of dopamine. Serine and alanine are other amino acids that are not directly involved in catecholamine synthesis.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 54
Incorrect
-
I'm sorry, as an AI language model, I cannot provide an answer without additional context. Please provide more information of clarify your question.
Your Answer:
Correct Answer: Wernicke's aphasia
Explanation:Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 55
Incorrect
-
Which of the following binds to metabotropic receptors but not ionotropic receptors?
Your Answer:
Correct Answer: Dopaminergic
Explanation:Dopamine receptors are classified as metabotropic receptors rather than ionotropic receptors.
Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 56
Incorrect
-
By which process is dopamine broken down?
Your Answer:
Correct Answer: Monoamine oxidase
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 57
Incorrect
-
Which of the following do not describe the features of REM sleep?
Your Answer:
Correct Answer: K complexes on the EEG
Explanation:During REM sleep, the EEG patterns resemble those observed during wakefulness, characterized by numerous beta-rhythms that are fast.
Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 58
Incorrect
-
What is a true statement about metabotropic receptors?
Your Answer:
Correct Answer: Their effects tend to be more diffuse than those of ionotropic receptors
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 59
Incorrect
-
What is a true statement about the planum temporale?
Your Answer:
Correct Answer: Planum temporale asymmetry is more prominent in males than in females
Explanation:Cerebral Asymmetry in Planum Temporale and its Implications in Language and Auditory Processing
The planum temporale, a triangular region in the posterior superior temporal gyrus, is a highly lateralized brain structure involved in language and music processing. Studies have shown that the planum temporale is up to ten times larger in the left cerebral hemisphere than the right, with this asymmetry being more prominent in men. This asymmetry can be observed in gestation and is present in up to 70% of right-handed individuals.
Recent research suggests that the planum temporale also plays an important role in auditory processing, specifically in representing the location of sounds in space. However, reduced planum temporale asymmetry has been observed in individuals with dyslexia, stuttering, and schizophrenia. These findings highlight the importance of cerebral asymmetry in the planum temporale and its implications in language and auditory processing.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 60
Incorrect
-
What is a correct statement about the pathology of Lewy body dementia?
Your Answer:
Correct Answer: There is a loss of dopaminergic neurons
Explanation:Lewy body dementia is a neurodegenerative disorder that is characterized by both macroscopic and microscopic changes in the brain. Macroscopically, there is cerebral atrophy, but it is less marked than in Alzheimer’s disease, and the brain weight is usually in the normal range. There is also pallor of the substantia nigra and the locus coeruleus, which are regions of the brain that produce dopamine and norepinephrine, respectively.
Microscopically, Lewy body dementia is characterized by the presence of intracellular protein accumulations called Lewy bodies. The major component of a Lewy body is alpha synuclein, and as they grow, they start to draw in other proteins such as ubiquitin. Lewy bodies are also found in Alzheimer’s disease, but they tend to be in the amygdala. They can also be found in healthy individuals, although it has been suggested that these may be pre-clinical cases of dementia with Lewy bodies. Lewy bodies are also found in other neurodegenerative disorders such as progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy.
In Lewy body dementia, Lewy bodies are mainly found within the brainstem, but they are also found in non-brainstem regions such as the amygdaloid nucleus, parahippocampal gyrus, cingulate cortex, and cerebral neocortex. Classic brainstem Lewy bodies are spherical intraneuronal cytoplasmic inclusions, characterized by hyaline eosinophilic cores, concentric lamellar bands, narrow pale halos, and immunoreactivity for alpha synuclein and ubiquitin. In contrast, cortical Lewy bodies typically lack a halo.
Most brains with Lewy body dementia also show some plaques and tangles, although in most instances, the lesions are not nearly as severe as in Alzheimer’s disease. Neuronal loss and gliosis are usually restricted to brainstem regions, particularly the substantia nigra and locus ceruleus.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 61
Incorrect
-
In which area of the skull is the structure located in the anterior cranial fossa?
Your Answer:
Correct Answer: Cribriform plate
Explanation:The ethmoid bone contains the cribriform plate, which acts as a barrier between the nasal cavity and the brain.
Cranial Fossae and Foramina
The cranium is divided into three regions known as fossae, each housing different cranial lobes. The anterior cranial fossa contains the frontal lobes and includes the frontal and ethmoid bones, as well as the lesser wing of the sphenoid. The middle cranial fossa contains the temporal lobes and includes the greater wing of the sphenoid, sella turcica, and most of the temporal bones. The posterior cranial fossa contains the occipital lobes, cerebellum, and medulla and includes the occipital bone.
There are several foramina in the skull that allow for the passage of various structures. The most important foramina likely to appear in exams are listed below:
– Foramen spinosum: located in the middle fossa and allows for the passage of the middle meningeal artery.
– Foramen ovale: located in the middle fossa and allows for the passage of the mandibular division of the trigeminal nerve.
– Foramen lacerum: located in the middle fossa and allows for the passage of the small meningeal branches of the ascending pharyngeal artery and emissary veins from the cavernous sinus.
– Foramen magnum: located in the posterior fossa and allows for the passage of the spinal cord.
– Jugular foramen: located in the posterior fossa and allows for the passage of cranial nerves IX, X, and XI.Understanding the location and function of these foramina is essential for medical professionals, as they play a crucial role in the diagnosis and treatment of various neurological conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 62
Incorrect
-
What signs of symptoms might indicate the presence of Balint's syndrome?
Your Answer:
Correct Answer: Simultanagnosia
Explanation:Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 63
Incorrect
-
What is the embryonic structure that gives rise to the cerebellum and pons?
Your Answer:
Correct Answer: Metencephalon
Explanation:During fetal development, the neural tube at the cranial end gives rise to three major parts: the prosencephalon, mesencephalon, and rhombencephalon. The prosencephalon further divides into the telencephalon and diencephalon, forming the forebrain. The mesencephalon forms the midbrain, while the rhombencephalon splits into the metencephalon (which gives rise to the cerebellum and pons) and myelencephalon (which forms the medulla oblongata and spinal cord).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 64
Incorrect
-
Which of the following is not considered a characteristic of Klüver-Bucy syndrome?
Your Answer:
Correct Answer: Visual apraxia
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 65
Incorrect
-
If a man experiences a severe road traffic accident resulting in substantial damage to his frontal lobe, what symptoms would you anticipate him to exhibit?
Your Answer:
Correct Answer: Contralateral hemiplegia
Explanation:Cerebral Dysfunction: Lobe-Specific Features
When the brain experiences dysfunction, it can manifest in various ways depending on the affected lobe. In the frontal lobe, dysfunction can lead to contralateral hemiplegia, impaired problem solving, disinhibition, lack of initiative, Broca’s aphasia, and agraphia (dominant). The temporal lobe dysfunction can result in Wernicke’s aphasia (dominant), homonymous upper quadrantanopia, and auditory agnosia (non-dominant). On the other hand, the non-dominant parietal lobe dysfunction can lead to anosognosia, dressing apraxia, spatial neglect, and constructional apraxia. Meanwhile, the dominant parietal lobe dysfunction can result in Gerstmann’s syndrome. Lastly, occipital lobe dysfunction can lead to visual agnosia, visual illusions, and contralateral homonymous hemianopia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 66
Incorrect
-
During which stage of sleep do sleep spindles appear on an EEG in a typical individual?
Your Answer:
Correct Answer: Stage 2
Explanation:Sleep is a complex process that involves different stages. These stages are categorized into Non-REM (NREM) and Rapid Eye Movement (REM) sleep. Each cycle of NREM and REM sleep takes around 90 to 110 minutes.
Stage 1 is the lightest stage of sleep, where the sleeper may experience sudden muscle contractions and a sense of falling. The brain waves during this stage are called theta waves.
In Stage 2, eye movement stops, and brain waves become lower. Sleep spindles and K complexes, which are rapid bursts of 12-14 Hz waves, are seen during this stage.
Stages 3 and 4 are referred to as deep sleep of delta sleep. There is no eye movement of muscle activity during these stages. Children may experience night terrors of somnambulism during these stages.
REM sleep is characterized by rapid, shallow breathing and rapid, jerky eye movements. Most dreaming occurs during REM sleep.
Overall, the different stages of sleep are important for the body to rest and rejuvenate. Understanding these stages can help individuals improve their sleep quality and overall health.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 67
Incorrect
-
Which lobe of the brain is responsible for causing Gerstmann's syndrome when it malfunctions?
Your Answer:
Correct Answer: Dominant parietal
Explanation:Parietal Lobe Dysfunction: Types and Symptoms
The parietal lobe is a part of the brain that plays a crucial role in processing sensory information and integrating it with other cognitive functions. Dysfunction in this area can lead to various symptoms, depending on the location and extent of the damage.
Dominant parietal lobe dysfunction, often caused by a stroke, can result in Gerstmann’s syndrome, which includes finger agnosia, dyscalculia, dysgraphia, and right-left disorientation. Non-dominant parietal lobe dysfunction, on the other hand, can cause anosognosia, dressing apraxia, spatial neglect, and constructional apraxia.
Bilateral damage to the parieto-occipital lobes, a rare condition, can lead to Balint’s syndrome, which is characterized by oculomotor apraxia, optic ataxia, and simultanagnosia. These symptoms can affect a person’s ability to shift gaze, interact with objects, and perceive multiple objects at once.
In summary, parietal lobe dysfunction can manifest in various ways, and understanding the specific symptoms can help diagnose and treat the underlying condition.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 68
Incorrect
-
What brain structures are responsible for regulating breathing and heart rate?
Your Answer:
Correct Answer: Medulla
Explanation:The medulla governs the rhythm of the heart and respiration. The amygdala regulates emotional reactions and the ability to perceive the emotions of others. The midbrain is linked to vision, hearing, motor coordination, sleep patterns, alertness, and temperature regulation. The cerebellum manages voluntary movement and balance. The thalamus transmits sensory and motor signals to the cerebral cortex.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 69
Incorrect
-
Which of the following cannot trigger abnormal wave patterns on the EEG?
Your Answer:
Correct Answer: Cold environments
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 70
Incorrect
-
Which receptor's agonist effect is most likely responsible for anorgasmia caused by SSRIs?
Your Answer:
Correct Answer: 5HT2C
Explanation:As an AI language model, I cannot provide a response without knowing the context of the rewrite you are referring to. Please provide more information of context so that I can assist you better.
Serotonin (5-hydroxytryptamine, 5-HT) receptors are primarily G protein receptors, except for 5-HT3, which is a ligand-gated receptor. It is important to remember that 5-HT3 is most commonly associated with nausea. Additionally, 5-HT7 is linked to circadian rhythms. The stimulation of 5-HT2 receptors is believed to be responsible for the side effects of insomnia, agitation, and sexual dysfunction that are associated with the use of selective serotonin reuptake inhibitors (SSRIs).
-
This question is part of the following fields:
- Neurosciences
-
-
Question 71
Incorrect
-
Which type of seizure is most commonly associated with a polyspike and wave discharge pattern in the range of 3-6 Hz?
Your Answer:
Correct Answer: Myoclonic
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 72
Incorrect
-
What is the extracellular ion that contributes to the resting membrane potential of a neuron due to its high concentration?
Your Answer:
Correct Answer: Na
Explanation:Understanding Action Potentials in Neurons and Muscle Cells
The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.
To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 73
Incorrect
-
Which condition has been eliminated due to the use of highly active antiretroviral therapy (HAART) in individuals who are HIV positive?
Your Answer:
Correct Answer: Toxoplasmosis
Explanation:The use of HAART has led to a complete elimination of new cases of toxoplasmosis in individuals who are HIV positive. Studies conducted on the Edinburgh cohort have revealed a significant decrease in the occurrence of CMV by 50% during autopsy, a 68% reduction in HIVE, and complete eradication of toxoplasmosis. However, there has been a slight increase in the incidence of PML and lymphoma in this group and other samples.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 74
Incorrect
-
From which substance is melatonin produced?
Your Answer:
Correct Answer: Serotonin
Explanation:Melatonin: The Hormone of Darkness
Melatonin is a hormone that is produced in the pineal gland from serotonin. This hormone is known to be released in higher amounts during the night, especially in dark environments. Melatonin plays a crucial role in regulating the sleep-wake cycle and is often referred to as the hormone of darkness.
The production of melatonin is influenced by the amount of light that enters the eyes. When it is dark, the pineal gland releases more melatonin, which helps to promote sleep. On the other hand, when it is light, the production of melatonin is suppressed, which helps to keep us awake and alert.
Melatonin is also known to have antioxidant properties and may help to protect the body against oxidative stress. It has been suggested that melatonin may have a role in the prevention of certain diseases, such as cancer and neurodegenerative disorders.
Overall, melatonin is an important hormone that plays a crucial role in regulating our sleep-wake cycle and may have other health benefits as well.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 75
Incorrect
-
What is the primary neurotransmitter in the brain that has an inhibitory effect?
Your Answer:
Correct Answer: GABA
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 76
Incorrect
-
Which statement about 5-Hydroxyindoleacetic acid (5-HIAA) is accurate?
Your Answer:
Correct Answer: Low CSF levels are found in people with depression
Explanation:Depression, suicidality, and aggression have been linked to low levels of 5-HIAA in the CSF.
The Significance of 5-HIAA in Depression and Aggression
During the 1980s, there was a brief period of interest in 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Studies found that up to a third of people with depression had low concentrations of 5-HIAA in their cerebrospinal fluid (CSF), while very few normal controls did. This suggests that 5-HIAA may play a role in depression.
Furthermore, individuals with low CSF levels of 5-HIAA have been found to respond less effectively to antidepressants and are more likely to commit suicide. This finding has been replicated in multiple studies, indicating the significance of 5-HIAA in depression.
Low levels of 5-HIAA are also associated with increased levels of aggression. This suggests that 5-HIAA may play a role in regulating aggressive behavior. Overall, the research on 5-HIAA highlights its potential importance in understanding and treating depression and aggression.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 77
Incorrect
-
Which condition is most commonly associated with Klüver-Bucy syndrome?
Your Answer:
Correct Answer: Alzheimer's disease
Explanation:Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 78
Incorrect
-
What can be said about alterations in dopamine transporter levels observed in individuals with ADHD?
Your Answer:
Correct Answer: Elevated due to psychostimulant treatment
Explanation:The density of striatal dopamine transporters in individuals with ADHD is influenced by their prior exposure to psychostimulants. ADHD is a complex disorder that involves dysfunction in multiple neurotransmitter systems, including dopamine, adrenergic, cholinergic, and serotonergic systems. Dopamine systems have received significant attention due to their role in regulating psychomotor activity, motivation, inhibition, and attention. Psychostimulants increase dopamine availability by blocking striatal dopamine transporters. Individuals with untreated ADHD have lower levels of dopamine transporters, while those who have received psychostimulants have higher levels.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 79
Incorrect
-
What is the structure that carries the middle meningeal artery?
Your Answer:
Correct Answer: Foramen spinosum
Explanation:Cranial Fossae and Foramina
The cranium is divided into three regions known as fossae, each housing different cranial lobes. The anterior cranial fossa contains the frontal lobes and includes the frontal and ethmoid bones, as well as the lesser wing of the sphenoid. The middle cranial fossa contains the temporal lobes and includes the greater wing of the sphenoid, sella turcica, and most of the temporal bones. The posterior cranial fossa contains the occipital lobes, cerebellum, and medulla and includes the occipital bone.
There are several foramina in the skull that allow for the passage of various structures. The most important foramina likely to appear in exams are listed below:
– Foramen spinosum: located in the middle fossa and allows for the passage of the middle meningeal artery.
– Foramen ovale: located in the middle fossa and allows for the passage of the mandibular division of the trigeminal nerve.
– Foramen lacerum: located in the middle fossa and allows for the passage of the small meningeal branches of the ascending pharyngeal artery and emissary veins from the cavernous sinus.
– Foramen magnum: located in the posterior fossa and allows for the passage of the spinal cord.
– Jugular foramen: located in the posterior fossa and allows for the passage of cranial nerves IX, X, and XI.Understanding the location and function of these foramina is essential for medical professionals, as they play a crucial role in the diagnosis and treatment of various neurological conditions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 80
Incorrect
-
You are asked to assess a 75 year old woman on a geriatric ward who presents with sudden dizziness and vomiting. During your examination, you notice that the right side of her face seems to have lost sensation, and her left arm and leg also appear to have lost sensation to pain and temperature. What is your suspected diagnosis?
Your Answer:
Correct Answer: Posterior inferior cerebellar artery occlusion
Explanation:Posterior inferior cerebellar artery occlusion/infarct, also known as Wallenberg’s syndrome of lateral medullary syndrome, can cause a sudden onset of dizziness and vomiting. It can also result in ipsilateral facial sensory loss, specifically for pain and temperature, and contralateral sensory loss for pain and temperature of the limbs and trunk. Nystagmus to the side of the lesion, ipsilateral limb ataxia, dysphagia, and dysarthria are also common symptoms. Additionally, this condition can cause ipsilateral pharyngeal and laryngeal paralysis.
Brain Blood Supply and Consequences of Occlusion
The brain receives blood supply from the internal carotid and vertebral arteries, which form the circle of Willis. The circle of Willis acts as a shunt system in case of vessel damage. The three main vessels arising from the circle are the anterior cerebral artery (ACA), middle cerebral artery (MCA), and posterior cerebral artery (PCA). Occlusion of these vessels can result in various neurological deficits. ACA occlusion may cause hemiparesis of the contralateral foot and leg, sensory loss, and frontal signs. MCA occlusion is the most common and can lead to hemiparesis, dysphasia/aphasia, neglect, and visual field defects. PCA occlusion may cause alexia, loss of sensation, hemianopia, prosopagnosia, and cranial nerve defects. It is important to recognize these consequences to provide appropriate treatment.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 81
Incorrect
-
Which interleukin has been consistently found to be present in higher levels in individuals with depression compared to those without depression?
Your Answer:
Correct Answer: IL-6
Explanation:Inflammatory Cytokines and Mental Health
Research has suggested that an imbalance in the immune system, particularly the pro-inflammatory cytokines, may play a significant role in the development of common mental disorders. The strongest evidence is found in depression, where studies have shown increased levels of inflammatory markers, such as interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and c-reactive protein (CRP), in depressed individuals compared to healthy controls (Santoft, 2020).
While most studies have focused on the differences in inflammatory markers between depressed and healthy individuals, some have also found a correlation between higher levels of inflammation and more severe depressive symptoms. The underlying cause of this chronic low-grade inflammation is not yet fully understood, but potential factors include psychosocial stress, physical inactivity, poor diet, smoking, obesity, altered gut permeability, disturbed sleep, and vitamin D deficiency.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 82
Incorrect
-
Which of the following does not align with a diagnosis of frontotemporal lobar degeneration?
Your Answer:
Correct Answer: Pronounced parietal lobe atrophy
Explanation:Frontotemporal lobar degeneration results in the specific shrinking of the frontal and temporal lobes.
Frontotemporal Lobar Degeneration (FTLD) is a pathological term that refers to a group of neurodegenerative disorders that affect the frontal and temporal lobes of the brain. FTLD is classified into several subtypes based on the main protein component of neuronal and glial abnormal inclusions and their distribution. The three main proteins associated with FTLD are Tau, TDP-43, and FUS. Each FTD clinical phenotype has been associated with different proportions of these proteins. Macroscopic changes in FTLD include atrophy of the frontal and temporal lobes, with focal gyral atrophy that resembles knives. Microscopic changes in FTLD-Tau include neuronal and glial tau aggregation, with further sub-classification based on the existence of different isoforms of tau protein. FTLD-TDP is characterized by cytoplasmic inclusions of TDP-43 in neurons, while FTLD-FUS is characterized by cytoplasmic inclusions of FUS.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 83
Incorrect
-
What is divided by the Sylvian fissure?
Your Answer:
Correct Answer: The frontal and parietal lobes from the temporal lobe
Explanation:The temporal lobe is separated from the frontal and parietal lobes by the Sylvian fissure.
The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 84
Incorrect
-
In which region of the brain is Broca's area located?
Your Answer:
Correct Answer: Brodmann areas 44 and 45
Explanation:Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 85
Incorrect
-
What is the structure that divides which parts of the brain?
Your Answer:
Correct Answer: The lateral ventricles
Explanation:The septum pellucidum is a thin layer that divides the front sections of the left and right lateral ventricles in the brain. It extends as a flat structure from the corpus callosum to the fornix.
Dementia Pugilistica: A Neurodegenerative Condition Resulting from Neurotrauma
Dementia pugilistica, also known as chronic traumatic encephalopathy (CTE), is a neurodegenerative condition that results from neurotrauma. It is commonly seen in boxers and NFL players, but can also occur in anyone with neurotrauma. The condition is characterized by symptoms such as gait ataxia, slurred speech, impaired hearing, tremors, disequilibrium, neurobehavioral disturbances, and progressive cognitive decline.
Most cases of dementia pugilistica present with early onset cognitive deficits, and behavioral signs exhibited by patients include aggression, suspiciousness, paranoia, childishness, hypersexuality, depression, and restlessness. The progression of the condition leads to more prominent behavioral symptoms such as difficulty with impulse control, irritability, inappropriateness, and explosive outbursts of aggression.
Neuropathological abnormalities have been identified in CTE, with the most unique feature being the abnormal accumulation of tau in neurons and glia in an irregular, focal, perivascular distribution and at the depths of cortical sulci. Abnormalities of the septum pellucidum, such as cavum and fenestration, are also a common feature.
While the condition has become increasingly rare due to the progressive improvement in sports safety, it is important to recognize the potential long-term consequences of repeated head injuries and take steps to prevent them.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 86
Incorrect
-
Which of the following is believed to be caused by the obstruction of D-2 receptors in the mesolimbic pathway?
Your Answer:
Correct Answer: The therapeutic effects of antipsychotics in schizophrenia
Explanation:Neurotransmitters are substances used by neurons to communicate with each other and with target tissues. They are synthesized and released from nerve endings into the synaptic cleft, where they bind to receptor proteins in the cellular membrane of the target tissue. Neurotransmitters can be classified into different types, including small molecules (such as acetylcholine, dopamine, norepinephrine, serotonin, and GABA) and large molecules (such as neuropeptides). They can also be classified as excitatory or inhibitory. Receptors can be ionotropic or metabotropic, and the effects of neurotransmitters can be fast of slow. Some important neurotransmitters include acetylcholine, dopamine, GABA, norepinephrine, and serotonin. Each neurotransmitter has a specific synthesis, breakdown, and receptor type. Understanding neurotransmitters is important for understanding the function of the nervous system and for developing treatments for neurological and psychiatric disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 87
Incorrect
-
What is a true statement about the neocortex?
Your Answer:
Correct Answer: It contains both pyramidal and nonpyramidal cells
Explanation:The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 88
Incorrect
-
What is the neural pathway that links areas of the frontal lobe to areas of the temporal lobe within the same hemisphere?
Your Answer:
Correct Answer: Superior Longitudinal (arcuate) Fasciculus
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 89
Incorrect
-
Which wave pattern is considered the most abnormal during a state of wakefulness?
Your Answer:
Correct Answer: Delta
Explanation:Electroencephalography
Electroencephalography (EEG) is a clinical test that records the brain’s spontaneous electrical activity over a short period of time using multiple electrodes placed on the scalp. It is mainly used to rule out organic conditions and can help differentiate dementia from other disorders such as metabolic encephalopathies, CJD, herpes encephalitis, and non-convulsive status epilepticus. EEG can also distinguish possible psychotic episodes and acute confusional states from non-convulsive status epilepticus.
Not all abnormal EEGs represent an underlying condition, and psychotropic medications can affect EEG findings. EEG abnormalities can also be triggered purposely by activation procedures such as hyperventilation, photic stimulation, certain drugs, and sleep deprivation.
Specific waveforms are seen in an EEG, including delta, theta, alpha, sigma, beta, and gamma waves. Delta waves are found frontally in adults and posteriorly in children during slow wave sleep, and excessive amounts when awake may indicate pathology. Theta waves are generally seen in young children, drowsy and sleeping adults, and during meditation. Alpha waves are seen posteriorly when relaxed and when the eyes are closed, and are also seen in meditation. Sigma waves are bursts of oscillatory activity that occur in stage 2 sleep. Beta waves are seen frontally when busy of concentrating, and gamma waves are seen in advanced/very experienced meditators.
Certain conditions are associated with specific EEG changes, such as nonspecific slowing in early CJD, low voltage EEG in Huntington’s, diffuse slowing in encephalopathy, and reduced alpha and beta with increased delta and theta in Alzheimer’s.
Common epileptiform patterns include spikes, spike/sharp waves, and spike-waves. Medications can have important effects on EEG findings, with clozapine decreasing alpha and increasing delta and theta, lithium increasing all waveforms, lamotrigine decreasing all waveforms, and valproate having inconclusive effects on delta and theta and increasing beta.
Overall, EEG is a useful tool in clinical contexts for ruling out organic conditions and differentiating between various disorders.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 90
Incorrect
-
Under normal circumstances, which stage of sleep is responsible for the largest portion of total sleep time?
Your Answer:
Correct Answer: Stage II
Explanation:Sleep Stages
Sleep is divided into two distinct states called rapid eye movement (REM) and non-rapid eye movement (NREM). NREM is subdivided into four stages.
Sleep stage
Approx % of time spent in stage
EEG findings
CommentI
5%
Theta waves (4-7 Hz)
The dozing off stage. Characterized by hypnic jerks: spontaneous myoclonic contractions associated with a sensation of twitching of falling.II
45%
Theta waves, K complexes and sleep spindles (short bursts of 12-14 Hz activity)
Body enters a more subdued state including a drop in temperature, relaxed muscles, and slowed breathing and heart rate. At the same time, brain waves show a new pattern and eye movement stops.III
15%
Delta waves (0-4 Hz)
Deepest stage of sleep (high waking threshold). The length of stage 3 decreases over the course of the night.IV
15%
Mixed, predominantly beta
High dream activity.The percentage of REM sleep decreases with age.
It takes the average person 15-20 minutes to fall asleep, this is called sleep latency (characterised by the onset of stage I sleep). Once asleep one descends through stages I-II and then III-IV (deep stages). After about 90 minutes of sleep one enters REM. The rest of the sleep comprises of cycles through the stages. As the sleep progresses the periods of REM become greater and the periods of NREM become less. During an average night’s sleep one spends 25% of the sleep in REM and 75% in NREM.
REM sleep has certain characteristics that separate it from NREM
Characteristics of REM sleep
– Autonomic instability (variability in heart rate, respiratory rate, and BP)
– Loss of muscle tone
– Dreaming
– Rapid eye movements
– Penile erectionDeafness:
(No information provided on deafness in relation to sleep stages)
-
This question is part of the following fields:
- Neurosciences
-
-
Question 91
Incorrect
-
What is a true statement about cerebrovascular accidents?
Your Answer:
Correct Answer: Cerebral infarction commonly occurs during sleep
Explanation:During sleep, strokes are more likely to occur as blood pressure decreases and areas of the brain with poor blood flow (caused by arterial damage in arteriopaths) become oxygen-deprived. Women with pre-existing cardiovascular disease should avoid taking oral contraceptives as they can raise the risk of stroke and DVTs.
Cerebrovascular accidents (CVA), also known as strokes, are defined by the World Health Organization as a sudden onset of focal neurological symptoms lasting more than 24 hours and presumed to be of vascular origin. Strokes can be caused by either infarction of hemorrhage, with infarction being more common. Hemorrhagic strokes tend to be more severe. Intracranial hemorrhage can be primary, caused mainly by hypertension, of subarachnoid, caused by the rupture of an aneurysm of angioma. Primary intracranial hemorrhage is most common in individuals aged 60-80 and often occurs during exertion. Infarction can be caused by thrombosis of embolism, with thrombosis being more common. Atherosclerosis, often caused by hypertension, is the main cause of infarction. CT scanning is the preferred diagnostic tool during the first 48 hours after a stroke as it can distinguish between infarcts and hemorrhages. Recovery from embolism is generally quicker and more complete than from thrombosis due to the availability of collateral channels.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 92
Incorrect
-
What is the most common symptom associated with primary progressive aphasia?
Your Answer:
Correct Answer: Atrophy of left perisylvian region
Explanation:Primary progressive aphasia is a specific type of frontotemporal dementia that is characterized by the degeneration of the left perisylvian region. Frontotemporal dementia can be divided into two subtypes: behavioral, which involves atrophy of the frontal region, and language, which includes primary progressive aphasia and semantic dementia. The language subtypes of frontotemporal dementia typically exhibit more severe atrophy on the left side of the brain. Semantic dementia is characterized by greater atrophy in the anterior temporal lobe compared to the posterior temporal lobe. In contrast, Alzheimer’s dementia is associated with bilateral hippocampal atrophy, while vascular dementia is characterized by diffuse white matter lesions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 93
Incorrect
-
What is the purpose of the blood brain barrier in keeping the blood separated from what?
Your Answer:
Correct Answer: Cerebrospinal fluid
Explanation:The blood retinal barrier refers to the membrane that separates the aqueous humour from the blood.
Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 94
Incorrect
-
What is the outcome of bilateral dysfunction in the medial temporal lobes?
Your Answer:
Correct Answer: Klüver-Bucy syndrome
Explanation:Periods of hypersomnia and altered behavior are characteristic of Kleine-Levin syndrome.
Kluver-Bucy Syndrome: Causes and Symptoms
Kluver-Bucy syndrome is a neurological disorder that results from bilateral medial temporal lobe dysfunction, particularly in the amygdala. This condition is characterized by a range of symptoms, including hyperorality (a tendency to explore objects with the mouth), hypersexuality, docility, visual agnosia, and dietary changes.
The most common causes of Kluver-Bucy syndrome include herpes, late-stage Alzheimer’s disease, frontotemporal dementia, trauma, and bilateral temporal lobe infarction. In some cases, the condition may be reversible with treatment, but in others, it may be permanent and require ongoing management. If you of someone you know is experiencing symptoms of Kluver-Bucy syndrome, it is important to seek medical attention promptly to determine the underlying cause and develop an appropriate treatment plan.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 95
Incorrect
-
Which statement accurately describes the neurobiology of schizophrenia?
Your Answer:
Correct Answer: Structural brain abnormalities are present at the onset of illness
Explanation:Schizophrenia is a pathology that is characterized by a number of structural and functional brain alterations. Structural alterations include enlargement of the ventricles, reductions in total brain and gray matter volume, and regional reductions in the amygdala, parahippocampal gyrus, and temporal lobes. Antipsychotic treatment may be associated with gray matter loss over time, and even drug-naïve patients show volume reductions. Cerebral asymmetry is also reduced in affected individuals and healthy relatives. Functional alterations include diminished activation of frontal regions during cognitive tasks and increased activation of temporal regions during hallucinations. These findings suggest that schizophrenia is associated with both macroscopic and functional changes in the brain.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 96
Incorrect
-
At what threshold does the membrane potential of a cell need to reach in order to trigger an action potential?
Your Answer:
Correct Answer: -55 mV
Explanation:Understanding Action Potentials in Neurons and Muscle Cells
The membrane potential is a crucial aspect of cell physiology, and it exists across the plasma membrane of most cells. However, in neurons and muscle cells, this membrane potential can change over time. When a cell is not stimulated, it is in a resting state, and the inside of the cell is negatively charged compared to the outside. This resting membrane potential is typically around -70mV, and it is maintained by the Na/K pump, which maintains a high concentration of Na outside and K inside the cell.
To trigger an action potential, the membrane potential must be raised to around -55mV. This can occur when a neurotransmitter binds to the postsynaptic neuron and opens some ion channels. Once the membrane potential reaches -55mV, a cascade of events is initiated, leading to the opening of a large number of Na channels and causing the cell to depolarize. As the membrane potential reaches around +40 mV, the Na channels close, and the K gates open, allowing K to flood out of the cell and causing the membrane potential to fall back down. This process is irreversible and is critical for the transmission of signals in neurons and the contraction of muscle cells.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 97
Incorrect
-
Which cranial nerve is solely responsible for either sensory of motor functions and does not have a combination of both?
Your Answer:
Correct Answer: Abducens
Explanation:Overview of Cranial Nerves and Their Functions
The cranial nerves are a complex system of nerves that originate from the brain and control various functions of the head and neck. There are twelve cranial nerves, each with a specific function and origin. The following table provides a simplified overview of the cranial nerves, including their origin, skull exit, modality, and functions.
The first cranial nerve, the olfactory nerve, originates from the telencephalon and exits through the cribriform plate. It is a sensory nerve that controls the sense of smell. The second cranial nerve, the optic nerve, originates from the diencephalon and exits through the optic foramen. It is a sensory nerve that controls vision.
The third cranial nerve, the oculomotor nerve, originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement, pupillary constriction, and lens accommodation. The fourth cranial nerve, the trochlear nerve, also originates from the midbrain and exits through the superior orbital fissure. It is a motor nerve that controls eye movement.
The fifth cranial nerve, the trigeminal nerve, originates from the pons and exits through different foramina depending on the division. It is a mixed nerve that controls chewing and sensation of the anterior 2/3 of the scalp. It also tenses the tympanic membrane to dampen loud noises.
The sixth cranial nerve, the abducens nerve, originates from the pons and exits through the superior orbital fissure. It is a motor nerve that controls eye movement. The seventh cranial nerve, the facial nerve, also originates from the pons and exits through the internal auditory canal. It is a mixed nerve that controls facial expression, taste of the anterior 2/3 of the tongue, and tension on the stapes to dampen loud noises.
The eighth cranial nerve, the vestibulocochlear nerve, originates from the pons and exits through the internal auditory canal. It is a sensory nerve that controls hearing. The ninth cranial nerve, the glossopharyngeal nerve, originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls taste of the posterior 1/3 of the tongue, elevation of the larynx and pharynx, and swallowing.
The tenth cranial nerve, the vagus nerve, also originates from the medulla and exits through the jugular foramen. It is a mixed nerve that controls swallowing, voice production, and parasympathetic supply to nearly all thoracic and abdominal viscera. The eleventh cranial nerve, the accessory nerve, originates from the medulla and exits through the jugular foramen. It is a motor nerve that controls shoulder shrugging and head turning.
The twelfth cranial nerve, the hypoglossal nerve, originates from the medulla and exits through the hypoglossal canal. It is a motor nerve that controls tongue movement. Overall, the cranial nerves play a crucial role in controlling various functions of the head and neck, and any damage of dysfunction can have significant consequences.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 98
Incorrect
-
Which structure is not included in the neocortex?
Your Answer:
Correct Answer: Caudate nucleus
Explanation:The Cerebral Cortex and Neocortex
The cerebral cortex is the outermost layer of the cerebral hemispheres and is composed of three parts: the archicortex, paleocortex, and neocortex. The neocortex accounts for 90% of the cortex and is involved in higher functions such as thought and language. It is divided into 6-7 layers, with two main cell types: pyramidal cells and nonpyramidal cells. The surface of the neocortex is divided into separate areas, each given a number by Brodmann (e.g. Brodmann’s area 17 is the primary visual cortex). The surface is folded to increase surface area, with grooves called sulci and ridges called gyri. The neocortex is responsible for higher cognitive functions and is essential for human consciousness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 99
Incorrect
-
Anomic aphasia is most likely to occur due to a lesion in which area?
Your Answer:
Correct Answer: Angular gyrus
Explanation:The parahippocampal gyrus is located surrounding the hippocampus and is involved in memory processing. Asymmetry in this area has also been observed in individuals with schizophrenia.
Aphasia is a language impairment that affects the production of comprehension of speech, as well as the ability to read of write. The areas involved in language are situated around the Sylvian fissure, referred to as the ‘perisylvian language area’. For repetition, the primary auditory cortex, Wernicke, Broca via the Arcuate fasciculus (AF), Broca recodes into articulatory plan, primary motor cortex, and pyramidal system to cranial nerves are involved. For oral reading, the visual cortex to Wernicke and the same processes as for repetition follows. For writing, Wernicke via AF to premotor cortex for arm and hand, movement planned, sent to motor cortex. The classification of aphasia is complex and imprecise, with the Boston Group classification and Luria’s aphasia interpretation being the most influential. The important subtypes of aphasia include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, anomic aphasia, transcortical motor aphasia, and transcortical sensory aphasia. Additional syndromes include alexia without agraphia, alexia with agraphia, and pure word deafness.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 100
Incorrect
-
What proportion of all multiple sclerosis cases is accounted for by primary progressive multiple sclerosis?
Your Answer:
Correct Answer: 10%
Explanation:Multiple Sclerosis: An Overview
Multiple sclerosis is a neurological disorder that is classified into three categories: primary progressive, relapsing-remitting, and secondary progressive. Primary progressive multiple sclerosis affects 5-10% of patients and is characterized by a steady progression with no remissions. Relapsing-remitting multiple sclerosis affects 20-30% of patients and presents with a relapsing-remitting course but does not lead to serious disability. Secondary progressive multiple sclerosis affects 60% of patients and initially presents with a relapsing-remitting course but is then followed by a phase of progressive deterioration.
The disorder typically begins between the ages of 20 and 40 and is characterized by multiple demyelinating lesions that have a preference for the optic nerves, cerebellum, brainstem, and spinal cord. Patients with multiple sclerosis present with a variety of neurological signs that reflect the presence and distribution of plaques. Ocular features of multiple sclerosis include optic neuritis, internuclear ophthalmoplegia, and ocular motor cranial neuropathy.
Multiple sclerosis is more common in women than in men and is seen with increasing frequency as the distance from the equator increases. It is believed to be caused by a combination of genetic and environmental factors, with monozygotic concordance at 25%. Overall, multiple sclerosis is a predominantly white matter disease that can have a significant impact on a patient’s quality of life.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 101
Incorrect
-
Which one of these organs is not classified as a circumventricular organ?
Your Answer:
Correct Answer: The olive
Explanation:Understanding the Blood Brain Barrier
The blood brain barrier (BBB) is a crucial component of the brain’s defense system against harmful chemicals and ion imbalances. It is a semi-permeable membrane formed by tight junctions of endothelial cells in the brain’s capillaries, which separates the blood from the cerebrospinal fluid. However, certain areas of the BBB, known as circumventricular organs, are fenestrated to allow neurosecretory products to enter the blood.
When it comes to MRCPsych questions, the focus is on the following aspects of the BBB: the tight junctions between endothelial cells, the ease with which lipid-soluble molecules pass through compared to water-soluble ones, the difficulty large and highly charged molecules face in passing through, the increased permeability of the BBB during inflammation, and the theoretical ability of nasally administered drugs to bypass the BBB.
It is important to remember the specific circumventricular organs where the BBB is fenestrated, including the posterior pituitary and the area postrema. Understanding the BBB’s function and characteristics is essential for medical professionals to diagnose and treat neurological disorders effectively.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 102
Incorrect
-
Research has suggested that dysfunction of oligodendrocytes and the myelin sheath may play a role in the development of schizophrenia. Can you provide information on the function of the myelin sheath in the nervous system?
Your Answer:
Correct Answer: Increases the transmission of electrochemical impulses
Explanation:Myelin sheaths are composed of cells containing fat that act as insulation for the axons of neurons. These cells run along the axons with gaps between them called nodes of Ranvier. The fat in the myelin sheath makes it a poor conductor, causing impulses to jump from one gap to the next, which increases the speed of transmission of action potentials.
The white matter of the brain gets its whitish appearance from the myelin sheath, which is made up of glial cells. Oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system are responsible for forming the myelin sheath. The electrical impulse jumps from one node to the next at a rapid rate of up to 120 meters per second, which is known as saltatory conduction.
Glycoproteins play a crucial role in the formation, maintenance, and degradation of myelin sheaths. Recent studies suggest that dysfunction in oligodendrocytes and myelin can lead to changes in synaptic formation and function, resulting in cognitive dysfunction, a core symptom of schizophrenia. Additionally, there is evidence linking oligodendrocyte and myelin dysfunction with abnormalities in dopamine and glutamate, both of which are found in schizophrenia. Addressing these abnormalities could offer therapeutic opportunities for individuals with schizophrenia.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 103
Incorrect
-
What is included in the basal ganglia?
Your Answer:
Correct Answer: Putamen
Explanation:The Basal Ganglia: Functions and Disorders
The basal ganglia are a group of subcortical structures that play a crucial role in controlling movement and some cognitive processes. The components of the basal ganglia include the striatum (caudate, putamen, nucleus accumbens), subthalamic nucleus, globus pallidus, and substantia nigra (divided into pars compacta and pars reticulata). The putamen and globus pallidus are collectively referred to as the lenticular nucleus.
The basal ganglia are connected in a complex loop, with the cortex projecting to the striatum, the striatum to the internal segment of the globus pallidus, the internal segment of the globus pallidus to the thalamus, and the thalamus back to the cortex. This loop is responsible for regulating movement and cognitive processes.
However, problems with the basal ganglia can lead to several conditions. Huntington’s chorea is caused by degeneration of the caudate nucleus, while Wilson’s disease is characterized by copper deposition in the basal ganglia. Parkinson’s disease is associated with degeneration of the substantia nigra, and hemiballism results from damage to the subthalamic nucleus.
In summary, the basal ganglia are a crucial part of the brain that regulate movement and some cognitive processes. Disorders of the basal ganglia can lead to significant neurological conditions that affect movement and other functions.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 104
Incorrect
-
Which statement is false regarding microglia?
Your Answer:
Correct Answer: They are neuronal cells
Explanation:Microglia serve as the immune cells of the central nervous system and perform functions similar to macrophages. When a microglial cell engulfs infectious material, it is referred to as a Gitter cell.
Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 105
Incorrect
-
What is the condition that is identified by the presence of Papp-Lantos bodies?
Your Answer:
Correct Answer: Multisystem atrophy
Explanation:Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 106
Incorrect
-
What are some common symptoms that are typically observed in the initial phases of Alzheimer's disease?
Your Answer:
Correct Answer: Hippocampal atrophy
Explanation:The medial temporal lobe, comprising the hippocampus and parahippocampal gyrus, exhibits the earliest neuropathological alterations.
Alzheimer’s disease is characterized by both macroscopic and microscopic changes in the brain. Macroscopic changes include cortical atrophy, ventricular dilation, and depigmentation of the locus coeruleus. Microscopic changes include the presence of senile plaques, neurofibrillary tangles, gliosis, degeneration of the nucleus of Meynert, and Hirano bodies. Senile plaques are extracellular deposits of beta amyloid in the gray matter of the brain, while neurofibrillary tangles are intracellular inclusion bodies that consist primarily of hyperphosphorylated tau. Gliosis is marked by increases in activated microglia and reactive astrocytes near the sites of amyloid plaques. The nucleus of Meynert degenerates in Alzheimer’s, resulting in a decrease in acetylcholine in the brain. Hirano bodies are actin-rich, eosinophilic intracytoplasmic inclusions which have a highly characteristic crystalloid fine structure and are regarded as a nonspecific manifestation of neuronal degeneration. These changes in the brain contribute to the cognitive decline and memory loss seen in Alzheimer’s disease.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 107
Incorrect
-
A senior citizen with bipolar disorder complains of nausea and vomiting, confusion, and difficulty with coordination. You suspect lithium toxicity despite a normal level of lithium in the blood. What tests can be done to confirm this?
Your Answer:
Correct Answer: EEG
Explanation:Confirmation of lithium toxicity cannot be solely based on a normal serum lithium level. EEG is a more reliable method, as it can detect diffuse slowing and triphasic waves, which are characteristic features of lithium toxicity. CT and MRI brain scans are not helpful in confirming lithium toxicity. While ECG may show changes such as arrhythmias and flattened of inverted T-waves, they are not sufficient to confirm lithium toxicity. A lumbar puncture can rule out an infectious cause for the symptoms but cannot confirm lithium toxicity.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 108
Incorrect
-
What is located within Brodmann area 22?
Your Answer:
Correct Answer: Wernicke's area
Explanation:Broca’s and Wernicke’s are two types of expressive dysphasia, which is characterized by difficulty producing speech despite intact comprehension. Dysarthria is a type of expressive dysphasia caused by damage to the speech production apparatus, while Broca’s aphasia is caused by damage to the area of the brain responsible for speech production, specifically Broca’s area located in Brodmann areas 44 and 45. On the other hand, Wernicke’s aphasia is a type of receptive of fluent aphasia caused by damage to the comprehension of speech, while the actual production of speech remains normal. Wernicke’s area is located in the posterior part of the superior temporal gyrus in the dominant hemisphere, within Brodmann area 22.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 109
Incorrect
-
How can association tracts be defined in relation to white matter?
Your Answer:
Correct Answer: Cingulum
Explanation:White matter is the cabling that links different parts of the CNS together. There are three types of white matter cables: projection tracts, commissural tracts, and association tracts. Projection tracts connect higher centers of the brain with lower centers, commissural tracts connect the two hemispheres together, and association tracts connect regions of the same hemisphere. Some common tracts include the corticospinal tract, which connects the motor cortex to the brainstem and spinal cord, and the corpus callosum, which is the largest white matter fiber bundle connecting corresponding areas of cortex between the hemispheres. Other tracts include the cingulum, superior and inferior occipitofrontal fasciculi, and the superior and inferior longitudinal fasciculi.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 110
Incorrect
-
What condition is identified by the combination of Parkinsonism, cerebellar ataxia, and autonomic failure?
Your Answer:
Correct Answer: Multisystem atrophy
Explanation:Multisystem Atrophy: A Parkinson Plus Syndrome
Multisystem atrophy is a type of Parkinson plus syndrome that is characterized by three main features: Parkinsonism, autonomic failure, and cerebellar ataxia. It can present in three different ways, including Shy-Drager Syndrome, Striatonigral degeneration, and Olivopontocerebellar atrophy, each with varying degrees of the three main features.
Macroscopic features of multisystem atrophy include pallor of the substantia nigra, greenish discoloration and atrophy of the putamen, and cerebellar atrophy. Microscopic features include the presence of Papp-Lantos bodies, which are alpha-synuclein inclusions found in oligodendrocytes in the substantia nigra, cerebellum, and basal ganglia.
Overall, multisystem atrophy is a complex and debilitating condition that affects multiple systems in the body, leading to a range of symptoms and challenges for patients and their caregivers.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 111
Incorrect
-
Which medical conditions have been linked to the potential involvement of nitric oxide in their development?
Your Answer:
Correct Answer: Depression
Explanation:Nitric Oxide and Depression
Recent research has indicated that nitric oxide (NO) may play a role in the development of depression. Inhibitors of NO synthase have been found to exhibit antidepressant-like effects in preclinical studies, suggesting that NO may be involved in the pathogenesis of depression. These findings suggest that targeting NO signaling pathways may be a potential therapeutic approach for treating depression. Further research is needed to fully understand the role of NO in depression and to develop effective treatments based on this knowledge.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 112
Incorrect
-
What type of apraxia is indicated when a patient is given a pencil during a neurological examination and they attempt to use it to brush their teeth after looking at it for a minute?
Your Answer:
Correct Answer: Ideomotor
Explanation:The inability to carry out complex instructions is referred to as Ideational Apraxia, while the inability to perform previously learned actions with the appropriate tools is known as Ideomotor Apraxia.
Apraxia: Understanding the Inability to Carry Out Learned Voluntary Movements
Apraxia is a neurological condition that affects a person’s ability to carry out learned voluntary movements. It is important to note that this condition assumes that everything works and the person is not paralyzed. There are different types of apraxia, each with its own set of symptoms and characteristics.
Limb kinetic apraxia is a type of apraxia that affects a person’s ability to make fine of delicate movements. This can include tasks such as buttoning a shirt of tying shoelaces.
Ideomotor apraxia, on the other hand, is an inability to carry out learned tasks when given the necessary objects. For example, a person with ideomotor apraxia may try to write with a hairbrush instead of using it to brush their hair.
Constructional apraxia affects a person’s ability to copy a picture of combine parts of something to form a whole. This can include tasks such as building a puzzle of drawing a picture.
Ideational apraxia is an inability to follow a sequence of actions in the correct order. For example, a person with ideational apraxia may struggle to take a match out of a box and strike it with their left hand.
Finally, oculomotor apraxia affects a person’s ability to control eye movements. This can make it difficult for them to track moving objects of read smoothly.
Overall, apraxia can have a significant impact on a person’s ability to carry out everyday tasks. However, with the right support and treatment, many people with apraxia are able to improve their abilities and maintain their independence.
-
This question is part of the following fields:
- Neurosciences
-
-
Question 113
Incorrect
-
What is a true statement about microglia?
Your Answer:
Correct Answer: It is mesodermal in origin
Explanation:Glial Cells: The Support System of the Central Nervous System
The central nervous system is composed of two basic cell types: neurons and glial cells. Glial cells, also known as support cells, play a crucial role in maintaining the health and function of neurons. There are several types of glial cells, including macroglia (astrocytes and oligodendrocytes), ependymal cells, and microglia.
Astrocytes are the most abundant type of glial cell and have numerous functions, such as providing structural support, repairing nervous tissue, nourishing neurons, contributing to the blood-brain barrier, and regulating neurotransmission and blood flow. There are two main types of astrocytes: protoplasmic and fibrous.
Oligodendrocytes are responsible for the formation of myelin sheaths, which insulate and protect axons, allowing for faster and more efficient transmission of nerve impulses.
Ependymal cells line the ventricular system and are involved in the circulation of cerebrospinal fluid (CSF) and fluid homeostasis in the brain. Specialized ependymal cells called choroid plexus cells produce CSF.
Microglia are the immune cells of the CNS and play a crucial role in protecting the brain from infection and injury. They also contribute to the maintenance of neuronal health and function.
In summary, glial cells are essential for the proper functioning of the central nervous system. They provide structural support, nourishment, insulation, and immune defense to neurons, ensuring the health and well-being of the brain and spinal cord.
-
This question is part of the following fields:
- Neurosciences
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)