-
Question 1
Correct
-
A 79-year-old man is admitted to the hospital after experiencing severe dizziness, vertigo, slurred speech, and nausea with vomiting. The diagnosis reveals a basilar artery stroke. Which blood vessels combine to form the affected artery?
Your Answer: Vertebral arteries
Explanation:The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 2
Incorrect
-
A 78-year-old ex-smoker comes to the clinic complaining of chest discomfort and shortness of breath. He had a history of ST-elevation myocardial infarction 10 days ago, which was treated with thrombolysis. During the examination, a high-pitch holosystolic murmur is heard at the apex. The ECG shows widespread ST elevation. Unfortunately, the patient experiences cardiac arrest and passes away. What is the probable histological finding in his heart?
Your Answer: Mature contracted scar
Correct Answer: Macrophages and granulation tissue at margins
Explanation:The histology findings of a myocardial infarction (MI) vary depending on the time elapsed since the event. Within the first 24 hours, there is evidence of early coagulative necrosis, neutrophils, wavy fibers, and hypercontraction of myofibrils. This stage is associated with a high risk of ventricular arrhythmia, heart failure, and cardiogenic shock.
Between 1-3 days post-MI, there is extensive coagulative necrosis and an influx of neutrophils, which can lead to fibrinous pericarditis. From 3-14 days post-MI, macrophages and granulation tissue are present at the margins, and there is a high risk of complications such as free wall rupture (which can cause mitral regurgitation), papillary muscle rupture, and left ventricular pseudoaneurysm.
After 2 weeks to several months, the scar tissue has contracted and is complete. This stage is associated with Dressler syndrome, heart failure, arrhythmias, and mural thrombus. It is important to note that the risk of complications decreases as time passes, but long-term management and monitoring are still necessary for patients who have experienced an MI.
Myocardial infarction (MI) can lead to various complications, which can occur immediately, early, or late after the event. Cardiac arrest is the most common cause of death following MI, usually due to ventricular fibrillation. Cardiogenic shock may occur if a large part of the ventricular myocardium is damaged, and it is difficult to treat. Chronic heart failure may result from ventricular myocardium dysfunction, which can be managed with loop diuretics, ACE-inhibitors, and beta-blockers. Tachyarrhythmias, such as ventricular fibrillation and ventricular tachycardia, are common complications. Bradyarrhythmias, such as atrioventricular block, are more common following inferior MI. Pericarditis is common in the first 48 hours after a transmural MI, while Dressler’s syndrome may occur 2-6 weeks later. Left ventricular aneurysm and free wall rupture, ventricular septal defect, and acute mitral regurgitation are other complications that may require urgent medical attention.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 3
Correct
-
A 55-year-old man arrives at the emergency department complaining of central chest pain that started 15 minutes ago. An ECG is conducted and reveals ST elevation in leads I, aVL, and V6. Which coronary artery is the most probable cause of obstruction?
Your Answer: Left circumflex artery
Explanation:The presence of ischaemic changes in leads I, aVL, and V5-6 suggests a possible issue with the left circumflex artery, which supplies blood to the lateral area of the heart. Complete blockage of this artery can lead to ST elevation, while partial blockage may result in non-ST elevation myocardial infarction. Other areas of the heart and their corresponding coronary arteries are listed in the table below.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 4
Correct
-
A 72-year-old male is admitted post myocardial infarction.
Suddenly, on day seven, he collapses without warning. The physician observes the presence of Kussmaul's sign.
What is the most probable complication of MI in this case?Your Answer: Ventricular rupture
Explanation:Complications of Myocardial Infarction: Cardiac Tamponade
Myocardial infarction can lead to a range of complications, including cardiac tamponade. This occurs when there is ventricular rupture, which can be life-threatening. One way to diagnose cardiac tamponade is through Kussmaul’s sign, which is the detection of a rising jugular venous pulse on inspiration. However, the classic diagnostic triad for cardiac tamponade is Beck’s triad, which includes hypotension, raised JVP, and muffled heart sounds.
It is important to note that Dressler’s syndrome, a type of pericarditis that can occur after a myocardial infarction, typically has a gradual onset and is associated with chest pain. Therefore, it is important to differentiate between these complications in order to provide appropriate treatment.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 5
Correct
-
A 67-year old man with a history of cardiovascular disease and COPD visits his GP. During a routine blood test, the GP observes that the patient has mild hyponatraemia. Which medication could have played a role in causing his hyponatraemia?
Your Answer: Bendroflumethiazide
Explanation:Thiazide diuretics have been linked to the adverse effect of hyponatremia, while caution is advised when using ÎČ2-agonists like salbutamol in patients with hypokalemia due to their potential to decrease serum potassium. In cases of hyperkalemia, ÎČ2-agonists may be used as a temporary treatment option. Bendroflumethiazide, a thiazide diuretic, can cause electrolyte imbalances such as hypokalemia, hypomagnesemia, and hypochloremic alkalosis. On the other hand, ACE inhibitors like ramipril may lead to hyperkalemia, especially in patients with renal impairment, diabetes mellitus, or those taking potassium-sparing diuretics, potassium supplements, or potassium-containing salts. Atenolol, however, is not directly associated with electrolyte disturbances.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Clâ symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 6
Correct
-
A 12-year-old child presents to the emergency department with polyarthritis and chest pain that is relieved by leaning forward. Blood tests reveal a raised ESR and leucocytosis, but are otherwise normal. The child's parents mention that they have never vaccinated their child as they themselves are unvaccinated and rarely fall ill. In light of this information, you decide to order an anti-streptolysin-O-titre to investigate for recent streptococcal infection. What is the immunological term used to describe the mechanism behind the development of this condition?
Your Answer: Molecular mimicry
Explanation:Rheumatic fever is caused by molecular mimicry, where the M protein on the cell wall of Streptococcus pyogenes cross-reacts with myosin in the smooth muscles of arteries, leading to autoimmunity. This is evidenced by the patient’s symptoms of polyarthritis and chest pain, as well as the presence of anti-streptolysin-O-titre in their blood. Bystander activation, exposure to cryptic antigens, and super-antigens are all pathophysiological mechanisms that can lead to autoimmune destruction of tissues.
Rheumatic fever is a condition that occurs as a result of an immune response to a recent Streptococcus pyogenes infection, typically occurring 2-4 weeks after the initial infection. The pathogenesis of rheumatic fever involves the activation of the innate immune system, leading to antigen presentation to T cells. B and T cells then produce IgG and IgM antibodies, and CD4+ T cells are activated. This immune response is thought to be cross-reactive, mediated by molecular mimicry, where antibodies against M protein cross-react with myosin and the smooth muscle of arteries. This response leads to the clinical features of rheumatic fever, including Aschoff bodies, which are granulomatous nodules found in rheumatic heart fever.
To diagnose rheumatic fever, evidence of recent streptococcal infection must be present, along with 2 major criteria or 1 major criterion and 2 minor criteria. Major criteria include erythema marginatum, Sydenham’s chorea, polyarthritis, carditis and valvulitis, and subcutaneous nodules. Minor criteria include raised ESR or CRP, pyrexia, arthralgia, and prolonged PR interval.
Management of rheumatic fever involves antibiotics, typically oral penicillin V, as well as anti-inflammatories such as NSAIDs as first-line treatment. Any complications that develop, such as heart failure, should also be treated. It is important to diagnose and treat rheumatic fever promptly to prevent long-term complications such as rheumatic heart disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 7
Correct
-
A 65-year-old patient has been discharged from the hospital after experiencing a myocardial infarction. What is the most suitable combination of medication for the patient to be discharged with?
Your Answer: Aspirin, beta blocker, ACE inhibitor and statin
Explanation:Medications for Secondary Prevention of Myocardial Infarction
According to the NICE guidelines on myocardial infarction (MI), patients who have suffered from a heart attack should be discharged with specific medications for secondary prevention. These medications include aspirin, ACE inhibitors, beta-blockers, and statins. The purpose of these medications is to prevent further cardiac events and improve the patient’s overall cardiovascular health.
Aspirin is a blood thinner that helps to prevent blood clots from forming in the arteries, which can lead to another heart attack. ACE inhibitors help to lower blood pressure and reduce the workload on the heart, which can help to prevent further damage to the heart muscle. Beta-blockers also help to lower blood pressure and reduce the workload on the heart, as well as slow down the heart rate. Statins are cholesterol-lowering medications that help to reduce the risk of plaque buildup in the arteries, which can lead to a heart attack.
These medications are prescribed for tertiary prevention, which means they are used in conjunction with cardiac rehabilitation to help prevent future cardiac events. Cardiac rehabilitation typically involves exercise, education, and counseling to help patients make lifestyle changes that can improve their cardiovascular health.
In summary, patients who have suffered from a heart attack should be discharged with aspirin, ACE inhibitors, beta-blockers, and statins for secondary prevention. These medications, along with cardiac rehabilitation, can help to prevent future cardiac events and improve the patient’s overall cardiovascular health.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 8
Correct
-
A 30-year-old male arrives at the emergency department complaining of sudden dizziness and palpitations. His medical history reveals that he had infectious diarrhea a week ago and was prescribed a 10-day course of erythromycin. Upon examination, an ECG confirms fast atrial fibrillation. The physician decides to use amiodarone to convert the patient into sinus rhythm. What is one potential risk associated with the use of amiodarone in this patient?
Your Answer: Ventricular arrhythmias
Explanation:The risk of ventricular arrhythmias is increased when amiodarone and erythromycin are used together due to their ability to prolong the QT interval. Manufacturers advise against using multiple drugs that prolong QT interval to avoid this risk. WPW syndrome is a congenital condition that involves abnormal conductive cardiac tissue and can lead to reentrant tachycardia circuit in association with SVT. Amiodarone can cause a slate-grey appearance of the skin, while drugs like rifampicin can cause orange discoloration of body fluids. COPD is associated with multifocal atrial tachycardia.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 9
Correct
-
A 78-year-old man with an ST-elevation myocardial infarction receives bivalirudin, aspirin, and clopidogrel before undergoing percutaneous coronary intervention. What is the mode of action of bivalirudin?
Your Answer: Reversible direct thrombin inhibitor
Explanation:Bivalirudin inhibits thrombin directly in a reversible manner.
Warfarin prevents the conversion of vitamin K to its active hydroquinone form by acting as an antagonist.
Heparins activate antithrombin II and also form inactive complexes with other clotting factors.
Aspirin inhibits COX.
Clopidogrel functions as a/an.
Bivalirudin: An Anticoagulant for Acute Coronary Syndrome
Bivalirudin is a medication that acts as a direct thrombin inhibitor, meaning it prevents the formation of blood clots. It is commonly used as an anticoagulant in the treatment of acute coronary syndrome, a condition where blood flow to the heart is blocked or reduced. Bivalirudin is a reversible inhibitor, meaning its effects can be reversed if necessary.
Acute coronary syndrome is a serious condition that can lead to heart attack or other complications if left untreated. Bivalirudin is an effective treatment option for preventing blood clots and reducing the risk of further complications. Its reversible nature also makes it a safer option for patients who may need to undergo surgery or other procedures while on anticoagulant therapy. Overall, bivalirudin is an important medication in the management of acute coronary syndrome and plays a crucial role in improving patient outcomes.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 10
Correct
-
A 50-year-old male has presented with a record of blood pressure readings taken at home over the past week. His readings have consistently been above the accepted range for his age. He is a smoker of 20 cigarettes per day.
Your senior has prescribed a low dose of ramipril and recommended lifestyle modifications and exercise.
You have been asked by your senior to discuss the use of this medication and provide any necessary dietary advice.
Which of the following is the most important piece of information to communicate to this patient?
A) Taking ramipril with paracetamol compounds its hypotensive effect
B) Taking ramipril with alcohol compounds its hypotensive effect
C) Taking ramipril with coffee compounds its hypotensive effect
D) Taking ramipril with tea compounds its hypotensive effect
Please select the correct answer and provide an explanation.Your Answer: Taking ramipril with alcohol compounds its hypotensive effect
Explanation:ACE inhibitors’ hypotensive effects are worsened by alcohol consumption, leading to symptoms of low blood pressure such as dizziness and lightheadedness. Additionally, the effectiveness of ACE inhibitors may be reduced by hypertension-associated medications like acetaminophen and venlafaxine. Caffeine, found in both tea and coffee, can also elevate blood pressure.
Angiotensin-converting enzyme (ACE) inhibitors are commonly used as the first-line treatment for hypertension and heart failure in younger patients. However, they may not be as effective in treating hypertensive Afro-Caribbean patients. ACE inhibitors are also used to treat diabetic nephropathy and prevent ischaemic heart disease. These drugs work by inhibiting the conversion of angiotensin I to angiotensin II and are metabolized in the liver.
While ACE inhibitors are generally well-tolerated, they can cause side effects such as cough, angioedema, hyperkalaemia, and first-dose hypotension. Patients with certain conditions, such as renovascular disease, aortic stenosis, or hereditary or idiopathic angioedema, should use ACE inhibitors with caution or avoid them altogether. Pregnant and breastfeeding women should also avoid these drugs.
Patients taking high-dose diuretics may be at increased risk of hypotension when using ACE inhibitors. Therefore, it is important to monitor urea and electrolyte levels before and after starting treatment, as well as any changes in creatinine and potassium levels. Acceptable changes include a 30% increase in serum creatinine from baseline and an increase in potassium up to 5.5 mmol/l. Patients with undiagnosed bilateral renal artery stenosis may experience significant renal impairment when using ACE inhibitors.
The current NICE guidelines recommend using a flow chart to manage hypertension, with ACE inhibitors as the first-line treatment for patients under 55 years old. However, individual patient factors and comorbidities should be taken into account when deciding on the best treatment plan.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 11
Correct
-
An individual in their mid-20s is identified to have a superior vena cava on the left side. What is the most probable route for blood from this system to reach the heart?
Your Answer: Via the coronary sinus
Explanation:The Superior Vena Cava: Anatomy, Relations, and Developmental Variations
The superior vena cava (SVC) is a large vein that drains blood from the head and neck, upper limbs, thorax, and part of the abdominal walls. It is formed by the union of the subclavian and internal jugular veins, which then join to form the right and left brachiocephalic veins. The SVC is located in the anterior margins of the right lung and pleura, and is related to the trachea and right vagus nerve posteromedially, and the posterior aspects of the right lung and pleura posterolaterally. The pulmonary hilum is located posteriorly, while the right phrenic nerve and pleura are located laterally on the right side, and the brachiocephalic artery and ascending aorta are located laterally on the left side.
Developmental variations of the SVC are recognized, including anomalies of its connection and interruption of the inferior vena cava (IVC) in its abdominal course. In some individuals, a persistent left-sided SVC may drain into the right atrium via an enlarged orifice of the coronary sinus, while in rare cases, the left-sided vena cava may connect directly with the superior aspect of the left atrium, usually associated with an un-roofing of the coronary sinus. Interruption of the IVC may occur in patients with left-sided atrial isomerism, with drainage achieved via the azygos venous system.
Overall, understanding the anatomy, relations, and developmental variations of the SVC is important for medical professionals in diagnosing and treating related conditions.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 12
Correct
-
A 68-year-old man comes to his GP for a medication review. His medical record shows that he has vertebral artery stenosis, which greatly elevates his chances of experiencing a stroke in the posterior circulation.
Can you identify the location where the impacted arteries converge to create the basilar artery?Your Answer: Base of the pons
Explanation:The basilar artery is formed by the union of the vertebral arteries at the base of the pons, which is the most appropriate answer. If a patient has stenosis in their vertebral artery, it can increase the risk of a posterior circulation stroke by reducing perfusion to the brain or causing an arterial embolus.
The anterior aspect of the spinal cord is not the most appropriate answer as it is supplied by the anterior spinal arteries, which branch off the vertebral arteries and descend past the anterior aspect of the brainstem to supply the spinal cord’s anterior aspects.
The region anterior to the cavernous sinus is not the most appropriate answer. The internal carotid arteries pass anterior to the cavernous sinus before branching off to anastomose with the circle of Willis, mainly contributing to the anterior circulation of the brain.
The pontomesencephalic junction is not the most appropriate answer. The superior cerebellar arteries branch off from the distal basilar artery at the pontomesencephalic junction.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 13
Correct
-
Which one of the following is typically not provided by the right coronary artery?
Your Answer: The circumflex artery
Explanation:The left coronary artery typically gives rise to the circumflex artery.
The walls of each cardiac chamber are made up of the epicardium, myocardium, and endocardium. The heart and roots of the great vessels are related anteriorly to the sternum and the left ribs. The coronary sinus receives blood from the cardiac veins, and the aortic sinus gives rise to the right and left coronary arteries. The left ventricle has a thicker wall and more numerous trabeculae carnae than the right ventricle. The heart is innervated by autonomic nerve fibers from the cardiac plexus, and the parasympathetic supply comes from the vagus nerves. The heart has four valves: the mitral, aortic, pulmonary, and tricuspid valves.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 14
Correct
-
John, a 35-year-old male, is brought to the emergency department by ambulance. The ambulance crew explains that the patient has homonymous hemianopia, weakness of left upper and lower limb, and dysphasia.
He has a strong past medical and family history deep vein thromboses.
A CT is ordered and the report suggests a stroke affecting the middle cerebral artery. Months later he is under investigations to explain the stroke at his young age. He is diagnosed with Factor V Leiden thrombophilia, which causes the blood to be in a hypercoagulable state.
What are the potential areas of the brain that can be impacted by an emboli in this artery?Your Answer: Frontal, temporal and parietal lobes
Explanation:The frontal, temporal, and parietal lobes are mainly supplied by the middle cerebral artery, which is a continuation of the internal carotid artery. As a result, any damage to this artery can have a significant impact on a large portion of the brain. The middle cerebral artery is frequently affected by cerebrovascular events. The posterior cerebral artery, on the other hand, supplies the occipital lobe. The anterior cerebral artery supplies a portion of the frontal and parietal lobes.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 15
Correct
-
As a medical student in general practice, you come across a patient with poorly controlled hypertension. The decision is made to initiate Bendroflumethiazide therapy. What could be a possible contraindication for starting this medication?
Your Answer: Gout
Explanation:Gout may be a potential side effect of thiazides.
It is important to note that spironolactone and bendroflumethiazide belong to different drug classes, so being allergic to one does not necessarily mean the other cannot be prescribed.
Bendroflumethiazide is a type of diuretic that causes the body to lose potassium, so it may actually be prescribed in cases of refractory hyperkalemia rather than being avoided.
Thiazide diuretics are medications that work by blocking the thiazide-sensitive Na+-Clâ symporter, which inhibits sodium reabsorption at the beginning of the distal convoluted tubule (DCT). This results in the loss of potassium as more sodium reaches the collecting ducts. While thiazide diuretics are useful in treating mild heart failure, loop diuretics are more effective in reducing overload. Bendroflumethiazide was previously used to manage hypertension, but recent NICE guidelines recommend other thiazide-like diuretics such as indapamide and chlorthalidone.
Common side effects of thiazide diuretics include dehydration, postural hypotension, and electrolyte imbalances such as hyponatremia, hypokalemia, and hypercalcemia. Other potential adverse effects include gout, impaired glucose tolerance, and impotence. Rare side effects may include thrombocytopenia, agranulocytosis, photosensitivity rash, and pancreatitis.
It is worth noting that while thiazide diuretics may cause hypercalcemia, they can also reduce the incidence of renal stones by decreasing urinary calcium excretion. According to current NICE guidelines, the management of hypertension involves the use of thiazide-like diuretics, along with other medications and lifestyle changes, to achieve optimal blood pressure control and reduce the risk of cardiovascular disease.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 16
Correct
-
A 59-year-old man with a history of hypertension presents to the ED with sudden palpitations that started six hours ago. He denies chest pain, dizziness, or shortness of breath.
His vital signs are heart rate 163/min, blood pressure 155/92 mmHg, respiratory rate 17/min, oxygen saturations 98% on air, and temperature 36.2ÂșC. On examination, his pulse is irregularly irregular, and there is no evidence of pulmonary edema. His Glasgow Coma Scale is 15.
An ECG shows atrial fibrillation with a rapid ventricular response. Despite treatment with IV fluids, IV metoprolol, and IV digoxin, his heart rate remains elevated at 162 beats per minute.
As the onset of symptoms was less than 48 hours ago, the decision is made to attempt chemical cardioversion with amiodarone. Why is a loading dose necessary for amiodarone?Your Answer: Long half-life
Explanation:Amiodarone requires a prolonged loading regime to achieve stable therapeutic levels due to its highly lipophilic nature and wide absorption by tissue, which reduces its bioavailability in serum. While it is predominantly a class III anti-arrhythmic, it also has numerous effects similar to class Ia, II, and IV. Amiodarone is primarily eliminated through hepatic excretion and has a long half-life, meaning it is eliminated slowly and only requires a low maintenance dose to maintain appropriate therapeutic concentrations. The inhibition of cytochrome P450 by amiodarone is not the reason for administering a loading dose.
Amiodarone is a medication used to treat various types of abnormal heart rhythms. It works by blocking potassium channels, which prolongs the action potential and helps to regulate the heartbeat. However, it also has other effects, such as blocking sodium channels. Amiodarone has a very long half-life, which means that loading doses are often necessary. It should ideally be given into central veins to avoid thrombophlebitis. Amiodarone can cause proarrhythmic effects due to lengthening of the QT interval and can interact with other drugs commonly used at the same time. Long-term use of amiodarone can lead to various adverse effects, including thyroid dysfunction, corneal deposits, pulmonary fibrosis/pneumonitis, liver fibrosis/hepatitis, peripheral neuropathy, myopathy, photosensitivity, a ‘slate-grey’ appearance, thrombophlebitis, injection site reactions, and bradycardia. Patients taking amiodarone should be monitored regularly with tests such as TFT, LFT, U&E, and CXR.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 17
Correct
-
A 67-year-old man is brought to the emergency department with unilateral weakness and loss of sensation. He is later diagnosed with an ischaemic stroke. After initial treatment, he is started on dipyridamole as part of his ongoing therapy.
What is the mechanism of action of dipyridamole?Your Answer: Non-specific phosphodiesterase inhibitor
Explanation:Understanding the Mechanism of Action of Dipyridamole
Dipyridamole is a medication that is commonly used in combination with aspirin to prevent the formation of blood clots after a stroke or transient ischemic attack. The drug works by inhibiting phosphodiesterase, which leads to an increase in the levels of cyclic adenosine monophosphate (cAMP) in platelets. This, in turn, reduces the levels of intracellular calcium, which is necessary for platelet activation and aggregation.
Apart from its antiplatelet effects, dipyridamole also reduces the cellular uptake of adenosine, a molecule that plays a crucial role in regulating blood flow and oxygen delivery to tissues. By inhibiting the uptake of adenosine, dipyridamole can increase its levels in the bloodstream, leading to vasodilation and improved blood flow.
Another mechanism of action of dipyridamole is the inhibition of thromboxane synthase, an enzyme that is involved in the production of thromboxane A2, a potent platelet activator. By blocking this enzyme, dipyridamole can further reduce platelet activation and aggregation, thereby preventing the formation of blood clots.
In summary, dipyridamole exerts its antiplatelet effects through multiple mechanisms, including the inhibition of phosphodiesterase, the reduction of intracellular calcium levels, the inhibition of thromboxane synthase, and the modulation of adenosine uptake. These actions make it a valuable medication for preventing thrombotic events in patients with a history of stroke or transient ischemic attack.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 18
Correct
-
A 68-year-old woman has a left ankle ulcer that has been present for nine months. She had a DVT in her right leg five years ago. Upon examination, there is a 6 cm diameter slough-based ulcer on the medial malleolus without cellulitis. What investigation is required before applying compression bandaging?
Your Answer: Ankle-brachial pressure index
Explanation:Venous Ulceration and the Importance of Identifying Arterial Disease
Venous ulcerations are a common type of ulcer that affects the lower extremities. The underlying cause of venous congestion, which can promote ulceration, is venous insufficiency. The treatment for venous ulceration involves controlling oedema, treating any infection, and compression. However, compressive dressings or devices should not be applied if the arterial circulation is impaired. Therefore, it is crucial to identify any arterial disease, and the ankle-brachial pressure index is a simple way of doing this. If indicated, one may progress to a lower limb arteriogram.
It is important to note that there is no clinical sign of infection, and although a bacterial swab would help to rule out pathogens within the ulcer, arterial insufficiency is the more important issue. If there is a clinical suspicion of DVT, then duplex (or rarely a venogram) is indicated to decide on the indication for anticoagulation. By identifying arterial disease, healthcare professionals can ensure that appropriate treatment is provided and avoid potential complications from compressive dressings or devices.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 19
Correct
-
A 72-year-old man arrives at the emergency department with severe chest pain that spreads to his left arm and jaw. After conducting an ECG, you observe ST-segment elevation in leads I, aVL, and V4-V6, leading to a diagnosis of anterolateral ST-elevation MI. What is the primary artery that provides blood to the lateral region of the left ventricle?
Your Answer: Left circumflex artery
Explanation:When the right coronary artery is blocked, it can lead to inferior myocardial infarction (MI) and changes in leads II, III, and aVF on an electrocardiogram (ECG). This is because the right coronary artery typically supplies blood to the sinoatrial (SA) and atrioventricular (AV) nodes, which can result in arrhythmias. The right marginal artery, which branches off from the right coronary artery near the bottom of the heart, runs along the heart’s lower edge towards the apex.
The following table displays the relationship between ECG changes and the affected coronary artery territories. Anteroseptal changes in V1-V4 indicate involvement of the left anterior descending artery, while inferior changes in II, III, and aVF suggest the right coronary artery is affected. Anterolateral changes in V4-6, I, and aVL may indicate involvement of either the left anterior descending or left circumflex artery, while lateral changes in I, aVL, and possibly V5-6 suggest the left circumflex artery is affected. Posterior changes in V1-3 may indicate a posterior infarction, which is typically caused by the left circumflex artery but can also be caused by the right coronary artery. Reciprocal changes of STEMI are often seen as horizontal ST depression, tall R waves, upright T waves, and a dominant R wave in V2. Posterior infarction is confirmed by ST elevation and Q waves in posterior leads (V7-9), usually caused by the left circumflex artery but also possibly the right coronary artery. It is important to note that a new LBBB may indicate acute coronary syndrome.
Diagram showing the correlation between ECG changes and coronary territories in acute coronary syndrome.
-
This question is part of the following fields:
- Cardiovascular System
-
-
Question 20
Correct
-
A 50-year-old man is undergoing a benign tumour resection via an anterior skull base approach. The consultant neurosurgeon is being assisted by a surgical trainee. The artery being compressed by the tumour is challenging to identify, but the ophthalmic artery is observed to branch off from it. What is the name of the artery being compressed?
Your Answer: Internal carotid artery
Explanation:The ophthalmic artery originates from the internal carotid artery, while the vertebral artery gives rise to the posterior inferior cerebellar artery. The internal carotid artery also has other branches, which can be found in the attached notes. Similarly, the basilar artery has its own set of branches.
The Circle of Willis is an anastomosis formed by the internal carotid arteries and vertebral arteries on the bottom surface of the brain. It is divided into two halves and is made up of various arteries, including the anterior communicating artery, anterior cerebral artery, internal carotid artery, posterior communicating artery, and posterior cerebral arteries. The circle and its branches supply blood to important areas of the brain, such as the corpus striatum, internal capsule, diencephalon, and midbrain.
The vertebral arteries enter the cranial cavity through the foramen magnum and lie in the subarachnoid space. They then ascend on the anterior surface of the medulla oblongata and unite to form the basilar artery at the base of the pons. The basilar artery has several branches, including the anterior inferior cerebellar artery, labyrinthine artery, pontine arteries, superior cerebellar artery, and posterior cerebral artery.
The internal carotid arteries also have several branches, such as the posterior communicating artery, anterior cerebral artery, middle cerebral artery, and anterior choroid artery. These arteries supply blood to different parts of the brain, including the frontal, temporal, and parietal lobes. Overall, the Circle of Willis and its branches play a crucial role in providing oxygen and nutrients to the brain.
-
This question is part of the following fields:
- Cardiovascular System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)