-
Question 1
Correct
-
Which category does social class fall under in terms of variable types?
Your Answer: Ordinal
Explanation:Ordinal variables are a form of qualitative variable that follows a specific sequence in its values. Additional instances may include exam scores and tax brackets based on income.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 2
Incorrect
-
A team of scientists plans to carry out a randomized controlled study to assess the effectiveness of a new medication for treating anxiety in elderly patients. To prevent any potential biases, they intend to enroll participants through online portals, ensuring that neither the patients nor the researchers are aware of the group assignment. What type of bias are they seeking to eliminate?
Your Answer: Performance bias
Correct Answer: Selection bias
Explanation:The use of allocation concealment is being implemented by the researchers to prevent interference from investigators of patients in the randomisation process. This is important as knowledge of group allocation can lead to patient refusal to participate of researchers manipulating the allocation process. By using distant call centres for allocation concealment, the risk of selection bias, which refers to systematic differences between comparison groups, is reduced.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 3
Incorrect
-
A study examines the likelihood of stroke in middle-aged patients prescribed antipsychotic medication. Group A receives standard treatment, and after 5 years, 20 out of 100 patients experience a stroke. Group B receives standard treatment plus a new drug intended to decrease the risk of stroke. After 5 years, 10 out of 60 patients have a stroke. What are the chances of having a stroke while taking the new drug compared to the chances of having a stroke in those receiving standard treatment?
Your Answer: 1.25
Correct Answer: 0.8
Explanation:If the odds ratio is less than 1, it means that the likelihood of experiencing a stroke is lower for individuals who are taking the new drug compared to those who are receiving the usual treatment.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 4
Incorrect
-
What is necessary for a study to confidently assert causation?
Your Answer:
Correct Answer: Good internal validity
Explanation:In order to make assertions about causation, strong internal validity is necessary.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 5
Incorrect
-
What is the conventional cutoff for a p-value of 0.05 and what does it mean in terms of the likelihood of detecting a difference by chance?
Your Answer:
Correct Answer: 1 in 14 times
Explanation:The probability of detecting a difference by chance is 1 in 20 times when the p-value is 0.05, which is the conventional cutoff. In this case, the answer is 1 in 14 times, which is equivalent to a p-value of 0.07.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 6
Incorrect
-
Calculate the median value from the following values:
1, 3, 3, 3, 4, 5, 5, 6, 6, 6, 6Your Answer:
Correct Answer: 5
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 7
Incorrect
-
Which odds ratio suggests that there is no significant variation in the odds between two groups?
Your Answer:
Correct Answer: 1
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 8
Incorrect
-
What test would be the most effective in verifying the suitability of using a parametric test on a given dataset?
Your Answer:
Correct Answer: Lilliefors test
Explanation:Normality Testing in Statistics
In statistics, parametric tests are based on the assumption that the data set follows a normal distribution. On the other hand, non-parametric tests do not require this assumption but are less powerful. To check if a distribution is normally distributed, there are several tests available, including the Kolmogorov-Smirnov (Goodness-of-Fit) Test, Jarque-Bera test, Wilk-Shapiro test, P-plot, and Q-plot. However, it is important to note that if a data set is not normally distributed, it may be possible to transform it to make it follow a normal distribution, such as by taking the logarithm of the values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 9
Incorrect
-
Which study design involves conducting an experiment?
Your Answer:
Correct Answer: A randomised control study
Explanation:Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 10
Incorrect
-
What is necessary to compute the standard deviation?
Your Answer:
Correct Answer: Mean
Explanation:The standard deviation represents the typical amount that the data points deviate from the mean.
Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 11
Incorrect
-
For which of the following research areas are qualitative methods least effective?
Your Answer:
Correct Answer: Treatment evaluation
Explanation:While quantitative methods are typically used for treatment evaluation, qualitative studies can also provide valuable insights by interpreting, qualifying, of illuminating findings. This is especially beneficial when examining unexpected results, as they can help to test the primary hypothesis.
Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 12
Incorrect
-
What is the name of the database that focuses on literature created by non-traditional commercial of academic publishing and distribution channels?
Your Answer:
Correct Answer: OpenGrey
Explanation:SIGLE is a database that specializes in collecting and indexing grey literature.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 13
Incorrect
-
What is the purpose of the PICO model in evidence based medicine?
Your Answer:
Correct Answer: Formulating answerable questions
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 14
Incorrect
-
Which statement accurately reflects the standard mortality ratio of a disease in a sampled population that is determined to be 1.4?
Your Answer:
Correct Answer: There were 40% more fatalities from the disease in this population compared to the reference population
Explanation:Calculation of Standardised Mortality Ratio (SMR)
To calculate the SMR, age and sex-specific death rates in the standard population are obtained. An estimate for the number of people in each category for both the standard and study populations is needed. The number of expected deaths in each age-sex group of the study population is calculated by multiplying the age-sex-specific rates in the standard population by the number of people in each category of the study population. The sum of all age- and sex-specific expected deaths gives the expected number of deaths for the whole study population. The observed number of deaths is then divided by the expected number of deaths to obtain the SMR.
The SMR can be standardised using the direct of indirect method. The direct method is used when the age-sex-specific rates for the study population and the age-sex-structure of the standard population are known. The indirect method is used when the age-specific rates for the study population are unknown of not available. This method uses the observed number of deaths in the study population and compares it to the number of deaths that would be expected if the age distribution was the same as that of the standard population.
The SMR can be interpreted as follows: an SMR less than 1.0 indicates fewer than expected deaths in the study population, an SMR of 1.0 indicates the number of observed deaths equals the number of expected deaths in the study population, and an SMR greater than 1.0 indicates more than expected deaths in the study population (excess deaths). It is sometimes expressed after multiplying by 100.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 15
Incorrect
-
What statement accurately describes population parameters?
Your Answer:
Correct Answer: Parameters tend to have normal distributions
Explanation:Parametric vs Non-Parametric Statistics
Statistics are used to draw conclusions about a population based on a sample. A parameter is a numerical value that describes a population characteristic, but it is often impossible to know the true value of a parameter without collecting data from every individual in the population. Instead, we take a sample and use statistics to estimate the parameters.
Parametric statistical procedures assume that the population distribution is normal and that the parameters (such as means and standard deviations) are known. Examples of parametric tests include the t-test, ANOVA, and Pearson coefficient of correlation.
Non-parametric statistical procedures make few of no assumptions about the population distribution of parameters. Examples of non-parametric tests include the Mann-Whitney Test, Wilcoxon Signed-Rank Test, Kruskal-Wallis Test, and Fisher Exact Probability test.
Overall, the choice between parametric and non-parametric tests depends on the nature of the data and the research question being asked.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 16
Incorrect
-
Which statement accurately describes bar charts?
Your Answer:
Correct Answer: The height of the bar indicates the frequency
Explanation:The frequency of each category of characteristic is displayed through the height of the bars in a bar chart. When dealing with discrete data, it is typically organized into distinct categories and presented in a bar chart. On the other hand, continuous data covers a range and the categories are not separate but rather blend into one another. This type of data is best represented through a histogram, which is similar to a bar chart but with bars that are connected.
Differences between Bar Charts and Histograms
Bar charts and histograms are both used to represent data, but they differ in their application and design. Bar charts are used to summarize nominal of ordinal data, while histograms are used for quantitative data. In a bar chart, the x-axis represents categories without a scale, and the y-axis represents frequencies. The columns are of equal width, and the height of the bar indicates the frequency. On the other hand, histograms have a scale on both axes, with the y-axis representing the relative frequency of frequency density. The width of the columns in a histogram can vary, and the area of the column indicates the true frequency. Overall, bar charts and histograms are useful tools for visualizing data, but their differences in design and application make them better suited for different types of data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 17
Incorrect
-
What resource is committed to offering complete articles of systematic reviews on the impacts of healthcare interventions?
Your Answer:
Correct Answer: CDSR
Explanation:When faced with a question, it’s helpful to consider what the letters in the question might represent, even if you don’t know the answer right away. Don’t become overwhelmed and keep this strategy in mind.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 18
Incorrect
-
Arrange the following research studies in the correct order based on their level of evidence.
Your Answer:
Correct Answer: Systematic review of RCTs, RCTs, cohort, case-control, cross-sectional, case-series
Explanation:While many individuals can readily remember that the systematic review is at the highest level and case-series at the lowest, it can be difficult to correctly sequence the intermediate levels.
Levels and Grades of Evidence in Evidence-Based Medicine
To evaluate the quality of evidence on a subject of question, levels of grades are used. The traditional hierarchy approach places systematic reviews of randomized control trials at the top and case-series/report at the bottom. However, this approach is overly simplistic as certain research questions cannot be answered using RCTs. To address this, the Oxford Centre for Evidence-Based Medicine introduced their 2011 Levels of Evidence system, which separates the type of study questions and gives a hierarchy for each.
The grading approach to be aware of is the GRADE system, which classifies the quality of evidence as high, moderate, low, of very low. The process begins by formulating a study question and identifying specific outcomes. Outcomes are then graded as critical of important. The evidence is then gathered and criteria are used to grade the evidence, with the type of evidence being a significant factor. Evidence can be promoted of downgraded based on certain criteria, such as limitations to study quality, inconsistency, uncertainty about directness, imprecise of sparse data, and reporting bias. The GRADE system allows for the promotion of observational studies to high-quality evidence under the right circumstances.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 19
Incorrect
-
Which variable classification is not included in Stevens' typology?
Your Answer:
Correct Answer: Ranked
Explanation:Stevens suggested that scales can be categorized into one of four types based on measurements.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 20
Incorrect
-
In a randomised controlled trial investigating the initial management of sexual dysfunction with two drugs, some patients withdraw from the study due to medication-related adverse effects. What is the appropriate method for analysing the resulting data?
Your Answer:
Correct Answer: Include the patients who drop out in the final data set
Explanation:Intention to Treat Analysis in Randomized Controlled Trials
Intention to treat analysis is a statistical method used in randomized controlled trials to analyze all patients who were randomly assigned to a treatment group, regardless of whether they completed of received the treatment. This approach is used to avoid the potential biases that may arise from patients dropping out of switching between treatment groups. By analyzing all patients according to their original treatment assignment, intention to treat analysis provides a more accurate representation of the true treatment effects. This method is widely used in clinical trials to ensure that the results are reliable and unbiased.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 21
Incorrect
-
The national Health Department is concerned about reducing mortality rates among elderly patients with heart disease. They have tasked a team of researchers with comparing the effectiveness and economic costs of treatment options A and B in terms of life years gained. The researchers have collected data on the number of life years gained by each treatment option and are seeking advice on the next steps for analysis. What type of analysis would you recommend they undertake?
Your Answer:
Correct Answer: Cost effectiveness analysis
Explanation:Cost effectiveness analysis (CEA) is an economic evaluation method that compares the costs and outcomes of different courses of action. The outcomes of the interventions must be measurable using a single variable, such as life years gained, making it useful for comparing preventative treatments for fatal conditions.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 22
Incorrect
-
What condition would make it inappropriate to use the Student's t-test for conducting a significance test?
Your Answer:
Correct Answer: Using it with data that is not normally distributed
Explanation:T-tests are appropriate for parametric data, which means that the data should conform to a normal distribution.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 23
Incorrect
-
What is the appropriate denominator for calculating the incidence rate?
Your Answer:
Correct Answer: The total person time at risk during a specified time period
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 24
Incorrect
-
Which of the following checklists would be most helpful in preparing the manuscript of a survey analyzing the opinions of college students on mental health, as evaluated through a set of questionnaires?
Your Answer:
Correct Answer: COREQ
Explanation:There are several reporting guidelines available for different types of research studies. The COREQ checklist, consisting of 32 items, is designed for reporting qualitative research that involves interviews and focus groups. The CONSORT Statement provides a 25-item checklist to aid in reporting randomized controlled trials (RCTs). For reporting the pooled findings of multiple studies, the QUOROM and PRISMA guidelines are useful. The STARD statement includes a checklist of 30 items and is designed for reporting diagnostic accuracy studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 25
Incorrect
-
A team of investigators aims to explore the perspectives of middle-aged physicians regarding individuals with chronic fatigue syndrome. They will conduct interviews with a random selection of physicians until no additional insights are gained of existing ones are substantially altered. What is their objective before concluding further interviews?
Your Answer:
Correct Answer: Data saturation
Explanation:In qualitative research, data saturation refers to the point where additional data collection becomes unnecessary as the responses obtained are repetitive and do not provide any new insights. This is when the researcher has heard the same information repeatedly and there is no need to continue recruiting participants. Understanding data saturation is crucial in qualitative research.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 26
Incorrect
-
How is validity assessed in qualitative research?
Your Answer:
Correct Answer: Triangulation
Explanation:To examine differences between various groups, researchers may conduct subgroup analyses by dividing participant data into subsets. These subsets may include specific demographics (e.g. gender) of study characteristics (e.g. location). Subgroup analyses can help explain inconsistent findings of provide insights into particular patient populations, interventions, of study types.
Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 27
Incorrect
-
Which of the following is the correct description of construct validity?
Your Answer:
Correct Answer: A test has good construct validity if it has a high correlation with another test that measures the same construct
Explanation:Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 28
Incorrect
-
Which odds ratio, along with its confidence interval, indicates a statistically significant reduction in the odds?
Your Answer:
Correct Answer: 0.7 (0.1 - 0.8)
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 29
Incorrect
-
How do the incidence rate and cumulative incidence differ from each other?
Your Answer:
Correct Answer: The incidence rate is a more accurate estimate of the rate at which the outcome develops
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 30
Incorrect
-
What type of scale does the Beck Depression Inventory belong to?
Your Answer:
Correct Answer: Ordinal
Explanation:The Beck Depression Inventory cannot be classified as a ratio of interval scale as the scores do not have a consistent and meaningful numerical value. Instead, it is considered an ordinal scale where scores can be ranked in order of severity, but the difference between scores may not be equal in terms of the level of depression experienced. For example, a change from 8 to 13 may be more significant than a change from 35 to 40.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 31
Incorrect
-
How is the phenomenon of regression towards the mean most influential on which type of validity?
Your Answer:
Correct Answer: Internal validity
Explanation:Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 32
Incorrect
-
Which type of bias is the second phase of the study intended to address if the second phase involved home visits to those people who did not reply to the mailed questionnaire on levels of physical activity in adults aged 50 and above?
Your Answer:
Correct Answer: Participation bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 33
Incorrect
-
A study is being planned to investigate whether exposure to pesticides is a risk factor for Parkinson's disease. The researchers are considering conducting a case-control study instead of a cohort study. What is one advantage of using a case-control study design in this situation?
Your Answer:
Correct Answer: It is possible to study diseases that are rare
Explanation:The benefits of conducting a case-control study include its suitability for examining rare diseases, the ability to investigate a broad range of risk factors, no loss to follow-up, and its relatively low cost and quick turnaround time. The findings of such studies are typically presented as an odds ratio.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 34
Incorrect
-
In what way can the study on depression be deemed as having limited applicability to the average patient population?
Your Answer:
Correct Answer: External validity
Explanation:When a study has good external validity, its findings can be applied to other populations with confidence.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 35
Incorrect
-
A team of scientists aimed to examine the prognosis of late-onset Alzheimer's disease using the available evidence. They intend to arrange the evidence in a hierarchy based on their study designs.
What study design would be placed at the top of their hierarchy?Your Answer:
Correct Answer: Systematic review of cohort studies
Explanation:When investigating prognosis, the hierarchy of study designs starts with a systematic review of cohort studies, followed by a cohort study, follow-up of untreated patients from randomized controlled trials, case series, and expert opinion. The strength of evidence provided by a study depends on its ability to minimize bias and maximize attribution. The Agency for Healthcare Policy and Research hierarchy of study types is widely accepted as reliable, with systematic reviews and meta-analyses of randomized controlled trials at the top, followed by randomized controlled trials, non-randomized intervention studies, observational studies, and non-experimental studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 36
Incorrect
-
What is the purpose of using Cohen's kappa coefficient?
Your Answer:
Correct Answer: Inter-rater reliability
Explanation:Kappa is used to assess the consistency of agreement between different raters.
Understanding the Kappa Statistic for Measuring Interobserver Variation
The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 37
Incorrect
-
Which statement about confounding is incorrect?
Your Answer:
Correct Answer: In the analytic stage of a study confounding can be controlled for by randomisation
Explanation:In the analytic stage of a study, confounding cannot be controlled for by the technique of stratification. (This is false, as stratification is a technique commonly used to control for confounding in observational studies.)
Stats Confounding
A confounding factor is a factor that can obscure the relationship between an exposure and an outcome in a study. This factor is associated with both the exposure and the disease. For example, in a study that finds a link between coffee consumption and heart disease, smoking could be a confounding factor because it is associated with both drinking coffee and heart disease. Confounding occurs when there is a non-random distribution of risk factors in the population, such as age, sex, and social class.
To control for confounding in the design stage of an experiment, researchers can use randomization, restriction, of matching. Randomization aims to produce an even distribution of potential risk factors in two populations. Restriction involves limiting the study population to a specific group to ensure similar age distributions. Matching involves finding and enrolling participants who are similar in terms of potential confounding factors.
In the analysis stage of an experiment, researchers can control for confounding by using stratification of multivariate models such as logistic regression, linear regression, of analysis of covariance (ANCOVA). Stratification involves creating categories of strata in which the confounding variable does not vary of varies minimally.
Overall, controlling for confounding is important in ensuring that the relationship between an exposure and an outcome is accurately assessed in a study.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 38
Incorrect
-
What is the meaning of the C in the PICO model utilized in evidence-based medicine?
Your Answer:
Correct Answer: Comparison
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 39
Incorrect
-
A study was conducted to investigate the correlation between body mass index (BMI) and mortality in patients with schizophrenia. The study involved a cohort of 1000 patients with schizophrenia who were evaluated by measuring their weight and height, and calculating their BMI. The participants were then monitored for up to 15 years after the study commenced. The BMI levels were classified into three categories (high, average, low). The findings revealed that, after adjusting for age, gender, treatment method, and comorbidities, a high BMI at the beginning of the study was linked to a twofold increase in mortality.
How is this study best described?Your Answer:
Correct Answer:
Explanation:The study is a prospective cohort study that observes the effect of BMI as an exposure on the group over time, without manipulating any risk factors of interventions.
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 40
Incorrect
-
Which of the following statements accurately describes the features of a distribution that is negatively skewed?
Your Answer:
Correct Answer: Mean < median < mode
Explanation:Skewed Data: Understanding the Relationship between Mean, Median, and Mode
When analyzing a data set, it is important to consider the shape of the distribution. In a normally distributed data set, the curve is symmetrical and bell-shaped, with the median, mode, and mean all equal. However, in skewed data sets, the distribution is asymmetrical, with the bulk of the data concentrated on one side of the figure.
In a negatively skewed distribution, the left tail is longer, and the bulk of the data is concentrated to the right of the figure. In contrast, a positively skewed distribution has a longer right tail, with the bulk of the data concentrated to the left of the figure. In both cases, the median is positioned between the mode and the mean, as it represents the halfway point of the distribution.
However, the mean is affected by extreme values of outliers, causing it to move away from the median in the direction of the tail. In positively skewed data, the mean is greater than the median, which is greater than the mode. In negatively skewed data, the mode is greater than the median, which is greater than the mean.
Understanding the relationship between mean, median, and mode in skewed data sets is crucial for accurate data analysis and interpretation. By recognizing the shape of the distribution, researchers can make informed decisions about which measures of central tendency to use and how to interpret their results.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 41
Incorrect
-
What is a true statement about searching in PubMed?
Your Answer:
Correct Answer: Truncation is generally not a recommended search technique for PubMed
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 42
Incorrect
-
What methods are most effective in determining interobserver agreement?
Your Answer:
Correct Answer: Kappa
Explanation:Kappa is used to assess the consistency of reliability between different raters.
Understanding the Kappa Statistic for Measuring Interobserver Variation
The kappa statistic, also known as Cohen’s kappa coefficient, is a useful tool for quantifying the level of agreement between independent observers. This measure can be applied in any situation where multiple observers are evaluating the same thing, such as in medical diagnoses of research studies. The kappa coefficient ranges from 0 to 1, with 0 indicating complete disagreement and 1 indicating perfect agreement. By using the kappa statistic, researchers and practitioners can gain insight into the level of interobserver variation present in their data, which can help to improve the accuracy and reliability of their findings. Overall, the kappa statistic is a valuable tool for understanding and measuring interobserver variation in a variety of contexts.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 43
Incorrect
-
A psychologist aims to conduct a qualitative study to explore the experiences of elderly patients referred to the outpatient clinic. To obtain a sample, the psychologist asks the receptionist to hand an invitation to participate in the study to all follow-up patients who attend for an appointment. The recruitment phase continues until a total of 30 elderly individuals agree to be in the study.
How is this sampling method best described?Your Answer:
Correct Answer: Opportunistic sampling
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 44
Incorrect
-
Which of the following is an example of a non-random sampling method?
Your Answer:
Correct Answer: Quota sampling
Explanation:Sampling Methods in Statistics
When collecting data from a population, it is often impractical and unnecessary to gather information from every single member. Instead, taking a sample is preferred. However, it is crucial that the sample accurately represents the population from which it is drawn. There are two main types of sampling methods: probability (random) sampling and non-probability (non-random) sampling.
Non-probability sampling methods, also known as judgement samples, are based on human choice rather than random selection. These samples are convenient and cheaper than probability sampling methods. Examples of non-probability sampling methods include voluntary sampling, convenience sampling, snowball sampling, and quota sampling.
Probability sampling methods give a more representative sample of the population than non-probability sampling. In each probability sampling technique, each population element has a known (non-zero) chance of being selected for the sample. Examples of probability sampling methods include simple random sampling, systematic sampling, cluster sampling, stratified sampling, and multistage sampling.
Simple random sampling is a sample in which every member of the population has an equal chance of being chosen. Systematic sampling involves selecting every kth member of the population. Cluster sampling involves dividing a population into separate groups (called clusters) and selecting a random sample of clusters. Stratified sampling involves dividing a population into groups (strata) and taking a random sample from each strata. Multistage sampling is a more complex method that involves several stages and combines two of more sampling methods.
Overall, probability sampling methods give a more representative sample of the population, but non-probability sampling methods are often more convenient and cheaper. It is important to choose the appropriate sampling method based on the research question and available resources.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 45
Incorrect
-
Which of the following is an example of secondary evidence?
Your Answer:
Correct Answer: A Cochrane review on the evidence of exercise for reducing the duration of depression relapses
Explanation:Scientific literature can be classified into two main types: primary and secondary sources. Primary sources are original research studies that present data and analysis without any external evaluation of interpretation. Examples of primary sources include randomized controlled trials, cohort studies, case-control studies, case-series, and conference papers. Secondary sources, on the other hand, provide an interpretation and analysis of primary sources. These sources are typically removed by one of more steps from the original event. Examples of secondary sources include evidence-based guidelines and textbooks, meta-analyses, and systematic reviews.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 46
Incorrect
-
A case-control study was conducted to determine if exposure to passive smoking during childhood increases the risk of nicotine dependence. Two groups were recruited: 200 patients with nicotine dependence and 200 controls without nicotine dependence. Among the patients, 40 reported exposure to parental smoking during childhood, while among the controls, 20 reported such exposure. The odds ratio of developing nicotine dependence after being exposed to passive smoking is:
Your Answer:
Correct Answer: 2.25
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 47
Incorrect
-
What type of data was collected for the outcome that utilized the Clinical Global Impressions Improvement scale in the randomized control trial?
Your Answer:
Correct Answer: Dichotomous
Explanation:The study used the CGI scale, which produces ordinal data. However, the data was transformed into dichotomous data by dividing it into two categories. The CGI-I is a simple seven-point scale that compares a patient’s overall clinical condition to the one week period just prior to the initiation of medication use. The ratings range from very much improved to very much worse since the initiation of treatment.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 48
Incorrect
-
What is another name for the incidence rate?
Your Answer:
Correct Answer: Incidence density
Explanation:Measures of Disease Frequency: Incidence and Prevalence
Incidence and prevalence are two important measures of disease frequency. Incidence measures the speed at which new cases of a disease are emerging, while prevalence measures the burden of disease within a population. Cumulative incidence and incidence rate are two types of incidence measures, while point prevalence and period prevalence are two types of prevalence measures.
Cumulative incidence is the average risk of getting a disease over a certain period of time, while incidence rate is a measure of the speed at which new cases are emerging. Prevalence is a proportion and is a measure of the burden of disease within a population. Point prevalence measures the number of cases in a defined population at a specific point in time, while period prevalence measures the number of identified cases during a specified period of time.
It is important to note that prevalence is equal to incidence multiplied by the duration of the condition. In chronic diseases, the prevalence is much greater than the incidence. The incidence rate is stated in units of person-time, while cumulative incidence is always a proportion. When describing cumulative incidence, it is necessary to give the follow-up period over which the risk is estimated. In acute diseases, the prevalence and incidence may be similar, while for conditions such as the common cold, the incidence may be greater than the prevalence.
Incidence is a useful measure to study disease etiology and risk factors, while prevalence is useful for health resource planning. Understanding these measures of disease frequency is important for public health professionals and researchers in order to effectively monitor and address the burden of disease within populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 49
Incorrect
-
A study examines the benefits of adding an intensive package of dialectic behavioural therapy (DBT) to standard care following an episode of serious self-harm in adolescents. The following results are obtained:
Percentage of adolescents having a further episode
of serious self harm within 3 months
Standard care 4%
Standard care and intensive DBT 3%
What is the number needed to treat to prevent one adolescent having a further episode of serious self harm within 3 months?Your Answer:
Correct Answer: 100
Explanation:The number needed to treat (NNT) is equal to 100. This means that for every 100 patients treated, one patient will benefit from the treatment. The absolute risk reduction (ARR) is 0.01, which is the difference between the control event rate (CER) of 0.04 and the experimental event rate (EER) of 0.03.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 50
Incorrect
-
What is another term used to refer to a type II error in hypothesis testing?
Your Answer:
Correct Answer: False negative
Explanation:Hypothesis testing involves the possibility of two types of errors: type I and type II errors. A type I error occurs when the null hypothesis is wrongly rejected of the alternative hypothesis is wrongly accepted. This error is also referred to as an alpha error, error of the first kind, of a false positive. On the other hand, a type II error occurs when the null hypothesis is wrongly accepted. This error is also known as the beta error, error of the second kind, of the false negative.
Understanding Hypothesis Testing in Statistics
In statistics, it is not feasible to investigate hypotheses on entire populations. Therefore, researchers take samples and use them to make estimates about the population they are drawn from. However, this leads to uncertainty as there is no guarantee that the sample taken will be truly representative of the population, resulting in potential errors. Statistical hypothesis testing is the process used to determine if claims from samples to populations can be made and with what certainty.
The null hypothesis (Ho) is the claim that there is no real difference between two groups, while the alternative hypothesis (H1 of Ha) suggests that any difference is due to some non-random chance. The alternative hypothesis can be one-tailed of two-tailed, depending on whether it seeks to establish a difference of a change in one direction.
Two types of errors may occur when testing the null hypothesis: Type I and Type II errors. Type I error occurs when the null hypothesis is rejected when it is true, while Type II error occurs when the null hypothesis is accepted when it is false. The power of a study is the probability of correctly rejecting the null hypothesis when it is false, and it can be increased by increasing the sample size.
P-values provide information on statistical significance and help researchers decide if study results have occurred due to chance. The p-value is the probability of obtaining a result that is as large of larger when in reality there is no difference between two groups. The cutoff for the p-value is called the significance level (alpha level), typically set at 0.05. If the p-value is less than the cutoff, the null hypothesis is rejected, and if it is greater or equal to the cut off, the null hypothesis is not rejected. However, the p-value does not indicate clinical significance, which may be too small to be meaningful.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 51
Incorrect
-
What type of bias is commonly associated with case-control studies?
Your Answer:
Correct Answer: Recall bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 52
Incorrect
-
What is a criterion used to evaluate the quality of reporting in randomized controlled trials?
Your Answer:
Correct Answer: CONSORT
Explanation:As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 53
Incorrect
-
What is the standardized score (z-score) for a woman whose haemoglobin concentration is 150 g/L, given that the mean haemoglobin concentration for healthy women is 135 g/L and the standard deviation is 15 g/L?
Your Answer:
Correct Answer: 1
Explanation:Z Scores: A Special Application of Transformation Rules
Z scores are a unique way of measuring how much and in which direction an item deviates from the mean of its distribution, expressed in units of its standard deviation. To calculate the z score for an observation x from a population with mean and standard deviation, we use the formula z = (x – mean) / standard deviation. For example, if our observation is 150 and the mean and standard deviation are 135 and 15, respectively, then the z score would be 1.0. Z scores are a useful tool for comparing observations from different distributions and for identifying outliers.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 54
Incorrect
-
What is the ratio of the risk of stroke within a 3 year period for high-risk psychiatric patients taking the new oral antithrombotic drug compared to those taking warfarin, based on the given data below? Number who had a stroke within a 3 year period vs Number without stroke New drug: 10 vs 190 Warfarin: 10 vs 490
Your Answer:
Correct Answer: 2.5
Explanation:The relative risk (RR) of the event of interest in the exposed group compared to the unexposed group is 2.5.
RR = EER / CER
EER = 10 / 200 = 0.05
CER = 10 / 500 = 0.02
RR = EER / CER
= 0.05 / 0.02 = 2.5This means that the exposed group has a 2.5 times higher risk of experiencing the event compared to the unexposed group.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 55
Incorrect
-
Which variable has a zero value that is not arbitrary?
Your Answer:
Correct Answer: Ratio
Explanation:The key characteristic that sets ratio variables apart from interval variables is the presence of a meaningful zero point. On a ratio scale, this zero point signifies the absence of the measured attribute, while on an interval scale, the zero point is simply a point on the scale with no inherent significance.
Scales of Measurement in Statistics
In the 1940s, Stanley Smith Stevens introduced four scales of measurement to categorize data variables. Knowing the scale of measurement for a variable is crucial in selecting the appropriate statistical analysis. The four scales of measurement are ratio, interval, ordinal, and nominal.
Ratio scales are similar to interval scales, but they have true zero points. Examples of ratio scales include weight, time, and length. Interval scales measure the difference between two values, and one unit on the scale represents the same magnitude on the trait of characteristic being measured across the whole range of the scale. The Fahrenheit scale for temperature is an example of an interval scale.
Ordinal scales categorize observed values into set categories that can be ordered, but the intervals between each value are uncertain. Examples of ordinal scales include social class, education level, and income level. Nominal scales categorize observed values into set categories that have no particular order of hierarchy. Examples of nominal scales include genotype, blood type, and political party.
Data can also be categorized as quantitative of qualitative. Quantitative variables take on numeric values and can be further classified into discrete and continuous types. Qualitative variables do not take on numerical values and are usually names. Some qualitative variables have an inherent order in their categories and are described as ordinal. Qualitative variables are also called categorical of nominal variables. When a qualitative variable has only two categories, it is called a binary variable.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 56
Incorrect
-
If you anticipate that a drug will result in more side-effects than a placebo, what would be your estimated relative risk of side-effects occurring in the group receiving the drug?
Your Answer:
Correct Answer: >1
Explanation:Disease Rates and Their Interpretation
Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 57
Incorrect
-
What is the average age of the 7 women who participated in the qualitative study on self-harm among females, with ages of 18, 22, 40, 17, 23, 18, and 44?
Your Answer:
Correct Answer: 26
Explanation:Measures of Central Tendency
Measures of central tendency are used in descriptive statistics to summarize the middle of typical value of a data set. There are three common measures of central tendency: the mean, median, and mode.
The median is the middle value in a data set that has been arranged in numerical order. It is not affected by outliers and is used for ordinal data. The mode is the most frequent value in a data set and is used for categorical data. The mean is calculated by adding all the values in a data set and dividing by the number of values. It is sensitive to outliers and is used for interval and ratio data.
The appropriate measure of central tendency depends on the measurement scale of the data. For nominal and categorical data, the mode is used. For ordinal data, the median of mode is used. For interval data with a normal distribution, the mean is preferable, but the median of mode can also be used. For interval data with skewed distribution, the median is used. For ratio data, the mean is preferable, but the median of mode can also be used for skewed data.
In addition to measures of central tendency, the range is also used to describe the spread of a data set. It is calculated by subtracting the smallest value from the largest value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 58
Incorrect
-
What is the accurate formula for determining the pre-test odds?
Your Answer:
Correct Answer: Pre-test probability/ (1 - pre-test probability)
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 59
Incorrect
-
Which option is not a type of descriptive statistic?
Your Answer:
Correct Answer: Student's t-test
Explanation:A t-test is a statistical method used to determine if there is a significant difference between the means of two groups. It is a type of statistical inference.
Types of Statistics: Descriptive and Inferential
Statistics can be divided into two categories: descriptive and inferential. Descriptive statistics are used to describe and summarize data without making any generalizations beyond the data at hand. On the other hand, inferential statistics are used to make inferences about a population based on sample data.
Descriptive statistics are useful for identifying patterns and trends in data. Common measures used to describe a data set include measures of central tendency (such as the mean, median, and mode) and measures of variability of dispersion (such as the standard deviation of variance).
Inferential statistics, on the other hand, are used to make predictions of draw conclusions about a population based on sample data. These statistics are also used to determine the probability that observed differences between groups are reliable and not due to chance.
Overall, both descriptive and inferential statistics play important roles in analyzing and interpreting data. Descriptive statistics help us understand the characteristics of a data set, while inferential statistics allow us to make predictions and draw conclusions about larger populations.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 60
Incorrect
-
What is a true statement about measures of effect?
Your Answer:
Correct Answer: Relative risk can be used to measure effect in randomised control trials
Explanation:The use of relative risk is applicable in cohort, cross-sectional, and randomized control trials, but not in case-control studies. In situations where there are no events in the control group, neither the risk ratio nor the odds ratio can be computed. It is important to note that the odds ratio tends to overestimate effects and is always more extreme than the relative risk, moving away from the null value of 1.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 61
Incorrect
-
Researchers have conducted a study comparing a new blood pressure medication with a standard blood pressure medication. 200 patients are divided equally between the two groups. Over the course of one year, 20 patients in the treatment group experienced a significant reduction in blood pressure, compared to 35 patients in the control group.
What is the number needed to treat (NNT)?Your Answer:
Correct Answer: 7
Explanation:The Relative Risk Reduction (RRR) is calculated by subtracting the experimental event rate (EER) from the control event rate (CER), dividing the result by the CER, and then multiplying by 100 to get a percentage. In this case, the RRR is (35-20)÷35 = 0.4285 of 42.85%.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 62
Incorrect
-
What is a true statement about statistical power?
Your Answer:
Correct Answer: The larger the sample size of a study the greater the power
Explanation:The Importance of Power in Statistical Analysis
Power is a crucial concept in statistical analysis as it helps researchers determine the number of participants needed in a study to detect a clinically significant difference of effect. It represents the probability of correctly rejecting the null hypothesis when it is false, which means avoiding a Type II error. Power values range from 0 to 1, with 0 indicating 0% and 1 indicating 100%. A power of 0.80 is generally considered the minimum acceptable level.
Several factors influence the power of a study, including sample size, effect size, and significance level. Larger sample sizes lead to more precise parameter estimations and increase the study’s ability to detect a significant effect. Effect size, which is determined at the beginning of a study, refers to the size of the difference between two means that leads to rejecting the null hypothesis. Finally, the significance level, also known as the alpha level, represents the probability of a Type I error. By considering these factors, researchers can optimize the power of their studies and increase the likelihood of detecting meaningful effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 63
Incorrect
-
What is the term used to describe a test that initially appears to measure what it is intended to measure?
Your Answer:
Correct Answer: Good face validity
Explanation:A test that seems to measure what it is intended to measure has strong face validity.
Validity in statistics refers to how accurately something measures what it claims to measure. There are two main types of validity: internal and external. Internal validity refers to the confidence we have in the cause and effect relationship in a study, while external validity refers to the degree to which the conclusions of a study can be applied to other people, places, and times. There are various threats to both internal and external validity, such as sampling, measurement instrument obtrusiveness, and reactive effects of setting. Additionally, there are several subtypes of validity, including face validity, content validity, criterion validity, and construct validity. Each subtype has its own specific focus and methods for testing validity.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 64
Incorrect
-
What is the meaning of the P in the PICO model used for creating a research question?
Your Answer:
Correct Answer: Population
Explanation:Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 65
Incorrect
-
How can authors ensure they cover all necessary aspects when writing articles that describe formal studies of quality improvement?
Your Answer:
Correct Answer: SQUIRE
Explanation:As an AI language model, I do not have personal opinions of beliefs. However, I can provide information and guidance on the standards of reporting for different types of research studies. The guidelines mentioned above are essential for ensuring that research studies are reported accurately and transparently, which is crucial for the scientific community to evaluate and replicate the findings. It is important for researchers to be familiar with these standards and follow them when reporting their studies to ensure the quality and integrity of their research.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 66
Incorrect
-
Which statistical test is appropriate for analyzing normally distributed data that is measured?
Your Answer:
Correct Answer: Independent t-test
Explanation:The t-test is appropriate for analyzing data that meets parametric assumptions, while other tests are more suitable for non-parametric data.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 67
Incorrect
-
Which of the following resources has been filtered?
Your Answer:
Correct Answer: DARE
Explanation:The main focus of the Database of Abstracts of Reviews of Effect (DARE) is on systematic reviews that assess the impact of healthcare interventions and the management and provision of healthcare services. In order to be considered for inclusion, reviews must satisfy several requirements.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 68
Incorrect
-
Based on the AUCs shown below, which screening test had the highest overall performance in differentiating between the presence of absence of bulimia?
Test - AUC
Test 1 - 0.42
Test 2 - 0.95
Test 3 - 0.82
Test 4 - 0.11
Test 5 - 0.67Your Answer:
Correct Answer: Test 2
Explanation:Understanding ROC Curves and AUC Values
ROC (receiver operating characteristic) curves are graphs used to evaluate the effectiveness of a test in distinguishing between two groups, such as those with and without a disease. The curve plots the true positive rate against the false positive rate at different threshold settings. The goal is to find the best trade-off between sensitivity and specificity, which can be adjusted by changing the threshold. AUC (area under the curve) is a measure of the overall performance of the test, with higher values indicating better accuracy. The conventional grading of AUC values ranges from excellent to fail. ROC curves and AUC values are useful in evaluating diagnostic and screening tools, comparing different tests, and studying inter-observer variability.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 69
Incorrect
-
A pediatrician becomes interested in a newly identified and rare pediatric syndrome. They are interested to investigate if previous exposure to herpes viruses may put children at increased risk. Which of the following study designs would be most appropriate?
Your Answer:
Correct Answer: Case-control study
Explanation:Case-control studies are useful in studying rare diseases as it would be impractical to follow a large group of people for a long period of time to accrue enough incident cases. For instance, if a disease occurs very infrequently, say 1 in 1,000,000 per year, it would require following 1,000,000 people for ten years of 1000 people for 1000 years to accrue ten total cases. However, this is not feasible. Therefore, a case-control study provides a more practical approach to studying rare diseases.
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 70
Incorrect
-
What percentage of the data set falls below the upper quartile when considering the interquartile range?
Your Answer:
Correct Answer: 75%
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 71
Incorrect
-
What type of data representation is used in a box and whisker plot?
Your Answer:
Correct Answer: Median
Explanation:Box and whisker plots are a useful tool for displaying information about the range, median, and quartiles of a data set. The whiskers only contain values within 1.5 times the interquartile range (IQR), and any values outside of this range are considered outliers and displayed as dots. The IQR is the difference between the 3rd and 1st quartiles, which divide the data set into quarters. Quartiles can also be used to determine the percentage of observations that fall below a certain value. However, quartiles and ranges have limitations because they do not take into account every score in a data set. To get a more representative idea of spread, measures such as variance and standard deviation are needed. Box plots can also provide information about the shape of a data set, such as whether it is skewed or symmetric. Notched boxes on the plot represent the confidence intervals of the median values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 72
Incorrect
-
What type of bias is present in a study evaluating the accuracy of a new diagnostic test for epilepsy if not all patients undergo the established gold-standard test?
Your Answer:
Correct Answer: Work-up bias
Explanation:When comparing new diagnostic tests with gold standard tests, work-up bias can be a concern. Clinicians may be hesitant to order the gold standard test unless the new test yields a positive result, as the gold standard test may involve invasive procedures like tissue biopsy. This can significantly skew the study’s findings and affect metrics such as sensitivity and specificity. While it may not always be possible to eliminate work-up bias, researchers must account for it in their analysis.
Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 73
Incorrect
-
What is the purpose of using bracketing as a method in qualitative research?
Your Answer:
Correct Answer: Assessing validity
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 74
Incorrect
-
Which statistical test is best suited for analyzing the difference in blood pressure between the two groups of patients who were given either the established of new anti-hypertensive medication in a randomized controlled trial with a crossover design?
Your Answer:
Correct Answer: Paired t-test
Explanation:The appropriate statistical test to analyze the research question of the difference between two related groups with a dependent variable of change in BP (ratio) and parametric data is a paired t-test.
Choosing the right statistical test can be challenging, but understanding the basic principles can help. Different tests have different assumptions, and using the wrong one can lead to inaccurate results. To identify the appropriate test, a flow chart can be used based on three main factors: the type of dependent variable, the type of data, and whether the groups/samples are independent of dependent. It is important to know which tests are parametric and non-parametric, as well as their alternatives. For example, the chi-squared test is used to assess differences in categorical variables and is non-parametric, while Pearson’s correlation coefficient measures linear correlation between two variables and is parametric. T-tests are used to compare means between two groups, and ANOVA is used to compare means between more than two groups. Non-parametric equivalents to ANOVA include the Kruskal-Wallis analysis of ranks, the Median test, Friedman’s two-way analysis of variance, and Cochran Q test. Understanding these tests and their assumptions can help researchers choose the appropriate statistical test for their data.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 75
Incorrect
-
What is the accurate formula for determining the likelihood ratio of a negative test result?
Your Answer:
Correct Answer: (1 - sensitivity) / specificity
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 76
Incorrect
-
What statement accurately describes dependent variables?
Your Answer:
Correct Answer: They are affected by changes of independent variables
Explanation:Understanding Stats Variables
Variables are characteristics, numbers, of quantities that can be measured of counted. They are also known as data items. Examples of variables include age, sex, business income and expenses, country of birth, capital expenditure, class grades, eye colour, and vehicle type. The value of a variable may vary between data units in a population. In a typical study, there are three main variables: independent, dependent, and controlled variables.
The independent variable is something that the researcher purposely changes during the investigation. The dependent variable is the one that is observed and changes in response to the independent variable. Controlled variables are those that are not changed during the experiment. Dependent variables are affected by independent variables but not by controlled variables, as these do not vary throughout the study.
For instance, a researcher wants to test the effectiveness of a new weight loss medication. Participants are divided into three groups, with the first group receiving a placebo (0mg dosage), the second group a 10 mg dose, and the third group a 40 mg dose. After six months, the participants’ weights are measured. In this case, the independent variable is the dosage of the medication, as that is what is being manipulated. The dependent variable is the weight, as that is what is being measured.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 77
Incorrect
-
What study design would be most suitable for investigating the potential association between childhood obesity in girls and the risk of polycystic ovarian syndrome, while also providing the strongest evidence for this link?
Your Answer:
Correct Answer: Cohort study
Explanation:An RCT is not feasible in this situation, but a cohort study would be more reliable than a case-control study in generating evidence.
Types of Primary Research Studies and Their Advantages and Disadvantages
Primary research studies can be categorized into six types based on the research question they aim to address. The best type of study for each question type is listed in the table below. There are two main types of study design: experimental and observational. Experimental studies involve an intervention, while observational studies do not. The advantages and disadvantages of each study type are summarized in the table below.
Type of Question Best Type of Study
Therapy Randomized controlled trial (RCT), cohort, case control, case series
Diagnosis Cohort studies with comparison to gold standard test
Prognosis Cohort studies, case control, case series
Etiology/Harm RCT, cohort studies, case control, case series
Prevention RCT, cohort studies, case control, case series
Cost Economic analysisStudy Type Advantages Disadvantages
Randomized Controlled Trial – Unbiased distribution of confounders – Blinding more likely – Randomization facilitates statistical analysis – Expensive – Time-consuming – Volunteer bias – Ethically problematic at times
Cohort Study – Ethically safe – Subjects can be matched – Can establish timing and directionality of events – Eligibility criteria and outcome assessments can be standardized – Administratively easier and cheaper than RCT – Controls may be difficult to identify – Exposure may be linked to a hidden confounder – Blinding is difficult – Randomization not present – For rare disease, large sample sizes of long follow-up necessary
Case-Control Study – Quick and cheap – Only feasible method for very rare disorders of those with long lag between exposure and outcome – Fewer subjects needed than cross-sectional studies – Reliance on recall of records to determine exposure status – Confounders – Selection of control groups is difficult – Potential bias: recall, selection
Cross-Sectional Survey – Cheap and simple – Ethically safe – Establishes association at most, not causality – Recall bias susceptibility – Confounders may be unequally distributed – Neyman bias – Group sizes may be unequal
Ecological Study – Cheap and simple – Ethically safe – Ecological fallacy (when relationships which exist for groups are assumed to also be true for individuals)In conclusion, the choice of study type depends on the research question being addressed. Each study type has its own advantages and disadvantages, and researchers should carefully consider these when designing their studies.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 78
Incorrect
-
What percentage of the data falls within the range of the lower and upper quartiles, as represented by the interquartile range?
Your Answer:
Correct Answer: 50%
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 79
Incorrect
-
What is the negative predictive value of the blood test for bowel cancer, given a sensitivity of 60% and a specificity of 80% and a negative test result for a patient?
Your Answer:
Correct Answer: 0.5
Explanation:Clinical tests are used to determine the presence of absence of a disease of condition. To interpret test results, it is important to have a working knowledge of statistics used to describe them. Two by two tables are commonly used to calculate test statistics such as sensitivity and specificity. Sensitivity refers to the proportion of people with a condition that the test correctly identifies, while specificity refers to the proportion of people without a condition that the test correctly identifies. Accuracy tells us how closely a test measures to its true value, while predictive values help us understand the likelihood of having a disease based on a positive of negative test result. Likelihood ratios combine sensitivity and specificity into a single figure that can refine our estimation of the probability of a disease being present. Pre and post-test odds and probabilities can also be calculated to better understand the likelihood of having a disease before and after a test is carried out. Fagan’s nomogram is a useful tool for calculating post-test probabilities.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 80
Incorrect
-
What is the significance of the cut off of 5 on the MDQ in diagnosing depression?
Your Answer:
Correct Answer: The optimal threshold
Explanation:The threshold score that results in the lowest misclassification rate, achieved by minimizing both false positive and false negative rates, is known as the optimal threshold. Based on the findings of the previous study, the ideal cut off for identifying caseness on the MDQ is five, making it the optimal threshold.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 81
Incorrect
-
A study reports that 76 percent of the subjects receiving fluvoxamine versus 29 percent of the placebo group were treatment responders. Based on this data, what is the number needed to treat?
Your Answer:
Correct Answer: 2.12
Explanation:To determine the number needed to treat (NNT), we first calculated the absolute risk reduction (ARR) using the formula ARR = CER – EER, where CER is the control event rate and EER is the experimental event rate. In this case, the ARR was 0.47, which is the reciprocal of the NNT. Therefore, the NNT was calculated as 2.12. This means that for every two patients treated with the active medication, at least one patient will have a better outcome compared to those treated with a placebo.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 82
Incorrect
-
What value of NNT indicates the most positive result for an intervention?
Your Answer:
Correct Answer: NNT = 1
Explanation:An NNT of 1 indicates that every patient who receives the treatment experiences a positive outcome, while no patient in the control group experiences the same outcome. This represents an ideal outcome.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 83
Incorrect
-
Can you calculate the specificity of a general practitioner's diagnosis of depression based on the given data from the study assessing their ability to identify cases using GHQ scores?
Your Answer:
Correct Answer: 91%
Explanation:The specificity of the GHQ test is 91%, meaning that 91% of individuals who do not have depression are correctly identified as such by the general practitioner using the test.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 84
Incorrect
-
Regarding evidence based medicine, which of the following is an example of a foreground question?
Your Answer:
Correct Answer: What is the effectiveness of restraints in reducing the occurrence of falls in patients 65 and over?
Explanation:Foreground questions are specific and focused, and can lead to a clinical decision. In contrast, background questions are more general and broad in scope.
Evidence-based medicine involves four basic steps: developing a focused clinical question, searching for the best evidence, critically appraising the evidence, and applying the evidence and evaluating the outcome. When developing a question, it is important to understand the difference between background and foreground questions. Background questions are general questions about conditions, illnesses, syndromes, and pathophysiology, while foreground questions are more often about issues of care. The PICO system is often used to define the components of a foreground question: patient group of interest, intervention of interest, comparison, and primary outcome.
When searching for evidence, it is important to have a basic understanding of the types of evidence and sources of information. Scientific literature is divided into two basic categories: primary (empirical research) and secondary (interpretation and analysis of primary sources). Unfiltered sources are large databases of articles that have not been pre-screened for quality, while filtered resources summarize and appraise evidence from several studies.
There are several databases and search engines that can be used to search for evidence, including Medline and PubMed, Embase, the Cochrane Library, PsycINFO, CINAHL, and OpenGrey. Boolean logic can be used to combine search terms in PubMed, and phrase searching and truncation can also be used. Medical Subject Headings (MeSH) are used by indexers to describe articles for MEDLINE records, and the MeSH Database is like a thesaurus that enables exploration of this vocabulary.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 85
Incorrect
-
A team of scientists conduct a case control study to investigate the association between birth complications and attempted suicide in individuals aged 18-35 years. They enroll 296 cases of attempted suicide and recruit an equal number of controls who are matched for age, gender, and geographical location. Upon analyzing the birth history, they discover that 67 cases of attempted suicide and 61 controls had experienced birth difficulties. What is the unadjusted odds ratio for attempted suicide in individuals with a history of birth complications?
Your Answer:
Correct Answer: 1.13
Explanation:Odds Ratio Calculation for Birth Difficulties in Case and Control Groups
The odds ratio is a statistical measure that compares the likelihood of an event occurring in one group to that of another group. In this case, we are interested in the odds of birth difficulties in a case group compared to a control group.
To calculate the odds ratio, we need to determine the number of individuals in each group who had birth difficulties and those who did not. In the case group, 67 individuals had birth difficulties, while 229 did not. In the control group, 61 individuals had birth difficulties, while 235 did not.
Using these numbers, we can calculate the odds ratio as follows:
Odds ratio = (67/229) / (61/235) = 1.13
This means that the odds of birth difficulties are 1.13 times higher in the case group compared to the control group.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 86
Incorrect
-
What is the term coined by Robert Rosenthal that refers to the bias that can result from the non-publication of a few studies with negative of inconclusive results, leading to a significant impact on research in a specific field?
Your Answer:
Correct Answer: File drawer problem
Explanation:Publication bias refers to the tendency of researchers, editors, and pharmaceutical companies to favor the publication of studies with positive results over those with negative of inconclusive results. This bias can have various causes and can result in a skewed representation of the literature. The file drawer problem refers to the phenomenon of unpublished negative studies. HARKing, of hypothesizing after the results are known, is a form of outcome reporting bias where outcomes are selectively reported based on the strength and direction of observed associations. Begg’s funnel plot is an analytical tool used to quantify the presence of publication bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 87
Incorrect
-
A worldwide epidemic of influenza is known as a:
Your Answer:
Correct Answer: Pandemic
Explanation:Epidemiology Key Terms
– Epidemic (Outbreak): A rise in disease cases above the anticipated level in a specific population during a particular time frame.
– Endemic: The regular of anticipated level of disease in a particular population.
– Pandemic: Epidemics that affect a significant number of individuals across multiple countries, regions, of continents. -
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 88
Incorrect
-
A team of scientists aims to prevent bias in their study on the effectiveness of a new medication for elderly patients with hypertension. They randomly assign 80 patients to the treatment group, of which 60 complete the 12-week trial. Another 80 patients are assigned to the placebo group, with 75 completing the trial. The researchers agree to conduct an intention-to-treat (ITT) analysis using the LOCF method. What type of bias are they attempting to eliminate?
Your Answer:
Correct Answer: Attrition bias
Explanation:To address the issue of drop-outs in a study, an intention to treat (ITT) analysis can be employed. Drop-outs can lead to attrition bias, which creates systematic differences in attrition across treatment groups. In an ITT analysis, all patients are included in the groups they were initially assigned to through random allocation. To handle missing data, two common methods are last observation carried forward and worst case scenario analysis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 89
Incorrect
-
What statement accurately describes measures of dispersion?
Your Answer:
Correct Answer: The standard error indicates how close the statistical mean is to the population mean
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 90
Incorrect
-
How do the odds of excessive drinking differ between patients with liver cirrhosis and those without cirrhosis?
Your Answer:
Correct Answer: 16
Explanation:Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 91
Incorrect
-
What is the term used to describe the study design where a margin is set for the mean reduction of PANSS score, and if the confidence interval of the difference between the new drug and olanzapine falls within this margin, the trial is considered successful?
Your Answer:
Correct Answer: Equivalence trial
Explanation:Study Designs for New Drugs: Options and Considerations
When launching a new drug, there are various study design options available. One common approach is a placebo-controlled trial, which can provide strong evidence but may be deemed unethical if established treatments are available. Additionally, it does not allow for a comparison with standard treatments. Therefore, statisticians must decide whether the trial aims to demonstrate superiority, equivalence, of non-inferiority to an existing treatment.
Superiority trials may seem like the obvious choice, but they require a large sample size to show a significant benefit over an existing treatment. Equivalence trials define an equivalence margin on a specified outcome, and if the confidence interval of the difference between the two drugs falls within this margin, the drugs are assumed to have a similar effect. Non-inferiority trials are similar to equivalence trials, but only the lower confidence interval needs to fall within the equivalence margin. These trials require smaller sample sizes, and once a drug has been shown to be non-inferior, larger studies may be conducted to demonstrate superiority.
It is important to note that drug companies may not necessarily aim to show superiority over an existing product. If they can demonstrate that their product is equivalent of even non-inferior, they may compete on price of convenience. Overall, the choice of study design depends on various factors, including ethical considerations, sample size, and the desired outcome.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 92
Incorrect
-
In scientific research, what variable type has traditionally been used to record the age of study participants?
Your Answer:
Correct Answer: Binary
Explanation:Gender has traditionally been recorded as either male of female, creating a binary of dichotomous variable. Other categorical variables, such as eye color and ethnicity, can be grouped into two or more categories. Continuous variables, such as temperature, height, weight, and age, can be placed anywhere on a scale and have mathematical properties. Ordinal variables allow for ranking, but do not allow for direct mathematical comparisons between values.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 93
Incorrect
-
Which of the following options is not a possible value for Pearson's correlation coefficient?
Your Answer:
Correct Answer: 1.5
Explanation:Stats: Correlation and Regression
Correlation and regression are related but not interchangeable terms. Correlation is used to test for association between variables, while regression is used to predict values of dependent variables from independent variables. Correlation can be linear, non-linear, of non-existent, and can be strong, moderate, of weak. The strength of a linear relationship is measured by the correlation coefficient, which can be positive of negative and ranges from very weak to very strong. However, the interpretation of a correlation coefficient depends on the context and purposes. Correlation can suggest association but cannot prove of disprove causation. Linear regression, on the other hand, can be used to predict how much one variable changes when a second variable is changed. Scatter graphs are used in correlation and regression analyses to visually determine if variables are associated and to detect outliers. When constructing a scatter graph, the dependent variable is typically placed on the vertical axis and the independent variable on the horizontal axis.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 94
Incorrect
-
Which statement about disease rates is incorrect?
Your Answer:
Correct Answer: The odds ratio is synonymous with the risk ratio
Explanation:Disease Rates and Their Interpretation
Disease rates are a measure of the occurrence of a disease in a population. They are used to establish causation, monitor interventions, and measure the impact of exposure on disease rates. The attributable risk is the difference in the rate of disease between the exposed and unexposed groups. It tells us what proportion of deaths in the exposed group were due to the exposure. The relative risk is the risk of an event relative to exposure. It is calculated by dividing the rate of disease in the exposed group by the rate of disease in the unexposed group. A relative risk of 1 means there is no difference between the two groups. A relative risk of <1 means that the event is less likely to occur in the exposed group, while a relative risk of >1 means that the event is more likely to occur in the exposed group. The population attributable risk is the reduction in incidence that would be observed if the population were entirely unexposed. It can be calculated by multiplying the attributable risk by the prevalence of exposure in the population. The attributable proportion is the proportion of the disease that would be eliminated in a population if its disease rate were reduced to that of the unexposed group.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 95
Incorrect
-
What is a correct statement about funnel plots?
Your Answer:
Correct Answer: Each dot represents a separate study result
Explanation:An asymmetric funnel plot may indicate the presence of publication bias, although this is not a definitive confirmation. The x-axis typically represents a measure of effect, such as the risk ratio of odds ratio, although other measures may also be used.
Stats Publication Bias
Publication bias refers to the tendency for studies with positive findings to be published more than studies with negative findings, leading to incomplete data sets in meta-analyses and erroneous conclusions. Graphical methods such as funnel plots, Galbraith plots, ordered forest plots, and normal quantile plots can be used to detect publication bias. Funnel plots are the most commonly used and offer an easy visual way to ensure that published literature is evenly weighted. The x-axis represents the effect size, and the y-axis represents the study size. A symmetrical, inverted funnel shape indicates that publication bias is unlikely, while an asymmetrical funnel indicates a relationship between treatment effect and study size, indicating either publication bias of small study effects.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 96
Incorrect
-
A researcher wants to compare the mean age of two groups of participants who were randomly assigned to either a standard exercise program of a standard exercise program + new supplement. The data collected is parametric and continuous. What is the most appropriate statistical test to use?
Your Answer:
Correct Answer: Unpaired t test
Explanation:The two sample unpaired t test is utilized to examine whether the null hypothesis that the two populations related to the two random samples are equivalent is true of not. When dealing with continuous data that is believed to conform to the normal distribution, a t test is suitable, making it appropriate for comparing weight loss between two groups. In contrast, a paired t test is used when the data is dependent, meaning there is a direct correlation between the values in the two samples. This could include the same subject being measured before and after a process change of at different times.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 97
Incorrect
-
A masters student had noticed that nearly all of her patients with arthritis were over the age of 50. She was keen to investigate this further to see if there was an association.
She selected 100 patients with arthritis and 100 controls. of the 100 patients with arthritis, 90 were over the age of 50. of the 100 controls, only 40 were over the age of 50.
What is the odds ratio?Your Answer:
Correct Answer: 3.77
Explanation:The odds of being married are 3.77 times higher in individuals with panic disorder compared to controls.
Measures of Effect in Clinical Studies
When conducting clinical studies, we often want to know the effect of treatments of exposures on health outcomes. Measures of effect are used in randomized controlled trials (RCTs) and include the odds ratio (of), risk ratio (RR), risk difference (RD), and number needed to treat (NNT). Dichotomous (binary) outcome data are common in clinical trials, where the outcome for each participant is one of two possibilities, such as dead of alive, of clinical improvement of no improvement.
To understand the difference between of and RR, it’s important to know the difference between risks and odds. Risk is a proportion that describes the probability of a health outcome occurring, while odds is a ratio that compares the probability of an event occurring to the probability of it not occurring. Absolute risk is the basic risk, while risk difference is the difference between the absolute risk of an event in the intervention group and the absolute risk in the control group. Relative risk is the ratio of risk in the intervention group to the risk in the control group.
The number needed to treat (NNT) is the number of patients who need to be treated for one to benefit. Odds are calculated by dividing the number of times an event happens by the number of times it does not happen. The odds ratio is the odds of an outcome given a particular exposure versus the odds of an outcome in the absence of the exposure. It is commonly used in case-control studies and can also be used in cross-sectional and cohort study designs. An odds ratio of 1 indicates no difference in risk between the two groups, while an odds ratio >1 indicates an increased risk and an odds ratio <1 indicates a reduced risk.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 98
Incorrect
-
Which of the options below does not demonstrate selection bias?
Your Answer:
Correct Answer: Recall bias
Explanation:Types of Bias in Statistics
Bias is a systematic error that can lead to incorrect conclusions. Confounding factors are variables that are associated with both the outcome and the exposure but have no causative role. Confounding can be addressed in the design and analysis stage of a study. The main method of controlling confounding in the analysis phase is stratification analysis. The main methods used in the design stage are matching, randomization, and restriction of participants.
There are two main types of bias: selection bias and information bias. Selection bias occurs when the selected sample is not a representative sample of the reference population. Disease spectrum bias, self-selection bias, participation bias, incidence-prevalence bias, exclusion bias, publication of dissemination bias, citation bias, and Berkson’s bias are all subtypes of selection bias. Information bias occurs when gathered information about exposure, outcome, of both is not correct and there was an error in measurement. Detection bias, recall bias, lead time bias, interviewer/observer bias, verification and work-up bias, Hawthorne effect, and ecological fallacy are all subtypes of information bias.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 99
Incorrect
-
Which of the following is not a method used in qualitative research to evaluate validity?
Your Answer:
Correct Answer: Content analysis
Explanation:Qualitative research is a method of inquiry that seeks to understand the meaning and experience dimensions of human lives and social worlds. There are different approaches to qualitative research, such as ethnography, phenomenology, and grounded theory, each with its own purpose, role of the researcher, stages of research, and method of data analysis. The most common methods used in healthcare research are interviews and focus groups. Sampling techniques include convenience sampling, purposive sampling, quota sampling, snowball sampling, and case study sampling. Sample size can be determined by data saturation, which occurs when new categories, themes, of explanations stop emerging from the data. Validity can be assessed through triangulation, respondent validation, bracketing, and reflexivity. Analytical approaches include content analysis and constant comparison.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
-
Question 100
Incorrect
-
What is the appropriate denominator to use when computing the sample variance?
Your Answer:
Correct Answer: n-1
Explanation:Measures of dispersion are used to indicate the variation of spread of a data set, often in conjunction with a measure of central tendency such as the mean of median. The range, which is the difference between the largest and smallest value, is the simplest measure of dispersion. The interquartile range, which is the difference between the 3rd and 1st quartiles, is another useful measure. Quartiles divide a data set into quarters, and the interquartile range can provide additional information about the spread of the data. However, to get a more representative idea of spread, measures such as the variance and standard deviation are needed. The variance gives an indication of how much the items in the data set vary from the mean, while the standard deviation reflects the distribution of individual scores around their mean. The standard deviation is expressed in the same units as the data set and can be used to indicate how confident we are that data points lie within a particular range. The standard error of the mean is an inferential statistic used to estimate the population mean and is a measure of the spread expected for the mean of the observations. Confidence intervals are often presented alongside sample results such as the mean value, indicating a range that is likely to contain the true value.
-
This question is part of the following fields:
- Research Methods, Statistics, Critical Review And Evidence-Based Practice
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Mins)