00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - Which blood vessel in the systemic circulation causes the highest amount of resistance...

    Correct

    • Which blood vessel in the systemic circulation causes the highest amount of resistance to blood flow?

      Your Answer: Arterioles

      Explanation:

      Arterioles and Total Peripheral Vascular Resistance

      Arterioles play a crucial role in determining the total peripheral vascular resistance due to their small calibre, larger surface area, and higher tensile strength compared to capillaries. These vessels are responsible for regulating blood flow to the capillaries and organs by constricting or dilating. The constriction of arterioles increases resistance to blood flow, while dilation decreases resistance.

      The high tensile strength of arterioles allows them to withstand the pressure of blood flow and maintain their shape, which is important for regulating blood pressure. Additionally, their larger surface area allows for more precise control of blood flow to specific areas of the body. Overall, arterioles are essential in regulating blood flow and maintaining proper blood pressure throughout the body.

    • This question is part of the following fields:

      • Clinical Sciences
      21.4
      Seconds
  • Question 2 - How would a CT scan show the structure located posteriorly to the first...

    Incorrect

    • How would a CT scan show the structure located posteriorly to the first part of the duodenum?

      Your Answer: Main pancreatic duct

      Correct Answer: Portal vein

      Explanation:

      Anatomy of the Duodenum

      The duodenum, which is the first part of the small intestine, can be divided into four sections. The posterior relations of the first part of the duodenum include the portal vein, common bile duct, and gastroduodenal artery, with the inferior vena cava located behind them. The third part of the duodenum is crossed by the abdominal aorta, while the superior mesenteric vessels are an anterior relation of this section. The second part of the duodenum is where the main pancreatic duct opens, and it is also crossed by the transverse colon.

    • This question is part of the following fields:

      • Clinical Sciences
      29
      Seconds
  • Question 3 - A 38-year-old obese woman presents to the Emergency department complaining of sharp cramping...

    Incorrect

    • A 38-year-old obese woman presents to the Emergency department complaining of sharp cramping pains in the right upper quadrant of her abdomen. The pain started this afternoon after a large meal, but she has experienced similar problems over the past few weeks and ignored them, hoping they would go away. She denies any vomiting or diarrhea and is apyrexial. Upon examination, her abdomen is soft, but there is tenderness in the right upper quadrant. Her FBC and U&Es are normal. What is the most likely diagnosis?

      Your Answer: Cholecystitis

      Correct Answer: Cholelithiasis

      Explanation:

      Cholecystitis and Other Digestive Conditions

      Cholecystitis is a condition characterized by inflammation of the gallbladder, which can cause mild fever and vomiting. On the other hand, cholelithiasis, or the presence of gallstones, can lead to cramping pains after eating as the gallbladder contracts to expel bile. This condition is more common in women who are fair, fat, and fertile.

      Dyspepsia, or indigestion, typically causes central pain that is not severe enough to warrant a hospital visit. Gastroenteritis, which is characterized by diarrhea and vomiting, is unlikely if these symptoms are not present. Peptic ulcers, which can cause pain related to eating, are usually accompanied by vomiting and bloating.

      these different digestive conditions can help individuals identify and seek appropriate treatment for their symptoms. It is important to consult a healthcare professional for an accurate diagnosis and treatment plan.

    • This question is part of the following fields:

      • Clinical Sciences
      41.9
      Seconds
  • Question 4 - A 70-year-old man arrives at the Emergency department displaying indications and symptoms of...

    Incorrect

    • A 70-year-old man arrives at the Emergency department displaying indications and symptoms of acute coronary syndrome. Among the following cardiac enzymes, which is the most probable to increase first after a heart attack?

      Your Answer: Troponin T

      Correct Answer: Myoglobin

      Explanation:

      Enzyme Markers for Myocardial Infarction

      Enzyme markers are used to diagnose myocardial infarction, with troponins being the most sensitive and specific. However, troponins are not the fastest to rise and are only measured 12 hours after the event. Myoglobin, although less sensitive and specific, is the earliest marker to rise. The rise of myoglobin occurs within 2 hours of the event, with a peak at 6-8 hours and a fall within 1-2 days. Creatine kinase rises within 4-6 hours, peaks at 24 hours, and falls within 3-4 days. LDH rises within 6-12 hours, peaks at 72 hours, and falls within 10-14 days. These enzyme markers are important in the diagnosis and management of myocardial infarction.

    • This question is part of the following fields:

      • Clinical Sciences
      28.8
      Seconds
  • Question 5 - What is the primary function of riboflavin (vitamin B2) in the human body?...

    Incorrect

    • What is the primary function of riboflavin (vitamin B2) in the human body?

      Your Answer: Coagulation

      Correct Answer: Energy production

      Explanation:

      The Importance of Riboflavin in the Body

      Riboflavin, also known as vitamin B2, is a vital nutrient in the body. Its structure consists of a sugar molecule attached to a flavin ring structure, which gives it a yellow color. One of the main roles of riboflavin is to aid in energy production and cellular metabolism of fuels. This is achieved by the creation of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which are essential for generating ATP from carbohydrates and other fuel sources. Additionally, riboflavin has antioxidant properties that help protect cells from damage caused by free radicals.

      Riboflavin can be found in a variety of foods, including yeast and yeast extract, liver and kidney, wheat germ, milk and cheese, eggs, and some breakfast cereals and drinks that are fortified with riboflavin. It is important to ensure that you are getting enough riboflavin in your diet to support your body’s energy production and antioxidant functions.

    • This question is part of the following fields:

      • Clinical Sciences
      20.5
      Seconds
  • Question 6 - What is the most powerful muscle for extending the hip? ...

    Correct

    • What is the most powerful muscle for extending the hip?

      Your Answer: Gluteus maximus

      Explanation:

      Muscles Acting on the Hip Joint

      The hip joint is a synovial ball and socket joint that allows for a wide range of movements. There are several muscles that act over the hip, each with their own primary movement and innervation. The hip extensors include the gluteus maximus and the hamstrings, which are responsible for extending the hip joint. The hip flexors include the psoas major, iliacus, rectus femoris, and pectineus, which are responsible for flexing the hip joint. The hip abductors include the gluteus medius and minimus, as well as the tensor fascia latae, which are responsible for abducting the hip joint. Finally, the hip adductors include the adductor magnus, brevis, and longus, as well as the gracilis, which are responsible for adducting the hip joint.

      The gluteus maximus is the strongest hip extensor, earning it the nickname of the power extensor of the hip. The hamstrings, while partially responsible for hip extension, are primarily responsible for knee flexion. However, their long course leaves them vulnerable to sports injuries. the muscles that act on the hip joint is important for both athletes and healthcare professionals in order to prevent and treat injuries.

    • This question is part of the following fields:

      • Clinical Sciences
      40
      Seconds
  • Question 7 - What is the primary function of zinc in the human body? ...

    Incorrect

    • What is the primary function of zinc in the human body?

      Your Answer: Coagulation

      Correct Answer: Antioxidant function

      Explanation:

      The Importance of Zinc in the Body

      Zinc is a vital mineral that plays various roles in the body. One of its essential functions is acting as an antioxidant, where it forms part of an enzyme complex that protects cell membranes from free radical damage. Additionally, zinc is involved in many enzyme reactions, including the production of hormones, DNA replication, and neurotransmitter metabolism. It also helps protect the body from toxins, heavy metals, and radiation.

      Furthermore, zinc is crucial in maintaining a healthy immune system, as it plays a role in both the antibody and cell-mediated immune responses. Unfortunately, zinc deficiency is relatively common among certain groups, such as women, children, the elderly, and pregnant patients. Vegetarians and chronic dieters may also experience mild zinc deficiency.

      To ensure adequate zinc intake, it is recommended to consume foods rich in zinc, such as liver, peas, pulses, meat, and wholemeal bread. By maintaining sufficient levels of zinc in the body, individuals can support their overall health and well-being.

    • This question is part of the following fields:

      • Clinical Sciences
      20.3
      Seconds
  • Question 8 - A 45-year-old female patient complains of cough and difficulty breathing. During examination, a...

    Incorrect

    • A 45-year-old female patient complains of cough and difficulty breathing. During examination, a mid-diastolic murmur is detected and the patient has a flushed face. What past infection could have caused these symptoms 10-20 years ago?

      Your Answer: Staphylococcus aureus

      Correct Answer: Streptococcus pyogenes

      Explanation:

      Rheumatic Heart Disease and Mitral Stenosis

      Rheumatic heart disease is the leading cause of mitral stenosis, a condition characterized by shortness of breath and a mid-diastolic murmur in the heart. This disease is an immune response to a Group A beta-hemolytic streptococcal infection, such as streptococcus pyogenes. Acute rheumatic fever can occur within two weeks of the initial infection and can lead to a pan carditis, along with other symptoms like erythema marginatum and arthritis. If left untreated, chronic carditis may develop, which can result in mitral stenosis.

      Diphtheria is caused by Corynebacterium diptheriae, while Enterococcus faecalis is a group G streptococcal organism that can cause urinary tract and intra-abdominal infections. Neisseria meningitidis is the most common cause of bacterial meningitis, and Staphylococcus aureus can cause skin, bone, and joint infections.

    • This question is part of the following fields:

      • Clinical Sciences
      52.3
      Seconds
  • Question 9 - Which bone structure forms the anterior cranial fossa? ...

    Incorrect

    • Which bone structure forms the anterior cranial fossa?

      Your Answer: The temporal bone

      Correct Answer: The lesser wing of the sphenoid

      Explanation:

      Formation of the Anterior Cranial Fossa

      The anterior cranial fossa is the front part of the skull base that houses the frontal lobes of the brain. It is formed by three bones: the frontal bone, the sphenoid bone, and the ethmoid bone. The orbital plate of the frontal bone makes up the front part of the fossa, while the lesser wing of the sphenoid bone forms the sides. The cribriform plate of the ethmoid bone makes up the back part of the fossa. These three bones come together to create a bony structure that protects the brain and supports the facial structures. The anterior cranial fossa is an important area of the skull as it contains the olfactory bulbs, which are responsible for the sense of smell. Any damage to this area can result in a loss of smell or other neurological deficits.

    • This question is part of the following fields:

      • Clinical Sciences
      31.9
      Seconds
  • Question 10 - A 25-year-old female has been diagnosed with iron deficiency while pregnant.

    What is the...

    Correct

    • A 25-year-old female has been diagnosed with iron deficiency while pregnant.

      What is the primary role of iron in the human body?

      Your Answer: Haemoglobin synthesis

      Explanation:

      The Importance of Iron in the Human Body

      Iron plays a crucial role in maintaining a healthy human body. One of its primary functions is to transport oxygen throughout the body via haemoglobin, a protein found in red blood cells. Additionally, iron is an essential component of cytochromes, which are necessary for the production of ATP and drug metabolism. Iron is also required for the production of myoglobin, which is necessary for normal muscle function.

      Unfortunately, iron deficiency is prevalent, especially in children, menstruating women, and pregnant patients. Vegetarians are also at a higher risk of deficiency since animal sources of iron are more easily absorbed than plant sources. To combat iron deficiency, it is recommended to consume foods rich in iron, such as liver, chicken, pulses, leafy green vegetables, and fish. By ensuring adequate iron intake, individuals can maintain optimal health and function.

    • This question is part of the following fields:

      • Clinical Sciences
      17.3
      Seconds
  • Question 11 - What is the leading reason for hypoglycemia in adults? ...

    Correct

    • What is the leading reason for hypoglycemia in adults?

      Your Answer: Treated diabetes mellitus

      Explanation:

      Hypoglycaemia in Adults

      Hypoglycaemia is a condition where the blood glucose level falls below the typical fasting level, which is around <4 mmol/L for an adult. This condition can cause various symptoms, including tremors, sweating, nausea, lightheadedness, hunger, and disorientation. Severe hypoglycaemia can even lead to confusion, aggressive behaviour, and reduced consciousness. Drug-treated diabetes mellitus is the most common cause of hypoglycaemia in adults, especially due to insulin or hypoglycaemia drugs like sulphonylureas. Type 1 diabetes patients are at a higher risk of hypoglycaemia due to hypoglycaemia unawareness and blunted glucagon response. However, mild hypoglycaemia is common during fasting, pregnancy, and minor illness. Apart from diabetes, other causes of hypoglycaemia in adults include non-diabetic drugs, alcohol, hepatic failure, critical illness, hormone deficiency, malignancy, insulinoma, non-insulinoma pancreatogenous hypoglycaemia syndrome (NIPHS), and bariatric surgery. It is essential to understand the causes and symptoms of hypoglycaemia to manage the condition effectively. Early diagnosis and treatment can prevent severe complications and improve the quality of life for individuals with hypoglycaemia.

    • This question is part of the following fields:

      • Clinical Sciences
      19.4
      Seconds
  • Question 12 - A 42-year-old patient is exhibiting symptoms of pellagra. What is the underlying cause...

    Incorrect

    • A 42-year-old patient is exhibiting symptoms of pellagra. What is the underlying cause of this condition?

      Your Answer: Vitamin A toxicity

      Correct Answer: Vitamin B3 deficiency

      Explanation:

      Pellagra: A Vitamin B3 Deficiency

      Pellagra is a condition caused by a lack of vitamin B3 (niacin) in the body. It is characterized by various symptoms, including skin changes on sun-exposed areas, an inflamed and swollen tongue, reduced appetite, gastrointestinal upset, anxiety, insomnia, confusion, and in severe cases, hallucinations, paranoia, and severe depression. Niacin can be obtained from the diet through nicotinamide or nicotinic acid, and the body can also produce it from tryptophan found in dietary protein. Good dietary sources of niacin include liver, chicken, nuts, tuna, and white fish. However, the body has limited capacity to store niacin, and symptoms of deficiency can appear within a few weeks.

      Niacin deficiency is rare and is associated with low protein diets, malabsorption disorders such as coeliac disease and Crohn’s disease, and heavy alcohol consumption. Additionally, a deficiency of riboflavin and pyridoxine can reduce the body’s ability to produce niacin from tryptophan. It is important to maintain a balanced diet to prevent the development of pellagra and other vitamin deficiencies.

    • This question is part of the following fields:

      • Clinical Sciences
      20.3
      Seconds
  • Question 13 - What is the main factor that determines glomerular filtration rate (GFR)? ...

    Correct

    • What is the main factor that determines glomerular filtration rate (GFR)?

      Your Answer: Glomerular hydrostatic pressure

      Explanation:

      Glomerular Filtration Rate

      Glomerular filtration rate (GFR) is the measure of how well the kidneys are functioning. It is determined by the sum of hydrostatic and osmotic forces across the glomerular membrane, which gives the overall net filtration pressure and the glomerular capillary filtration coefficient. The net filtration pressure is made up of four opposing forces, including the glomerular hydrostatic pressure promoting filtration, the hydrostatic pressure within the Bowman’s capsule opposing filtration, the osmotic pressure of the glomerular capillary plasma proteins opposing filtration, and the osmotic pressure of the proteins within the Bowman’s capsule promoting filtration.

      Changes to these relative pressures can alter the GFR, which can occur in both normal physiology and pathological conditions. the factors that influence GFR is important in diagnosing and treating kidney diseases. By monitoring GFR, healthcare professionals can determine the extent of kidney damage and develop appropriate treatment plans. Overall, GFR is a crucial measure of kidney function that helps to maintain overall health and well-being.

    • This question is part of the following fields:

      • Clinical Sciences
      31.4
      Seconds
  • Question 14 - A 17-year-old female is seeking a termination and she is currently 16 weeks...

    Correct

    • A 17-year-old female is seeking a termination and she is currently 16 weeks pregnant.
      At what point in the pregnancy does the law impose more restrictions on obtaining a termination?

      Your Answer: 24 weeks

      Explanation:

      Abortion Law in the UK

      The Abortion Act 1967, which was amended by the Human Fertilisation and Embryology Act 1990, governs the law on abortion in the UK. According to this law, an abortion can be carried out until 24 weeks of pregnancy if two doctors agree that continuing with the pregnancy would pose a risk to the physical or psychological health of the mother or her existing children.

      If the pregnancy has progressed beyond 24 weeks, an abortion can only be carried out if two doctors agree that the woman’s health is gravely threatened by the pregnancy or if the infant is likely to be born with severe physical or mental abnormalities. It is important to note that there is no time limit on procuring an abortion if these criteria are met.

      In summary, the law on abortion in the UK allows for abortions to be carried out up to 24 weeks if there is a risk to the mother’s health or the health of her existing children. After 24 weeks, an abortion can only be carried out if the woman’s health is at risk or if the infant is likely to be born with severe physical or mental abnormalities.

    • This question is part of the following fields:

      • Clinical Sciences
      15.9
      Seconds
  • Question 15 - A 75-year-old man comes to the clinic with a complaint of experiencing severe...

    Correct

    • A 75-year-old man comes to the clinic with a complaint of experiencing severe dizziness upon standing quickly. He is currently taking atenolol 100 mg OD for hypertension. Upon measuring his blood pressure while lying down and standing up, the readings were 146/88 mmHg and 108/72 mmHg, respectively. What is the main cause of his postural hypotension?

      Your Answer: Impaired baroreceptor reflex

      Explanation:

      Postural Hypotension and the Sympathetic Response

      Postural hypotension is a common occurrence, especially in the elderly and those with refractory hypertension. When standing up, blood tends to pool in the lower limbs, causing temporary hypotension. However, the baroreceptors in the aortic arch and carotid sinus detect this change and trigger a sympathetic response. This response includes a rapid generalised venoconstriction, an increase in heart rate, and an increase in stroke volume, all working together to restore cardiac output and blood pressure. In most people, this response occurs before any awareness of hypotension, but a delay in this response can cause giddiness and pre-syncope.

      However, in some cases, the reflex is partially impaired by the action of beta blockers. This means that the sympathetic response may not be as effective in restoring blood pressure. Increased adrenaline release, decreased pH (via chemoreceptors), or pain (via a sympathetic response) can all lead to an increase in blood pressure rather than a decrease. It is important to be aware of these factors and to monitor blood pressure regularly, especially in those who are at higher risk for postural hypotension.

    • This question is part of the following fields:

      • Clinical Sciences
      58.3
      Seconds
  • Question 16 - You are asked to see a 4-year-old girl with severe chronic malnutrition.
    You are...

    Correct

    • You are asked to see a 4-year-old girl with severe chronic malnutrition.
      You are concerned about kwashiorkor.
      What clinical feature is typical in cases of kwashiorkor?

      Your Answer: Abdominal swelling

      Explanation:

      Protein-Energy Malnutrition

      Protein-energy malnutrition (PEM) or protein energy undernutrition (PEU) occurs when the body’s intake of energy and protein is insufficient to meet its requirements. This can happen due to inadequate intake or an increase in requirements without a corresponding increase in intake. The result is a range of health problems, including undernutrition, which is sadly common in many parts of the world.

      Undernutrition can take different forms, including kwashiorkor and marasmus. Kwashiorkor is characterized by inadequate protein intake, leading to oedema, abdominal swelling, and fat accumulation in the liver. Marasmus, on the other hand, involves inadequate consumption of both energy and protein, resulting in emaciation without oedema or abdominal swelling. The term ‘protein-energy undernutrition’ encompasses both of these scenarios.

      It’s worth noting that malnutrition can refer to both overnutrition (obesity) and undernutrition, both of which have negative effects on the body’s health. However, in common usage, malnutrition typically refers to undernutrition. Additionally, malnutrition can also result from isolated deficiencies in vitamins or minerals. Overall, protein-energy malnutrition is crucial for promoting and preserving good health.

    • This question is part of the following fields:

      • Clinical Sciences
      13.8
      Seconds
  • Question 17 - What medication enhances the body's metabolic rate? ...

    Correct

    • What medication enhances the body's metabolic rate?

      Your Answer: Thyroxine

      Explanation:

      Medications and Their Effects on Metabolic Rate

      Medications can have varying effects on the body’s metabolic rate. Some medications are known to decrease metabolic rate, such as sedatives, beta blockers like propranolol, sulphonylureas used to treat diabetes, and certain chemotherapy agents. These medications can slow down the body’s processes and lead to a decrease in energy expenditure.

      On the other hand, there are medications that can increase metabolic rate. Thyroxine, a hormone produced by the thyroid gland, is known to increase metabolic rate. Recombinant human growth hormone, which is used to treat growth hormone deficiency, can also increase metabolic rate. These medications can speed up the body’s processes and lead to an increase in energy expenditure.

      It is important to note that the effects of medications on metabolic rate can vary from person to person and may depend on factors such as dosage and individual health conditions. It is always recommended to consult with a healthcare provider before starting or stopping any medication.

    • This question is part of the following fields:

      • Clinical Sciences
      12.8
      Seconds
  • Question 18 - What is the usual initiator of the complement system cascade in the absence...

    Incorrect

    • What is the usual initiator of the complement system cascade in the absence of specific antibodies?

      Your Answer: C3a

      Correct Answer: C3b

      Explanation:

      The Complement Cascade and its Three Pathways

      The complement cascade is a series of pro-enzymes found in the serum and tissue space that are activated by generic pathogenic markers. There are three pathways to activation: alternative, mannose-binding lectin, and classical. The classical pathway requires the presence of antigen-specific antibody or C-RP. This pathway predominates in response to re-challenge of a bacterium. However, when faced with a new bacterium, C3b binds to foreign surfaces and activates the alternative pathway.

      C1 is an early component of the classical pathway, while C3a is the other part formed from hydrolysis of C3 and causes mast cell degranulation. C5 acts as a neutrophil chemoattractant, while C6-9b form the membrane-attack complex, which causes bacterial lysis. the complement cascade and its pathways is crucial in developing effective treatments for infections and other diseases.

    • This question is part of the following fields:

      • Clinical Sciences
      32.3
      Seconds
  • Question 19 - What is the function of factor XIII in the clotting cascade and which...

    Correct

    • What is the function of factor XIII in the clotting cascade and which action corresponds to it?

      Your Answer: Stabilises the fibrin clot

      Explanation:

      The Role of Factor XIII in Blood Clotting

      Factor XIII is a crucial component of the clotting cascade, which is involved in both the intrinsic and extrinsic pathways. Its primary function is to stabilize the fibrin clot by cross-linking fibrin polymers that have been formed by the action of thrombin. This process ensures that the clot remains intact and prevents bleeding from the site of injury. Prothrombin is activated to thrombin by factor Xa, which is an essential step in the clotting cascade. Overall, factor XIII plays a critical role in the blood clotting process, and its deficiency can lead to bleeding disorders.

    • This question is part of the following fields:

      • Clinical Sciences
      12.5
      Seconds
  • Question 20 - During an anatomy examination, you correctly identify the foramen magnum as the largest...

    Incorrect

    • During an anatomy examination, you correctly identify the foramen magnum as the largest foramen in the skull. Can you please identify which structure passes through this foramen?

      Your Answer: The hypoglossal nerves

      Correct Answer: The vertebral arteries

      Explanation:

      Structures Passing Through Skull Foramina

      The skull contains several foramina, or openings, through which various structures pass. The foramen magnum, located at the base of the skull, allows for the transmission of several important structures, including the vertebral arteries, the anterior and posterior spinal arteries, the lower part of the medulla and its surrounding meninges, and the spinal roots of the accessory nerves.

      Another important foramen is the hypoglossal canal, which allows for the exit of the hypoglossal nerve. The internal carotid arteries pass through the carotid canal before entering the foramen lacerum, while the glossopharyngeal and vagus nerves exit through the jugular foramen.

      the structures that pass through these foramina is important for medical professionals, as damage to these structures can result in serious health complications. By studying the anatomy of the skull and its foramina, healthcare providers can better diagnose and treat conditions affecting these important structures.

    • This question is part of the following fields:

      • Clinical Sciences
      27.7
      Seconds
  • Question 21 - A 10-year-old boy comes to the clinic complaining of an itchy right ear...

    Incorrect

    • A 10-year-old boy comes to the clinic complaining of an itchy right ear that has been bothering him for the past five days. During the examination, he winces in pain when the outer ear is touched. Can you identify which part of the ear is considered the outer ear?

      Your Answer: Tympanic membrane

      Correct Answer: Pinna

      Explanation:

      Earache: Types and Anatomy of the Ear

      Earache can be categorized into two types: otitis media and otitis externa. Otitis media refers to the inflammation of the middle ear, while otitis externa is the inflammation of the outer ear and/or canal. Pain on touch or gentle pulling of the outer ear is commonly associated with otitis externa.

      The outer ear is composed of the visible part of the ear, called the pinna, and the external auditory meatus near the tragus. The external auditory meatus extends from the pinna around 26 mm to the tympanic membrane. On the other hand, the middle ear reaches from the tympanic membrane to the oval window of the cochlea. This space contains three ossicles, namely the malleus, incus, and stapes, which transmit sound waves to the inner ear.

      The inner ear is made up of the cochlea, which is responsible for hearing, and the vestibular apparatus, which helps maintain balance. The vestibular apparatus consists of three semicircular canals and the vestibule.

      the anatomy of the ear and the different types of earache can help in identifying and treating ear problems. It is important to seek medical attention if experiencing ear pain or discomfort.

    • This question is part of the following fields:

      • Clinical Sciences
      21.9
      Seconds
  • Question 22 - Which electrolyte imbalance is frequently observed in individuals suffering from malnutrition? ...

    Incorrect

    • Which electrolyte imbalance is frequently observed in individuals suffering from malnutrition?

      Your Answer: Hypernatraemia

      Correct Answer: Hypokalaemia

      Explanation:

      Electrolyte Abnormalities in Malnourished Individuals

      Malnutrition can lead to various changes in the body’s systems and physiology, particularly in the levels of electrolytes. The most common electrolyte abnormalities in malnourished individuals are hypokalaemia, hypocalcaemia, hypophosphataemia, and hypomagnesaemia. Prolonged malnutrition can cause the body to adapt to a reduced dietary supply of minerals, resulting in changes in renal physiology such as increased aldosterone secretion and reduced glomerular filtration rate. This leads to increased urinary excretion of potassium, calcium, magnesium, and phosphate, which can cause a tendency towards electrolyte imbalances over time.

      Moreover, severe malnutrition can cause reduced muscle bulk, resulting in low levels of production of urea and creatinine. However, reduced excretion can cause plasma levels to be normal or slightly reduced. As muscle breaks down to provide substrates for gluconeogenesis, a negative nitrogen balance ensues. Therefore, patients with severe malnutrition are at risk of refeeding syndrome once they start eating again or are treated with parenteral nutrition. To prevent this, prophylaxis with B vitamins, folic acid, and minerals is recommended.

    • This question is part of the following fields:

      • Clinical Sciences
      32.8
      Seconds
  • Question 23 - What is the main factor that motivates inspiration? ...

    Incorrect

    • What is the main factor that motivates inspiration?

      Your Answer: Upward movement of the diaphragm

      Correct Answer: Decreased intrapulmonary pressure

      Explanation:

      The Mechanics of Breathing

      Breathing is a complex process that involves the contraction and relaxation of various muscles in the thorax and abdomen. During inspiration, the diaphragm and external intercostal muscles contract, causing the ribs to move forward and up. This increases the volume of the thorax, which in turn reduces the pressure inside the lungs. As a result, air is drawn into the lungs from the atmosphere.

      In some cases, such as in asthmatics, additional inspiratory effort may be required. This is where the accessory muscles of respiration, such as the scalene muscles, come into play. These muscles contract to help increase the volume of the thorax and draw in more air.

      On the other hand, expiration is usually a passive process. The diaphragm and external intercostal muscles relax, causing the ribs to move downward and inward. This decreases the volume of the thorax, which increases the pressure inside the lungs. As a result, air is expelled from the lungs and out into the atmosphere.

      Overall, the mechanics of breathing are a delicate balance between the contraction and relaxation of various muscles in the thorax and abdomen. By how these muscles work together, we can better appreciate the amazing complexity of the human body.

    • This question is part of the following fields:

      • Clinical Sciences
      27.6
      Seconds
  • Question 24 - A neonatal hearing screening program screened 10,000 newborns by measuring otoacoustic emissions (OAE)....

    Incorrect

    • A neonatal hearing screening program screened 10,000 newborns by measuring otoacoustic emissions (OAE). Out of these, 200 newborns failed the screening test and were invited for a test of brainstem auditory evoked potential (BAEP), which is considered the gold standard for diagnosing hearing impairment in newborns. Among these 200 newborns, 100 were confirmed to have hearing impairment by BAEP. What is the correct statement regarding this scenario?

      Your Answer: The specificity of the screening test is 50%

      Correct Answer: The accuracy of the screening test cannot be determined

      Explanation:

      Limitations of Screening Test Results

      In the study, 200 out of 10,000 subjects were found to have hearing impairment through a screening test. However, for the 9,800 subjects who tested negative, no further testing was conducted to confirm if they truly did not have hearing impairment. This means that we cannot determine the accuracy of the screening test from the data provided, nor can we calculate the sensitivity, specificity, or negative predictive values. The only value that can be calculated is the positive predictive value, which is 50%. It is important to note the limitations of screening test results and the need for further testing to confirm diagnoses.

    • This question is part of the following fields:

      • Clinical Sciences
      47.5
      Seconds
  • Question 25 - A 16-year-old girl is playing volleyball and suffers an anterior dislocation of her...

    Incorrect

    • A 16-year-old girl is playing volleyball and suffers an anterior dislocation of her right shoulder. She is taken to the Emergency department where her humerus is reduced under sedation. Which area should be tested for sensation to determine the nerve that is most likely to have been affected during the dislocation?

      Your Answer: Little finger

      Correct Answer: Regimental badge distribution

      Explanation:

      Nerve Damage from Shoulder Dislocation

      Shoulder dislocation can cause damage to the axillary nerve, which is responsible for supplying sensation to the upper part of the arm. This nerve is the most likely to be affected during a dislocation. The axillary nerve also controls the deltoid muscle, which can be examined to assess motor sensation.

    • This question is part of the following fields:

      • Clinical Sciences
      37.5
      Seconds
  • Question 26 - In which section of the digestive system are Brunner's glands located? ...

    Incorrect

    • In which section of the digestive system are Brunner's glands located?

      Your Answer: Jejunum

      Correct Answer: Duodenum

      Explanation:

      Glands and Structures of the Digestive System

      The digestive system is composed of various glands and structures that play important roles in the digestion and absorption of nutrients. One of these structures is the Brunner’s glands, which are coiled glands found in the submucosa of the duodenum. These glands produce an alkaline fluid that helps neutralize the acidic contents of the stomach as they enter the small intestine.

      In contrast, salivary glands are typical exocrine glands that are composed of acini and ducts. These glands produce saliva, which contains enzymes that begin the process of breaking down carbohydrates in the mouth.

      The stomach has deep pits that contain different cell types, including endocrine cells and goblet cells. These cells secrete various substances that aid in digestion and protect the stomach lining from the corrosive effects of gastric acid.

      The jejunum and ileum are parts of the small intestine that have villi, which are finger-like projections that increase the surface area for absorption. At the base of the villi are the crypts of Lieberkuhn, where new enterocytes are produced and migrate up to the tip of the villi. These enterocytes are responsible for absorbing nutrients from the digested food.

      Overall, the digestive system is a complex network of glands and structures that work together to ensure the proper digestion and absorption of nutrients from the food we eat.

    • This question is part of the following fields:

      • Clinical Sciences
      37.1
      Seconds
  • Question 27 - In the context of acid-base balance, what compensatory mechanisms would be observed in...

    Correct

    • In the context of acid-base balance, what compensatory mechanisms would be observed in an individual who has a pH of 7.20 (normal range: 7.35-7.45) and is experiencing metabolic acidosis?

      Your Answer: Increased respiratory rate

      Explanation:

      Compensation for Metabolic Acidosis

      In cases of metabolic acidosis, the bicarbonate levels in the blood will be low. However, this is not considered a compensation. To increase the blood pH, the respiratory rate will increase, causing a decrease in CO2 levels. This results in a respiratory alkalosis, which compensates for the metabolic acidosis. It is important to note that there is a limit to how much an increased respiratory rate can compensate for a metabolic acidosis. Therefore, it is crucial to address the underlying cause of the metabolic acidosis to prevent further complications.

    • This question is part of the following fields:

      • Clinical Sciences
      14.9
      Seconds
  • Question 28 - What is the hormone that can be synthesized from cholesterol in the adrenal...

    Correct

    • What is the hormone that can be synthesized from cholesterol in the adrenal glands?

      Your Answer: Cortisol

      Explanation:

      The Role of Cholesterol in Hormone Production

      Cholesterol plays a crucial role in the production of steroid hormones, which are essential for various bodily functions. These hormones are produced in the adrenal glands and include progesterone, cortisol, aldosterone, oestrogens, and androgens. Progesterone is important in pregnancy, while cortisol and other glucocorticoids are required by all body cells and play a role in the fight-or-flight response and glucose homeostasis. Aldosterone regulates salt and water balance, while oestrogens and androgens are required for the development of female and male characteristics, respectively.

      The production of steroid hormones is a complex process that involves multiple pathways and is influenced by various factors such as the body’s metabolic needs and the abundance of hormones already present in the cell. Enzyme mutations or deficiencies in this pathway can lead to disorders that affect salt and water balance and reproductive function, such as congenital adrenal hyperplasia.

      In addition to steroid hormones, other hormones such as antidiuretic hormone and oxytocin are produced in the posterior pituitary gland, while thyroid hormone is made in the thyroid gland in the neck and parathyroid hormone is made in the parathyroid glands located behind the thyroid gland. the role of cholesterol in hormone production is crucial for maintaining overall health and preventing hormonal imbalances.

    • This question is part of the following fields:

      • Clinical Sciences
      18.2
      Seconds
  • Question 29 - What is the most accurate definition of evidence-based medicine (EBM)? ...

    Correct

    • What is the most accurate definition of evidence-based medicine (EBM)?

      Your Answer: EBM is the conscientious, explicit and judicious use of current best evidence in making decisions about the care of individual patients

      Explanation:

      Evidence-Based Medicine

      Evidence-based medicine (EBM) is a widely accepted approach to healthcare decision-making that involves the conscientious, explicit, and judicious use of current best evidence. This approach integrates the best available evidence with individual patient preferences to make informed decisions about patient care. While economic analyses can help allocate resources in a cost-effective manner, critical appraisal of clinical research is also an essential element of EBM.

      EBM recognizes that high-quality randomized controlled trials and systematic reviews are valuable sources of evidence, but they are not the only sources. Practicing according to guidelines can be beneficial if the guidelines are evidence-based, but this is not always the case. Ultimately, the goal of EBM is to provide patients with the best possible care by using the most current and reliable evidence available while taking into account individual patient preferences and characteristics. By doing so, healthcare providers can make informed decisions that lead to better patient outcomes.

    • This question is part of the following fields:

      • Clinical Sciences
      43
      Seconds
  • Question 30 - Which hormone triggers the breakdown of glycogen in the liver during fasting? ...

    Incorrect

    • Which hormone triggers the breakdown of glycogen in the liver during fasting?

      Your Answer: Insulin

      Correct Answer: Glucagon

      Explanation:

      Glycogen Formation and Degradation

      In normal circumstances, glucose in the blood is converted into glycogen by the liver with the help of insulin and rising glucose levels. This process requires several enzymes such as phosphoglucomutase, glucose-1-phosphate uridyltransferase, glycogen synthase, and branching enzyme. However, when glucose is scarce, glycogen must be broken down to release glucose into the blood. This process is mainly stimulated by the hormone glucagon and requires the enzymes glycogen phosphorylase and debranching enzyme. Defects in either glycogen formation or degradation can lead to fasting hypoglycemia, which is a common feature of many glycogen storage disorders (GSDs).

      One such disorder is glycogen synthase deficiency (GSD type 0), which typically presents in childhood with symptoms of hypoglycemia after an overnight fast. However, symptoms can be improved by administering glucose, and patients can be given corn starch to prevent symptoms in the morning. A liver biopsy will show very little glycogen, and the disease is inherited as an autosomal recessive trait. Overall, the balance between glycogen formation and degradation is crucial in maintaining normal blood sugar levels.

    • This question is part of the following fields:

      • Clinical Sciences
      25.3
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Clinical Sciences (13/30) 43%
Passmed