00
Correct
00
Incorrect
00 : 00 : 0 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - What is the composition of enzymes found in lysosomes? ...

    Correct

    • What is the composition of enzymes found in lysosomes?

      Your Answer: Acid hydrolases

      Explanation:

      Lysosomes: The Digestive System of the Cell

      Lysosomes are organelles that come from the Golgi apparatus and are enclosed by a membrane. They are responsible for breaking down various biological macromolecules such as proteins, nucleic acids, carbohydrates, and lipids. Lysosomes contain acid hydrolases, which are enzymes that cleave chemical bonds by adding water and function at an acidic pH of around 5. They are involved in digesting foreign agents that are internalized by the cell and breaking down other cellular organelles like mitochondria, allowing for their components to be recycled.

      The acidic pH within lysosomes is maintained by a proton pump in the lysosomal membrane, which imports protons from the cytosol coupled to ATP hydrolysis. This acidic environment is necessary for the activity of the acid hydrolases. D-amino acid oxidases and peroxidases are not found in lysosomes but in peroxisomes. Alcohol dehydrogenases and ATPases are not involved in digestion but in other cellular functions. Alcohol dehydrogenases catalyze the interconversion between alcohols and aldehydes or ketones with the reduction of NAD+ to NADH, while ATPases catalyze the breakdown of ATP into ADP and a phosphate ion, releasing energy for the cell’s functions.

    • This question is part of the following fields:

      • Basic Sciences
      7.8
      Seconds
  • Question 2 - Which form of vitamin D is the most active in the human body?...

    Incorrect

    • Which form of vitamin D is the most active in the human body?

      Your Answer: Cholecalciferol

      Correct Answer: 1, 25 (OH) 2 vitamin D

      Explanation:

      The Process of Vitamin D Production and Activation

      Vitamin D comes in two forms, D2 and D3. D3 can be produced in the skin through a reaction that requires UV light, while D2 cannot. Both forms can also be obtained through diet, with some foods now being supplemented with Vitamin D. However, the production of Vitamin D3 in the skin can be affected by various factors such as seasons, latitude, clothing, sun block, and skin tone, making it difficult for individuals to get adequate levels of Vitamin D through sunlight alone, especially in the UK during winter.

      Once absorbed into the lymph, Vitamin D2 and D3 circulate in the bloodstream and reach the liver. Here, the liver enzyme 25-hydroxylase adds an OH group to the Vitamin D molecule, resulting in 25(OH) Vitamin D. The compound then travels to the kidney, where the enzyme 1-alpha hydroxylase adds another OH group, creating the active form of Vitamin D, 1,25 (OH)2Vitamin D. When there is enough of this active form, an inactive metabolite called 24,25 (OH)2Vitamin D is produced instead. this process is important in ensuring adequate Vitamin D levels for overall health and well-being.

    • This question is part of the following fields:

      • Basic Sciences
      674.8
      Seconds
  • Question 3 - The arrangement of amphipathic phospholipids in the mammalian cell membrane, what is it...

    Correct

    • The arrangement of amphipathic phospholipids in the mammalian cell membrane, what is it like?

      Your Answer: A lipid bilayer with hydrophilic heads facing out and hydrophobic tails facing in

      Explanation:

      The Function and Structure of the Mammalian Cell Membrane

      The mammalian cell membrane serves as a protective barrier that separates the cytoplasm from the extracellular environment. It also acts as a filter for molecules that move across it. Unlike plant and prokaryotic cells, mammalian cells do not have a cell wall. The main component of the cell membrane is a bilayer of amphipathic lipids, which have a hydrophilic head and a hydrophobic tail. The phospholipids in the bilayer are oriented with their hydrophilic heads facing outward and their hydrophobic tails facing inward. This arrangement allows for the separation of the watery extracellular environment from the watery intracellular compartment.

      It is important to note that the cell membrane is not a monolayer and the phospholipids are not linked head-to-tail. This is in contrast to DNA, which has a helical chain formation. Overall, the structure and function of the mammalian cell membrane are crucial for maintaining the integrity and proper functioning of the cell.

    • This question is part of the following fields:

      • Basic Sciences
      11.6
      Seconds
  • Question 4 - What RNA base pairs with adenine when synthesizing a complementary RNA strand from...

    Correct

    • What RNA base pairs with adenine when synthesizing a complementary RNA strand from DNA, using RNA polymerase to split the helix at specific points?

      Your Answer: Uracil

      Explanation:

      Differences between DNA and RNA

      DNA and RNA differ in several ways. The primary sugar in DNA is deoxyribose, while in RNA it is ribose. Additionally, DNA is double stranded, while RNA is single stranded. This single stranded structure with un-paired bases allows for transcription to occur when the DNA bases are freed. Each base has a specific pairing, with guanine always binding to cytosine and adenine always binding to thymine in the DNA strand. During transcription, the same complementary RNA bases assemble with the DNA bases, except for thymine, which is not an RNA base. Instead, uracil serves as the RNA pyrimidine base equivalent of thymine. Finally, lysine is an amino acid coded for by the RNA base triplet AAA, where A represents adenine.

    • This question is part of the following fields:

      • Basic Sciences
      11.8
      Seconds
  • Question 5 - What are the potential clinical consequences of a lack of vitamin E? ...

    Correct

    • What are the potential clinical consequences of a lack of vitamin E?

      Your Answer: Ataxia

      Explanation:

      Vitamin E Deficiency

      Vitamin E deficiency is a rare condition that is more likely to occur in individuals with problems affecting the absorption of dietary fats. This includes those with a history of bowel surgery, pancreatic insufficiency, and cystic fibrosis. Premature infants are also at a higher risk of developing this deficiency as vitamin E does not easily cross the placenta. However, supplementation with vitamin E can reverse the damage in some cases.

      The effects of vitamin E deficiency can be severe and can cause spinocerebellar degeneration, which includes limb ataxia, loss of joint position sense, loss of sensation of vibration, and loss of deep tendon reflexes. Additionally, it can cause degeneration of retinal pigments, leading to blindness. In premature infants, it can cause haemolytic anaemia, thrombocytosis, and oedema.

      Overall, vitamin E deficiency is crucial in preventing and treating its effects. It is important to identify individuals who are at a higher risk of developing this deficiency and provide them with appropriate supplementation to prevent any long-term damage.

    • This question is part of the following fields:

      • Basic Sciences
      3.7
      Seconds
  • Question 6 - Which food is a rich source of vitamin D in the diet? ...

    Correct

    • Which food is a rich source of vitamin D in the diet?

      Your Answer: Oily fish

      Explanation:

      Sources of Vitamin D

      Vitamin D is a type of fat-soluble vitamin that can be found in certain foods such as cheese, butter, eggs, and oily fish. However, vegetable sources of vitamin D are limited, although some foods are fortified with this vitamin. For instance, 100 grams of sundried shiitake mushrooms contain 1600 IU of vitamin D, while one egg contains 20 IU. Wild salmon is also a good source of vitamin D, with 100 grams containing 800 IU, while farmed salmon contains 200 IU.

      Aside from food sources, sunlight is also a good source of vitamin D. Exposure of arms and legs to sunlight for 10-15 minutes can provide 3000 IU of vitamin D. However, it is difficult to obtain the daily requirement of 25-50 IU of vitamin D through sunlight alone, especially for people living in temperate climates. As a result, many people may have insufficient vitamin D levels. It is important to ensure that we get enough vitamin D through a combination of food sources and sunlight exposure.

    • This question is part of the following fields:

      • Basic Sciences
      1.7
      Seconds
  • Question 7 - At what stage of eukaryotic mitosis do the centromeres of chromosomes separate? ...

    Incorrect

    • At what stage of eukaryotic mitosis do the centromeres of chromosomes separate?

      Your Answer: Prometaphase

      Correct Answer: Anaphase

      Explanation:

      Chromosome Division during Anaphase

      Chromosomes are joined together in an X shape at the centromere. During anaphase, the centromeres break down and the chromosomes divide into two identical pairs called sister chromatids. These sister chromatids then move to opposite sides of the cell along a network of spindle fibres. When the cell divides during telophase, each daughter cell receives one sister chromatid from the parent cell. This ensures the accurate copying and propagation of genes. The process of chromosome division during anaphase is crucial for the proper distribution of genetic material in cells.

    • This question is part of the following fields:

      • Basic Sciences
      6.1
      Seconds
  • Question 8 - What is the fundamental meaning of carbohydrate? ...

    Incorrect

    • What is the fundamental meaning of carbohydrate?

      Your Answer: A compound containing carbon, hydrogen and oxygen in any proportion.

      Correct Answer: A compound following the formula Cx(H2O)y

      Explanation:

      Carbohydrates: Building Blocks of Energy and Storage

      Carbohydrates are organic compounds made up of carbon, hydrogen, and oxygen, with a general formula of Cx(H2O)y. They can be classified as either aldehydes or ketones and contain multiple hydroxyl groups. Monosaccharides are the simplest form of carbohydrates, consisting of a single unit. They are categorized based on the number of carbon atoms they contain, with trioses having three, pentoses having five, and hexoses having six carbon atoms. These monosaccharides are essential for energy production and building larger carbohydrate structures.

      Disaccharides are formed when two monosaccharides are joined together through a condensation reaction, releasing a water molecule. The most common disaccharides are lactose, maltose, and sucrose. Polysaccharides, on the other hand, are long, branched polymers made up of multiple single units. They serve as convenient storage molecules for energy reserves, such as glycogen in humans and starch in plants.

      In summary, carbohydrates are vital building blocks for energy production and storage in living organisms. Monosaccharides, disaccharides, and polysaccharides all play important roles in maintaining the body’s energy balance and overall health.

    • This question is part of the following fields:

      • Basic Sciences
      6
      Seconds
  • Question 9 - What are the typical clinical manifestations of a deficiency in vitamin B6 (pyridoxine)?...

    Incorrect

    • What are the typical clinical manifestations of a deficiency in vitamin B6 (pyridoxine)?

      Your Answer: Bleeding gums

      Correct Answer: Sensory neuropathy

      Explanation:

      The Importance of Pyridoxine in the Body

      Pyridoxine is a group of B-vitamins that are crucial in various bodily functions. They act as essential cofactors in many reactions, particularly in the metabolism of amino acids and neurotransmitters. Pyridoxine also plays a role in regulating gene transcription and controlling steroid hormones.

      The body can produce pyridoxine through bacterial flora in the gut, and it is also present in many dietary sources. However, overheating certain foods can destroy pyridoxine, and some medications can alter its metabolism. Pyridoxine is also used therapeutically to prevent neuropathy in the treatment of tuberculosis.

      Deficiency in pyridoxine can lead to sensory neuropathy, skin changes, and damage to mucous membranes. On the other hand, deficiency in vitamin C can cause gingivitis and increased bleeding, while vitamin K deficiency can also lead to bleeding. Sleep disturbance is rarely attributed to vitamin B3 (niacin) deficiency.

      In summary, pyridoxine is a vital nutrient that plays a crucial role in various bodily functions. Its deficiency can lead to various health problems, highlighting the importance of maintaining adequate levels of this vitamin in the body.

    • This question is part of the following fields:

      • Basic Sciences
      9
      Seconds
  • Question 10 - A premature baby is born and the anaesthetists are struggling to ventilate the...

    Correct

    • A premature baby is born and the anaesthetists are struggling to ventilate the lungs because of insufficient surfactant. How does Laplace's law explain the force pushing inwards on the walls of the alveolus caused by surface tension between two static fluids, such as air and water in the alveolus?

      Your Answer: Inversely proportional to the radius of the alveolus

      Explanation:

      The Relationship between Alveolar Size and Surface Tension in Respiratory Physiology

      In respiratory physiology, the alveolus is often represented as a perfect sphere to apply Laplace’s law. According to this law, there is an inverse relationship between the size of the alveolus and the surface tension. This means that smaller alveoli experience greater force than larger alveoli for a given surface tension, causing them to collapse first. This phenomenon is similar to what happens when two balloons of different sizes are attached together, with the smaller balloon emptying into the larger one.

      In the lungs, this collapse of smaller alveoli can lead to atelectasis and collapse if surfactant is not present. Surfactant is a substance that reduces surface tension, making it easier to expand the alveoli and preventing smaller alveoli from collapsing. this relationship between alveolar size and surface tension is crucial in respiratory physiology, as it helps explain the importance of surfactant in maintaining proper lung function.

    • This question is part of the following fields:

      • Basic Sciences
      7.1
      Seconds
  • Question 11 - What stage of cellular respiration is responsible for the production of pyruvic acid?...

    Correct

    • What stage of cellular respiration is responsible for the production of pyruvic acid?

      Your Answer: Glycolysis

      Explanation:

      The Versatility of Pyruvic Acid in Cellular Metabolism

      Pyruvic acid is a simple alpha-keto acid that plays a crucial role in several metabolic pathways within the cell. It serves as a central intersection where different pathways converge and diverge. One of the primary ways pyruvic acid is produced is through glycolysis, where glucose is broken down into pyruvic acid. Depending on the cell’s needs, pyruvic acid can be converted back into glucose through gluconeogenesis or used to synthesize fatty acids through the acetyl-CoA pathway. Additionally, pyruvic acid can be used to produce the amino acid alanine.

      Pyruvic acid is also involved in respiration, where it enters the Krebs cycle under aerobic conditions. This cycle produces energy in the form of ATP, which is used by the cell for various functions. Under anaerobic conditions, pyruvic acid can ferment into lactic acid, which is used by some organisms as a source of energy.

      In summary, pyruvic acid is a versatile molecule that plays a critical role in cellular metabolism. Its ability to be converted into different molecules depending on the cell’s needs makes it an essential component of many metabolic pathways.

    • This question is part of the following fields:

      • Basic Sciences
      2.8
      Seconds
  • Question 12 - During which phase of aerobic respiration is FADH2 generated? ...

    Correct

    • During which phase of aerobic respiration is FADH2 generated?

      Your Answer: Krebs cycle

      Explanation:

      The Krebs Cycle and the Role of FADH2

      The Krebs cycle is a crucial part of aerobic respiration in cells. It involves a series of reactions that convert acetate, derived from carbohydrates, fats, and proteins, into carbon dioxide and energy in the form of ATP. Additionally, the Krebs cycle produces precursors for some amino acids and reducing agents like NADH and FADH2 that are involved in other metabolic pathways.

      FAD is a redox cofactor that plays a vital role in the Krebs cycle. It receives two electrons from the sixth reaction of the cycle, where succinate dehydrogenase converts succinate into fumarate by removing two hydrogen atoms and attaching them onto FAD. This process results in FAD gaining two electrons and reducing into FADH2.

      FADH2 then donates the electrons to the electron transport chain, which is another part of cellular respiration. This mechanism helps compensate for the relatively low amount of ATP produced by the Krebs cycle (2.5 molecules of ATP per turn) compared to the electron transport chain (26-28 molecules of ATP). Overall, the Krebs cycle and the role of FADH2 are essential for generating energy in cells.

    • This question is part of the following fields:

      • Basic Sciences
      2
      Seconds
  • Question 13 - What are the vitamins that are soluble in fat? ...

    Incorrect

    • What are the vitamins that are soluble in fat?

      Your Answer: Vitamins D, E and K

      Correct Answer: Vitamins A, D, E and K

      Explanation:

      Absorption of Fat-Soluble Vitamins

      Fat-soluble vitamins, namely A, D, E, and K, have a different absorption process compared to water-soluble vitamins. In the gut, these vitamins are combined with other fat-soluble substances such as monoacylglycerols and cholesterol to form micelles. These micelles are then transported to the lymphatic system and eventually enter the bloodstream through the subclavian vein.

      However, any issues that affect the absorption of fats will also impact the absorption of fat-soluble vitamins. This means that individuals with conditions that affect fat absorption, such as cystic fibrosis or celiac disease, may have difficulty absorbing these vitamins. It is important to ensure adequate intake of fat-soluble vitamins through a balanced diet or supplements to prevent deficiencies and associated health problems.

    • This question is part of the following fields:

      • Basic Sciences
      3.1
      Seconds
  • Question 14 - What is the main role of the Golgi apparatus in eukaryotic cells? ...

    Correct

    • What is the main role of the Golgi apparatus in eukaryotic cells?

      Your Answer: Process of proteins

      Explanation:

      The Golgi Apparatus, Cell Division, and Homeostasis

      The Golgi apparatus is a structure found in eukaryotic cells that consists of flattened membrane stacks. Its primary function is to modify proteins that have been synthesized in the rough endoplasmic reticulum, preparing them for secretion or transport within the cell. However, the Golgi apparatus is not directly involved in cell division, which is controlled by the nucleus.

      Cell homeostasis, on the other hand, is primarily maintained by membrane-embedded channels or proteins such as the sodium-potassium pump. This mechanism ensures that the cell’s internal environment remains stable. The sodium-potassium pump is an active transport mechanism that involves the binding of three intracellular sodium ions to the protein. Adenosine triphosphate (ATP) donates a phosphate group to the protein, which causes it to change shape and release the sodium ions out of the cell.

      The protein then accepts two extracellular potassium ions, and the donated phosphate group detaches, causing the protein to revert to its original shape. This allows the potassium ions to enter the cell, increasing the intracellular potassium concentration and decreasing the intracellular sodium concentration. This process is in contrast to the extracellular conditions.

      In summary, the Golgi apparatus modifies proteins for secretion or transport, while cell division is controlled by the nucleus. Cell homeostasis is maintained by membrane-embedded channels or proteins such as the sodium-potassium pump, which actively transports ions to stabilize the cell’s internal environment.

    • This question is part of the following fields:

      • Basic Sciences
      17.9
      Seconds
  • Question 15 - At what stage of meiosis does the process of homologous recombination occur? ...

    Correct

    • At what stage of meiosis does the process of homologous recombination occur?

      Your Answer: Prophase I

      Explanation:

      Homologous Recombination: A Mechanism for DNA Repair and Genetic Variation

      Homologous recombination is a process that allows for the exchange of nucleotide sequences between two similar or identical DNA molecules. This occurs during meiosis, specifically during the second phase of prophase I, where sister chromatids swap sequences. The primary purpose of homologous recombination is to accurately repair harmful double-strand DNA breaks. This process results in new combinations of DNA sequences that provide genetic variation in daughter cells and, ultimately, the organism’s offspring.

      In prokaryotic organisms such as bacteria and viruses, homologous recombination occurs during horizontal gene transfer. This process involves the exchange of genetic material between different strains and species. Homologous recombination plays a crucial role in the evolution of these organisms by allowing for the acquisition of new traits and adaptations.

      Overall, homologous recombination is a vital mechanism for DNA repair and genetic variation. It ensures the accuracy of DNA replication and contributes to the diversity of life on Earth.

    • This question is part of the following fields:

      • Basic Sciences
      16.2
      Seconds
  • Question 16 - A couple in their late 30s come to the clinic seeking information about...

    Correct

    • A couple in their late 30s come to the clinic seeking information about the risk of their three children inheriting Huntington's disease. The husband has recently been diagnosed with the disease, while the wife is not affected. What is the likelihood, expressed as a percentage, that their children will inherit the disease?

      Your Answer: 50%

      Explanation:

      Huntington’s Disease

      Huntington’s disease is a genetic disorder that typically appears later in life and is characterized by symptoms such as chorea, cognitive decline, and personality changes. It is an autosomal dominant disease, meaning that there is a 50% chance of passing it on to offspring. If the gene is inherited from an unaffected parent, the child will not be affected. This is different from autosomal recessive inheritance, where both parents must pass on the gene for it to affect their children.

      The disease is caused by an increase in the length of a repeating trinucleotide sequence (CAG) in the Huntington protein. This sequence can change in length through generations, and longer sequences are associated with earlier onset of symptoms (genetic anticipation). Since Huntington’s disease usually presents itself after people have already started their families, there are many issues associated with genetic testing.

    • This question is part of the following fields:

      • Basic Sciences
      7.1
      Seconds
  • Question 17 - What is the primary function of riboflavin in the B vitamin group? ...

    Correct

    • What is the primary function of riboflavin in the B vitamin group?

      Your Answer: Mopping up free radicals

      Explanation:

      The Role of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a B-vitamin that plays a crucial role in the body. One of its functions is to act as an antioxidant, mopping up free radicals that can cause damage to cells. However, if the metabolites formed during this process are not excreted promptly, the free radicals can be generated again. Riboflavin is also involved in the production of blue-light sensitive pigments in the eye, which help establish the circadian rhythm. This function is not related to visual acuity.

      Riboflavin is found in a variety of foods, including milk and offal. Deficiency of this vitamin is rare, but when it does occur, it can cause non-specific effects on the skin and mucous membranes. There is no evidence of clear long-lasting damage from riboflavin deficiency. Overall, riboflavin is an important nutrient that plays a vital role in maintaining good health.

    • This question is part of the following fields:

      • Basic Sciences
      6
      Seconds
  • Question 18 - What occurs in eukaryotic prometaphase? ...

    Incorrect

    • What occurs in eukaryotic prometaphase?

      Your Answer: The chromosomes align across a plane

      Correct Answer: The nuclear membrane and the nucleoli disintegrate and kinetochores appear

      Explanation:

      The Significance of Prometaphase in Cell Division

      Prometaphase is a crucial phase in cell division that marks the transition from prophase to metaphase. Although it is often considered as a part of these two phases, it has distinct events that make it an individual phase. During prometaphase, the nuclear membrane disintegrates, and the nucleoli are no longer visible. Additionally, each chromosome forms two kinetochores near the centromere, which serve as attachment points for spindle fibers. These fibers connect to the opposite poles of the cell, forming travelling lines that will separate the sister chromatids during anaphase.

      Prophase is characterized by chromatin condensation, while DNA and centrosome duplication occur during interphase. Chromosome alignment takes place during metaphase, and the sister chromatids separate during anaphase. Prometaphase, therefore, plays a crucial role in preparing the chromosomes for separation during anaphase. Its distinct events make it an essential phase in cell division, and its proper execution is necessary for successful cell division.

    • This question is part of the following fields:

      • Basic Sciences
      6.9
      Seconds
  • Question 19 - What significance do linoleic and alpha-linolenic acids hold? ...

    Correct

    • What significance do linoleic and alpha-linolenic acids hold?

      Your Answer: They are essential fatty acids

      Explanation:

      The Importance of Essential Fatty Acids in the Diet

      Essential fatty acids, such as linoleic and alpha-linolenic acids, are crucial components of a healthy diet. Although they are only required in small amounts, they play several important roles in the body. These fatty acids are necessary for the synthesis of phospholipids, which are essential components of cell membranes. They also help regulate cholesterol transport and synthesis, and serve as precursors for omega-3 fatty acids and arachidonic acid. Additionally, essential fatty acids are important for the synthesis of prostaglandins, leukotrienes, and thromboxanes.

      A lack of adequate essential fatty acids in the diet can have negative consequences, particularly for brain growth in infancy. It can also lead to alopecia, dermatitis, and fatty liver. Therefore, it is important to ensure that the diet includes sources of these essential fatty acids, such as certain types of fish, nuts, and seeds. By doing so, individuals can support their overall health and well-being.

    • This question is part of the following fields:

      • Basic Sciences
      5.9
      Seconds
  • Question 20 - Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome? ...

    Correct

    • Which statement regarding microtubules is accurate in relation to Chediak-Higashi syndrome?

      Your Answer: They are arranged in a 9+2 formation in cilia

      Explanation:

      Microtubules and Chediak-Higashi Syndrome

      Microtubules are structures composed of alpha and beta tubulin dimers that are arranged in a helix and can be added or removed to vary the length. They are found in flagella, mitotic spindles, and cilia, where they have a 9+2 arrangement. Chemotherapy agents, such as taxanes, target microtubules in breast cancer treatment.

      Chediak-Higashi syndrome is an autosomal recessive condition that presents with albinism, bleeding and bruising due to platelet dysfunction, and susceptibility to infections due to abnormal neutrophils. The LYST gene is responsible for lysosomal trafficking proteins and is affected in this syndrome.

      In summary, microtubules are important structures in various cellular processes and are targeted in cancer treatment. Chediak-Higashi syndrome is a rare genetic disorder that affects lysosomal trafficking proteins and presents with various symptoms.

    • This question is part of the following fields:

      • Basic Sciences
      3.1
      Seconds
  • Question 21 - What are the defining features of an amino acid? ...

    Correct

    • What are the defining features of an amino acid?

      Your Answer: It has the formula H2N - CHR - COOH where R is the variable group

      Explanation:

      The Versatility of Amino Acids and its Applications in Electrophoresis

      Amino acids are the building blocks of proteins and are composed of a basic structure of H2N – CHR – COOH, where R represents the variable group that distinguishes one amino acid from another. The simplest amino acid is glycine, where the R group is just H. Amino acids are capable of forming complex and useful molecules due to their dipolar or amphoteric nature, which makes them simultaneously acidic and basic. In solution, they form zwitterions, which can act as either an acid or a base depending on the pH of the solution. This versatility of amino acids is what allows for the process of electrophoresis, which separates proteins based on their charge in a solution. By using solutions of different pH, different proteins can be assessed, making it a useful tool in the diagnosis of bone marrow malignancies like myeloma.

    • This question is part of the following fields:

      • Basic Sciences
      9.2
      Seconds
  • Question 22 - A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling...

    Incorrect

    • A 32-year-old snowboarder presents to the Emergency department complaining of pain and swelling around the first metacarpophalangeal joint (MCP joint) following a fall during practice.
      Upon examination, there is significant swelling and bruising on the ulnar side of the joint.

      What is the most probable injury that the patient has sustained?

      Your Answer: Scaphoid bone

      Correct Answer: Ulnar collateral ligament

      Explanation:

      Skier’s Thumb: A Common Injury in Winter Sports

      Skier’s thumb, also known as gamekeeper’s thumb, is a common injury that occurs in winter sports. It is caused by damage or rupture of the ulnar collateral ligament, which is located at the base of the thumb. This injury can result in acute swelling and gross instability of the thumb. In severe cases where a complete tear of the ligament is suspected, an MRI may be necessary to confirm the diagnosis, and surgical repair may be required.

      Once the acute swelling has subsided, treatment for skier’s thumb typically involves immobilization in a thumb spica. This is the standard therapy for cases of partial rupture.

    • This question is part of the following fields:

      • Basic Sciences
      38.2
      Seconds
  • Question 23 - What is the final product of glycolysis besides ATP? ...

    Correct

    • What is the final product of glycolysis besides ATP?

      Your Answer: Pyruvate

      Explanation:

      Glycolysis: The Energy-Producing Reaction

      Glycolysis is a crucial energy-producing reaction that converts glucose into pyruvate while releasing energy to create ATP and NADH+. It is one of the three major carbohydrate reactions, along with the citric acid cycle and the electron transport chain. The reaction involves ten enzymatic steps that provide entry points to glycolysis, allowing for a variety of starting points. The most common starting point is glucose or glycogen, which produces glucose-6-phosphate.

      Glycolysis occurs in two phases: the preparatory (or investment) phase and the pay-off phase. In the preparatory phase, ATP is consumed to start the reaction, while in the pay-off phase, ATP is produced. Glycolysis can be either aerobic or anaerobic, but it does not require nor consume oxygen.

      Although other molecules are involved in glycolysis at some stage, none of them form its end product. Lactic acid is associated with anaerobic glycolysis. glycolysis is essential for how the body produces energy from carbohydrates.

    • This question is part of the following fields:

      • Basic Sciences
      5.4
      Seconds
  • Question 24 - The diabetes prevention program has been running for the last 5 years. At...

    Correct

    • The diabetes prevention program has been running for the last 5 years. At baseline, a well conducted study with a sample size of 500 showed that the prevalence of diabetes among adults aged 40 and above was 15%.
      Five years later another survey (of 400 responders) showed that the prevalence of diabetes was 10%.
      In the above example, which definition of prevalence is correct?

      Your Answer: Prevalence is the number of new and old smokers in a year

      Explanation:

      Prevalence and Incidence in Smoking

      Prevalence and incidence are two important concepts in the smoking habits of a population. Prevalence refers to the number of people who smoke at a particular time point, such as at the beginning or end of a study period. This is calculated by dividing the number of smokers by the total population.

      On the other hand, incidence refers to the number of new cases of smoking at a particular time point. For example, this could be at the beginning of a study period for the whole year or at the 10th year. This is calculated by dividing the number of new smokers by the number of smoke-free individuals who are potentially at risk of taking up smoking.

      prevalence and incidence is important in evaluating the effectiveness of smoking cessation programs and policies. By tracking changes in prevalence and incidence over time, researchers and policymakers can determine whether their efforts are making a difference in reducing smoking rates. Additionally, these concepts can help identify populations that are at higher risk of taking up smoking, allowing for targeted interventions to prevent smoking initiation.

    • This question is part of the following fields:

      • Basic Sciences
      27
      Seconds
  • Question 25 - What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia...

    Correct

    • What is the cause of the symptoms of weakness, dermatitis, diarrhoea and dementia in pellagra?

      Your Answer: Deficiency of the vitamin niacin

      Explanation:

      Niacin Deficiency and Other Genetic Diseases

      Niacin, a vitamin present in two forms – nicotinamide and nicotinic acid, is found in a variety of plant and animal foodstuffs. However, in some cases, the form of the vitamin is not easily absorbed by the human body, leading to deficiency. This deficiency is common in areas where maize is the primary dietary carbohydrate. Additionally, niacin can be produced by the body from the amino acid tryptophan. Diseases that affect the availability of tryptophan, such as Hartnup disease and carcinoid syndrome, can also result in niacin deficiency.

      Pellagra is a condition that arises from niacin deficiency. It initially presents with non-specific symptoms such as nausea, fatigue, and reduced appetite, followed by pigmented dermatitis in sun-exposed areas, gastrointestinal disturbance, mood disturbance, and dementia in severe cases.

      Apart from niacin deficiency, genetic diseases affecting collagen synthesis, such as Ehlers Danlos, present with symptoms of fragile stretchy skin and joint hypermobility. Genetic diseases affecting haemoglobin, such as sickle cell anaemia, present with symptoms of pain, hepatosplenomegaly, shortness of breath, and anaemia. Deficiencies in B12 and folate can also lead to macrocytic anaemia, paresthesia, and lethargy.

      In conclusion, the causes and symptoms of niacin deficiency and other genetic diseases is crucial for early diagnosis and effective treatment. A balanced diet and regular medical check-ups can help prevent and manage these conditions.

    • This question is part of the following fields:

      • Basic Sciences
      17.5
      Seconds
  • Question 26 - What is a primary function of vitamin A? ...

    Correct

    • What is a primary function of vitamin A?

      Your Answer: Vision

      Explanation:

      Vitamin A: Forms, Sources, and Functions

      Vitamin A is a crucial nutrient that exists in various forms in nature. The primary dietary form of vitamin A is retinol, also known as pre-formed vitamin A, which is stored in animal liver tissue as retinyl esters. The body can also produce its own vitamin A from carotenoids, with beta-carotene being the most common precursor molecule.

      The richest sources of vitamin A include liver and fish liver oils, dark green leafy vegetables, carrots, and mangoes. Vitamin A can also be added to certain foods like cereals and margarines.

      Vitamin A plays several essential roles in the body, including supporting vision by being a component of rhodopsin, a pigment required by the rod cells of the retina. It also contributes to the growth and development of various types of tissue, regulates gene transcription, and aids in the synthesis of hydrophobic glycoproteins and parts of the protein kinase enzyme pathways.

      In summary, the different forms and sources of vitamin A and its vital functions in the body is crucial for maintaining optimal health.

    • This question is part of the following fields:

      • Basic Sciences
      5.4
      Seconds
  • Question 27 - Which statement regarding microtubules is accurate in relation to Chédiak-Higashi syndrome? ...

    Correct

    • Which statement regarding microtubules is accurate in relation to Chédiak-Higashi syndrome?

      Your Answer: They are arranged in a 9+2 formation in cilia

      Explanation:

      Microtubules and Chédiak-Higashi Syndrome

      Microtubules are made up of alpha and beta tubulin dimers that are arranged in a helix and can be added or removed to change the length. They are found in structures such as flagella, mitotic spindles, and cilia, where they have a 9+2 arrangement. These structures are important for cell movement and division. Chemotherapy agents, such as taxanes, target microtubules and are used in breast cancer treatment.

      Chédiak-Higashi syndrome is a rare inherited immunodeficiency disorder caused by mutations in the LYST gene. This condition is characterized by neutrophil inclusions, albinism, recurrent infections, and peripheral neuropathy. The neutrophil inclusions are thought to be caused by abnormal microtubule function, which affects the immune system’s ability to fight infections. While there is no cure for Chédiak-Higashi syndrome, treatment focuses on managing symptoms and preventing infections.

    • This question is part of the following fields:

      • Basic Sciences
      2
      Seconds
  • Question 28 - A 50-year-old female patient with varicose veins presents to the vascular clinic for...

    Incorrect

    • A 50-year-old female patient with varicose veins presents to the vascular clinic for evaluation.

      During the assessment, a test is conducted to determine the location of incompetence. The patient is instructed to lie down, and the veins are emptied by elevating her legs off the couch. The examiner then identifies the site of the sapheno-femoral junction and applies pressure with their fingers. The patient is then asked to stand up to evaluate vein filling.

      What is the name of this test?

      Your Answer: Buerger's test

      Correct Answer: Trendelenburg's test

      Explanation:

      Assessing Varicose Vein Site of Incompetence

      The Trendelenburg and tourniquet tests are both used to evaluate the site of incompetence in varicose veins at the sapheno-femoral junction. During the Trendelenburg test, the examiner applies pressure with their fingers over the junction site, while in the tourniquet test, a tourniquet is placed just below the junction level.

      If the veins fill quickly upon standing, it indicates that the sapheno-femoral junction is not the source of the incompetence. These tests are essential in determining the location of the varicose vein site of incompetence, which is crucial in planning the appropriate treatment. By identifying the site of incompetence, physicians can perform targeted interventions to improve venous function and alleviate symptoms. Therefore, the Trendelenburg and tourniquet tests are valuable tools in the diagnosis and management of varicose veins.

    • This question is part of the following fields:

      • Basic Sciences
      10.8
      Seconds
  • Question 29 - What is the end result of meiosis in a cell? ...

    Correct

    • What is the end result of meiosis in a cell?

      Your Answer: 4 haploid cells

      Explanation:

      Meiosis

      Meiosis is a crucial process that occurs in the genetic cells of eukaryotic organisms. Its primary purpose is to recombine genes, which results in genetic variation while also ensuring genetic preservation. Although meiosis shares some similarities with mitosis, it is restricted to genetic cells, also known as gametes, of eukaryotic organisms.

      During meiosis, a gamete duplicates each of its chromosomes and divides into two diploid cells. These cells then divide into four haploid cells by the end of the second stage of meiosis (telophase II and cytokinesis). These haploid cells are either sperm cells (male) or eggs (female) in mammals. When these haploid cells fuse together, they produce a diploid zygote that contains two copies of parental genes.

      In summary, meiosis is a crucial process that ensures genetic variation and preservation in eukaryotic organisms. It involves the duplication and division of genetic cells into haploid cells, which can then fuse together to produce a diploid zygote.

    • This question is part of the following fields:

      • Basic Sciences
      4
      Seconds
  • Question 30 - What is the apoptotic event that occurs just before the formation of an...

    Incorrect

    • What is the apoptotic event that occurs just before the formation of an apoptosome?

      Your Answer: Fas ligand binding to the Fas receptor

      Correct Answer: Release of cytochrome c from mitochondria

      Explanation:

      Apoptosis and the Role of the Apoptosome

      Apoptosis, also known as programmed cell death, is a natural process that occurs in all multicellular organisms. It involves a series of changes in cell morphology, including membrane blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation. The formation of the apoptosome is a crucial part of the apoptosis cascade. It is a large protein structure that is triggered by the release of cytochrome c from the mitochondria in response to various stimuli, such as DNA damage, infections, or developmental signals.

      The apoptosome is formed when cytochrome c binds to Apaf-1, a cytosolic protein, in a 1:1 ratio. This triggers the recruitment and activation of the initiator pro-caspase-9, which then activates effector caspases, a family of apoptotic proteases, to initiate the apoptotic cascade. It is important to note that the activation of caspase-9 occurs only after the formation of the apoptosome.

      In summary, apoptosis is a natural process that occurs in multicellular organisms, and the apoptosome plays a crucial role in triggering the apoptotic cascade. the mechanisms behind apoptosis and the formation of the apoptosome can provide insights into various diseases and developmental processes.

    • This question is part of the following fields:

      • Basic Sciences
      9
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Basic Sciences (21/30) 70%
Passmed