-
Question 1
Incorrect
-
A 25-year-old man with a history of asthma since childhood visited his doctor for his routine check-up. He is planning to go on a hiking trip with his friends in a month and wants to ensure that it is safe for him. Can you describe the scenarios that accurately depict the hemoglobin saturation of blood and the ability of body tissues to extract oxygen from the blood in response to different situations?
Your Answer: The physical exertion of hiking will have no effect on the hemoglobin saturation of the blood leaving body tissues
Correct Answer: If the man is not able to breathe properly and, his blood carbon dioxide level increases, this will cause his body tissues to extract more oxygen from his blood
Explanation:Hypercapnia causes a shift in the oxygen dissociation curve to the right. This means that for the same partial pressure of oxygen, the hemoglobin saturation will be less. Other factors that can cause a right shift in the curve include high altitudes, anaerobic metabolism resulting in the production of lactic acid, physical activity, and an increase in temperature. These shifts allow the body tissues to extract more oxygen from the blood, resulting in a lower hemoglobin saturation of the blood leaving the body tissues. Carbon dioxide is also known to produce a right shift in the curve, further contributing to this effect.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 2
Incorrect
-
A 67-year-old man has been diagnosed with stage III lung cancer and is concerned about potential complications. What are the risks he may face?
Your Answer: Goodpasture's disease
Correct Answer: Pneumothorax
Explanation:Pneumothorax is more likely to occur in individuals with lung cancer.
Pneumothorax: Characteristics and Risk Factors
Pneumothorax is a medical condition characterized by the presence of air in the pleural cavity, which is the space between the lungs and the chest wall. This condition can occur spontaneously or as a result of trauma or medical procedures. There are several risk factors associated with pneumothorax, including pre-existing lung diseases such as COPD, asthma, cystic fibrosis, lung cancer, and Pneumocystis pneumonia. Connective tissue diseases like Marfan’s syndrome and rheumatoid arthritis can also increase the risk of pneumothorax. Ventilation, including non-invasive ventilation, can also be a risk factor.
Symptoms of pneumothorax tend to come on suddenly and can include dyspnoea, chest pain (often pleuritic), sweating, tachypnoea, and tachycardia. In some cases, catamenial pneumothorax can be the cause of spontaneous pneumothoraces occurring in menstruating women. This type of pneumothorax is thought to be caused by endometriosis within the thorax. Early diagnosis and treatment of pneumothorax are crucial to prevent complications and improve outcomes.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 3
Incorrect
-
An 80-year-old woman visits her doctor complaining of a persistent cough. She has been smoking 20 cigarettes a day for the past 30 years and is worried that this might be the reason for her symptom. The doctor diagnoses her with chronic obstructive pulmonary disease (COPD) which is likely caused by chronic bronchitis. Can you provide the definition of chronic bronchitis?
Your Answer: Chronic dry cough constantly for at least a year
Correct Answer: Chronic productive cough for at least 3 months in at least 2 years
Explanation:Chronic bronchitis is characterized by a persistent cough with sputum production for a minimum of 3 months in two consecutive years, after excluding other causes of chronic cough. Emphysema, on the other hand, is defined by the enlargement of air spaces beyond the terminal bronchioles. None of the remaining options are considered as definitions of COPD.
COPD, or chronic obstructive pulmonary disease, can be caused by a variety of factors. The most common cause is smoking, which can lead to inflammation and damage in the lungs over time. Another potential cause is alpha-1 antitrypsin deficiency, a genetic condition that can result in lung damage. Additionally, exposure to certain substances such as cadmium (used in smelting), coal, cotton, cement, and grain can also contribute to the development of COPD. It is important to identify and address these underlying causes in order to effectively manage and treat COPD.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 4
Correct
-
A 65-year-old man is having a left pneumonectomy for bronchogenic carcinoma. When the surgeons reach the root of the lung, which structure will be situated furthest back in the anatomical plane?
Your Answer: Vagus nerve
Explanation:At the lung root, the phrenic nerve is situated in the most anterior position while the vagus nerve is located at the posterior end.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 5
Incorrect
-
A 68-year-old man arrives at the Emergency Department complaining of sharp and stabbing central chest pain that radiates to his back, neck, and left shoulder. He reports feeling feverish and states that sitting forward relieves the pain while lying down worsens it. The patient also mentions a recent hospitalization for a heart attack three weeks ago. During auscultation at the left sternal border, a scratchy sound is heard while the patient leans forward and holds his breath. His ECG shows widespread ST-segment saddle elevation and PR-segment depression. Can you identify the nerve responsible for his shoulder pain?
Your Answer: Accessory nerve
Correct Answer: Phrenic nerve
Explanation:The referred pain to the shoulder in this case is likely caused by Dressler’s syndrome, a type of pericarditis that occurs after a heart attack. The scratchy sound heard during auscultation is a pericardial friction rub, which is a common characteristic of pericarditis. The phrenic nerve, which supplies the pericardium, travels from the neck down through the thoracic cavity and can cause referred pain to the shoulder in cases of pericarditis.
The axillary nerve is responsible for innervating the teres minor and deltoid muscles, and dysfunction of this nerve can result in loss of sensation or movement in the shoulder area.
While the accessory nerve does innervate muscles in the neck that attach to the shoulder, it has a purely motor function and is not responsible for sensory input. Additionally, the referred pain in this case is not typical of musculoskeletal pain, but rather a result of pericarditis.
Injuries involving the long thoracic nerve often result in winging of the scapula and are commonly caused by axillary surgery.
Although the vagus nerve does supply parasympathetic innervation to the heart, it is not responsible for the referred pain in this case, as the pericardium is innervated by the phrenic nerve.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 6
Correct
-
A 35-year-old female patient presents to the GP with complaints of headaches, nasal congestion, and facial pain that worsens upon leaning forward. Sinusitis is suspected. Which sinus is typically affected in this condition?
Your Answer: Maxillary
Explanation:The maxillary sinus is susceptible to infections due to its drainage from the top. This sinus is the most frequently affected in cases of sinusitis. While frontal sinusitis can lead to intracranial complications, it is still less common than maxillary sinusitis.
The petrosal sinus is not a bone cavity, but rather a venous structure situated beneath the brain.
Acute sinusitis is a condition where the mucous membranes of the paranasal sinuses become inflamed. This inflammation is usually caused by infectious agents such as Streptococcus pneumoniae, Haemophilus influenzae, and rhinoviruses. Certain factors can predispose individuals to this condition, including nasal obstruction, recent local infections, swimming/diving, and smoking. Symptoms of acute sinusitis include facial pain, nasal discharge, and nasal obstruction. Treatment options include analgesia, intranasal decongestants or nasal saline, and intranasal corticosteroids. Oral antibiotics may be necessary for severe presentations, but they are not typically required. In some cases, an initial viral sinusitis can worsen due to secondary bacterial infection, which is known as double-sickening.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 7
Incorrect
-
You are on call for the pediatric ward at night and are urgently called to a child who is choking on a piece of hot dog visible in their oropharynx. The child is in extremis with saturations of 87% and there is no effective cough.
What is the most appropriate immediate management for this pediatric patient?Your Answer: Finger sweep
Correct Answer: Back blows
Explanation:Resuscitation Council (UK) Recommendations for Choking Emergencies
When faced with a choking emergency, the Resuscitation Council (UK) recommends a specific course of action. If the patient is able to cough effectively, encourage them to do so. If not, but they are conscious, try five back blows followed by five abdominal thrusts (Heimlich manoeuvre) and repeat if necessary. However, if the patient becomes unconscious, begin CPR immediately. It is important to note that a finger sweep is no longer recommended as it can push the obstruction further into the airway. Additionally, high flow oxygen is necessary for breathing, but nasopharyngeal airways will not help in this situation. Removal with forceps is also not recommended as it can be hazardous. If the Heimlich manoeuvre fails, a cricothyroidotomy should be considered. While this procedure is recommended in the US and UK, it is not encouraged in some countries like Australia due to the risk of internal injury from over-vigorous use.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 8
Incorrect
-
A 29-year-old male is injured by a gunshot to his right chest resulting in a right haemothorax that requires a thoracotomy. During the procedure, the surgeons opt to use a vascular clamp to secure the hilum of the right lung. What structure will be positioned most anteriorly at this location?
Your Answer: Pulmonary artery
Correct Answer: Phrenic nerve
Explanation:At the base of the right lung, the phrenic nerve is located in the anterior position.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 9
Correct
-
A patient on the medical ward was waiting for a cardiac procedure. On discussing the procedure with the consultant before the procedure, the patient started to feel anxious and had difficulty breathing. The resident obtained an arterial blood gas:
pH 7.55
pCO2 2.7kPa
pO2 11.2kPa
HCO3 24mmol/l
What is the most appropriate interpretation of these results?Your Answer: Respiratory alkalosis
Explanation:The respiratory alkalosis observed in the arterial blood gas results is most likely a result of hyperventilation, as indicated by the patient’s medical history.
Arterial Blood Gas Interpretation: A 5-Step Approach
Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).
The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.
To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 10
Incorrect
-
Which one of the following is not a cause of increased anion gap acidosis?
Your Answer: Uraemia
Correct Answer: Acetazolamide
Explanation:Causes of anion gap acidosis can be remembered using the acronym MUDPILES, which stands for Methanol, Uraemia, DKA/AKA, Paraldehyde/phenformin, Iron/INH, Lactic acidosis, Ethylene glycol, and Salicylates.
Disorders of Acid-Base Balance
The acid-base nomogram is a useful tool for categorizing the various disorders of acid-base balance. Metabolic acidosis is the most common surgical acid-base disorder, characterized by a reduction in plasma bicarbonate levels. This can be caused by a gain of strong acid or loss of base, and is classified according to the anion gap. A normal anion gap indicates hyperchloraemic metabolic acidosis, which can be caused by gastrointestinal bicarbonate loss, renal tubular acidosis, drugs, or Addison’s disease. A raised anion gap indicates lactate, ketones, urate, or acid poisoning. Metabolic alkalosis, on the other hand, is usually caused by a rise in plasma bicarbonate levels due to a loss of hydrogen ions or a gain of bicarbonate. It is mainly caused by problems of the kidney or gastrointestinal tract. Respiratory acidosis is characterized by a rise in carbon dioxide levels due to alveolar hypoventilation, while respiratory alkalosis is caused by hyperventilation resulting in excess loss of carbon dioxide. These disorders have various causes, such as COPD, sedative drugs, anxiety, hypoxia, and pregnancy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 11
Correct
-
A 70-year-old man with lung cancer is having a left pneumonectomy. The left main bronchus is being divided. Which thoracic vertebrae is located behind this structure?
Your Answer: T6
Explanation:Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 12
Incorrect
-
A 70-year-old man visits a respiratory clinic complaining of shortness of breath even with minimal activity. Upon conducting a thorough assessment, you suspect that he may have idiopathic pulmonary fibrosis. To aid in your diagnosis, you decide to review his previous medical records. You come across the following spirometry results:
Measurement volume (ml)
Vital Capacity (VC) 4400
Inspiratory Reserve Volume (IRV) 3000
Functional Residual Capacity (FRC) 2800
Residual Volume (RV) 1200
What is the total lung capacity (TLC) of this patient?Your Answer: 7400ml
Correct Answer: 5600ml
Explanation:The correct answer is 5600ml, which represents the total lung capacity. This value is obtained by adding the vital capacity, which is the maximum amount of air that can be breathed out after a deep inhalation, to the residual volume, which is the amount of air that remains in the lungs after a maximal exhalation. The vital capacity is composed of three volumes: the inspiratory reserve volume, the tidal volume, and the expiratory reserve volume. Other formulas are available to calculate different lung volumes, but they are not as commonly used.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 13
Incorrect
-
Samantha is a 67-year-old woman who visits her doctor complaining of muscle weakness and blurred vision. She works as a librarian, drinks about 15 units of alcohol per week, and has smoked about 25 cigarettes a day for 35 years.
During the examination, her blood pressure is found to be elevated at 152/98 mmHg. There are reduced breath sounds over the area of the right lower lobe. Some of her blood test results are as follows:
- Hb 120 g/L (Female: 115-160)
- Platelets 420 * 109/L (150-400)
- WBC 9.1 * 109/L (4.0-11.0)
- Na+ 148 mmol/L (135-145)
- K+ 3.2 mmol/L (3.5-5.0)
- Urea 8.5 mmol/L (2.0-7.0)
- Creatinine 150 µmol/L (55-120)
- 24-hour urine free cortisol 260 ug/l (10-100)
- Glucose 17.8 mmol/l (4.0-7.0)
She mentions that, aside from a persistent cough due to smoking, which occasionally produces blood, she feels fine.
What is the most probable diagnosis?Your Answer: Squamous cell lung carcinoma
Correct Answer: Small cell lung carcinoma
Explanation:A small cell lung carcinoma that secretes ACTH can lead to Cushing’s syndrome, as seen in this patient. The history and examination findings suggest lung cancer, and the raised cortisol level can be explained by the paraneoplastic syndrome caused by ACTH release. Muscle weakness and blurred vision are typical symptoms of Cushing’s syndrome. Squamous cell lung carcinoma and adrenal adenoma are less likely causes, while Cushing’s disease is not applicable in this case.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 14
Incorrect
-
A 42-year-old man from Turkey visits his doctor complaining of chronic breathlessness and a dry cough that has been worsening over the past 7 months. He has no significant medical history except for an allergy to penicillin. He is a non-smoker and does not consume alcohol. He works as a taxi driver and lives alone, but he is an avid collector of exotic pigeons and enjoys a cup of coffee every morning. The doctor suspects that his symptoms may be due to exposure to what causes pigeon fancier's lung?
Your Answer: Mycobacterium avium
Correct Answer: Avian proteins
Explanation:Bird fanciers’ lung is caused by avian proteins found in bird droppings, which can lead to hypersensitivity pneumonitis. This is a type of pulmonary disorder that results from an inflammatory reaction to inhaling an allergen, which can be organic or inorganic particles such as animal or plant proteins, certain chemicals, or microbes. Similarly, other types of lung diseases such as tobacco worker’s lung, farmer’s lung, and hot tub lung are also caused by exposure to specific allergens in the environment.
Extrinsic allergic alveolitis, also known as hypersensitivity pneumonitis, is a condition that occurs when the lungs are damaged due to hypersensitivity to inhaled organic particles. This damage is thought to be caused by immune-complex mediated tissue damage, although delayed hypersensitivity may also play a role. Examples of this condition include bird fanciers’ lung, farmers lung, malt workers’ lung, and mushroom workers’ lung. Symptoms can be acute or chronic and include dyspnoea, dry cough, fever, lethargy, and weight loss. Diagnosis is made through imaging, bronchoalveolar lavage, and serologic assays for specific IgG antibodies. Management involves avoiding the triggering factors and oral glucocorticoids.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 15
Incorrect
-
A 54-year-old man complains of facial pain and discomfort during meals. He has been experiencing halitosis and a dry mouth. Additionally, he has a lump under his left mandible. What is the probable underlying diagnosis?
Your Answer: Adenocarcinoma of the submandibular gland
Correct Answer: Stone impacted in Whartons duct
Explanation:The signs are indicative of sialolithiasis, which usually involves the formation of stones in the submandibular gland and can block Wharton’s duct. Stensen’s duct, on the other hand, is responsible for draining the parotid gland.
Diseases of the Submandibular Glands
The submandibular glands are responsible for producing mixed seromucinous secretions, which can range from more serous to more mucinous depending on parasympathetic activity. These glands secrete approximately 800-1000ml of saliva per day, with parasympathetic fibers derived from the chorda tympani nerves and the submandibular ganglion. However, several conditions can affect the submandibular glands.
One such condition is sialolithiasis, which occurs when salivary gland calculi form in the submandibular gland. These stones are usually composed of calcium phosphate or calcium carbonate and can cause colicky pain and postprandial swelling of the gland. Sialography is used to investigate the site of obstruction and associated stones, with impacted stones in the distal aspect of Wharton’s duct potentially removed orally. However, other stones and chronic inflammation may require gland excision.
Sialadenitis is another condition that can affect the submandibular glands, usually as a result of Staphylococcus aureus infection. This can cause pus to leak from the duct and erythema to be noted. A submandibular abscess may develop, which is a serious complication as it can spread through other deep fascial spaces and occlude the airway.
Finally, submandibular tumors can also affect these glands, with only 8% of salivary gland tumors affecting the submandibular gland. Of these, 50% are malignant, usually adenoid cystic carcinoma. Diagnosis usually involves fine needle aspiration cytology, with imaging using CT and MRI. Due to the high prevalence of malignancy, all masses of the submandibular glands should generally be excised.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 16
Correct
-
A 70-year-old man presents with haemoptysis and undergoes a bronchoscopy. The carina is noted to be widened. Where does the trachea bifurcate?
Your Answer: T5
Explanation:The trachea divides into two branches at the fifth thoracic vertebrae, or sometimes the sixth in individuals who are tall.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 17
Incorrect
-
A 54-year-old man comes to the emergency department complaining of difficulty breathing. The results of his pulmonary function tests are as follows:
Reference Range
FVC (% predicted) 102 80-120
FEV1 (% predicted) 62 80-120
FEV1/FVC (%) 60.1 >70
TCLO (% predicted) 140 60-120
What is the probable reason for his symptoms?Your Answer: COPD exacerbation
Correct Answer: Asthma exacerbation
Explanation:The raised transfer factor suggests that the patient is experiencing an exacerbation of asthma. This condition can cause obstructive patterns on pulmonary function tests, leading to reduced FEV1 and FEV1/FVC, as well as hypoxia and wheezing. However, other conditions such as COPD exacerbation, idiopathic pulmonary fibrosis, and pulmonary embolism would result in a low transfer factor, and are therefore unlikely explanations for the patient’s symptoms.
Understanding Transfer Factor in Lung Function Testing
The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.
KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 18
Correct
-
A 57-year-old man comes to his GP complaining of worsening shortness of breath during physical activity over the past year. He has never smoked and reports no history of occupational exposure to asbestos, dust, or fumes. His BMI is calculated to be 40 kg/m². Upon examination, there is decreased chest expansion bilaterally, but the lungs are clear upon auscultation. The GP orders spirometry, which reveals a decreased expiratory reserve volume.
Can you provide the definition of this particular lung volume?Your Answer: Maximum volume of air that can be expired at the end of a normal tidal expiration
Explanation:The expiratory reserve volume refers to the maximum amount of air that can be exhaled after a normal breath out. It is important to note that this volume can be reduced in conditions that limit lung expansion, such as obesity and ascites. Obesity, in particular, can cause a restrictive pattern on spirometry, where the FEV1/FVC ratio is ≥0.8. Other restrictive lung conditions include idiopathic pulmonary fibrosis, pleural effusion, ascites, and neuromuscular disorders that limit chest expansion. On the other hand, obstructive disorders like asthma and COPD lead to a FEV1/FVC ratio of <0.7, limiting the amount of air that can be exhaled in one second. It is essential to understand the different lung volumes and capacities, including inspiratory reserve volume, tidal volume, expiratory reserve volume, residual volume, inspiratory capacity, vital capacity, functional residual capacity, and total lung capacity. Understanding Lung Volumes in Respiratory Physiology In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured. Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml. Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration. Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV. Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume. Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 19
Correct
-
A 25-year-old man presents to the Emergency department with acute onset of shortness of breath during a basketball game. He reports no history of trauma and is typically healthy. Upon examination, he appears tall and lean, and respiratory assessment reveals reduced breath sounds and hyper-resonant percussion notes on the right side. The trachea remains centrally located. A chest x-ray confirms a diagnosis of a collapsed lung due to a right-sided pneumothorax. What is the reason for the lung's failure to re-expand?
Your Answer: Increase in intrapleural pressure
Explanation:The process of lung expansion relies on the negative pressure in the intrapleural space between the visceral and parietal pleura, which is present throughout respiration. This negative pressure pulls the lung towards the chest wall, allowing it to expand. However, if air enters the intrapleural space, the negative pressure is lost and the lung cannot fully reinflate. It is important to note that the intrapleural space is a potential space between the pleural surfaces, and there is typically no actual space present under normal circumstances.
Management of Pneumothorax: BTS Guidelines
Pneumothorax is a condition where air accumulates in the pleural space, causing the lung to collapse. The British Thoracic Society (BTS) has published guidelines for the management of spontaneous pneumothorax, which can be primary or secondary. Primary pneumothorax occurs without any underlying lung disease, while secondary pneumothorax is associated with lung disease.
The BTS recommends that patients with a rim of air less than 2 cm and no shortness of breath may be discharged, while those with a larger rim of air or shortness of breath should undergo aspiration or chest drain insertion. For secondary pneumothorax, patients over 50 years old with a rim of air greater than 2 cm or shortness of breath should undergo chest drain insertion. Aspiration may be attempted for those with a rim of air between 1-2 cm, but chest drain insertion is recommended if aspiration fails.
Patients with iatrogenic pneumothorax, which is caused by medical procedures, have a lower likelihood of recurrence than those with spontaneous pneumothorax. Observation is usually sufficient, but chest drain insertion may be required in some cases. Ventilated patients and those with chronic obstructive pulmonary disease (COPD) may require chest drain insertion.
Patients with pneumothorax should be advised to avoid smoking to reduce the risk of further episodes. They should also be aware of restrictions on air travel and scuba diving. The CAA recommends a waiting period of two weeks after successful drainage before air travel, while the BTS advises against scuba diving unless the patient has undergone bilateral surgical pleurectomy and has normal lung function and chest CT scan postoperatively.
In summary, the BTS guidelines provide a comprehensive approach to the management of pneumothorax, taking into account the type of pneumothorax and the patient’s individual circumstances. Early intervention and appropriate follow-up can help prevent complications and improve outcomes.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 20
Incorrect
-
A 50-year-old woman comes to see you at the clinic with progressive muscle weakness, numbness, and tingling in her left arm. She reports experiencing neck and shoulder pain on the left side as well. She has no significant medical history and is generally healthy. She denies any recent injuries or trauma. Based on your clinical assessment, you suspect that she may have thoracic outlet syndrome.
What additional physical finding is most likely to confirm your suspicion of thoracic outlet syndrome in this patient?Your Answer: Flapping tremor of the wrist
Correct Answer: Absent radial pulse
Explanation:Compression of the subclavian artery by a cervical rib can result in an absent radial pulse, which is a common symptom of thoracic outlet syndrome. Adson’s test can be used to diagnose this condition, which can be mistaken for cervical radiculopathy. Flapping tremors are typically observed in patients with encephalopathy caused by liver failure or carbon dioxide retention. An irregular pulse may indicate an arrhythmia like atrial fibrillation or heart block. Aortic stenosis, which is characterized by an ejection systolic murmur, often causes older patients to experience loss of consciousness during physical activity. A bounding pulse, on the other hand, is a sign of strong myocardial contractions that may be caused by heart failure, arrhythmias, pregnancy, or thyroid disease.
Cervical ribs are a rare anomaly that affects only 0.2-0.4% of the population. They are often associated with neurological symptoms and are caused by an anomalous fibrous band that originates from the seventh cervical vertebrae and may arc towards the sternum. While most cases are congenital and present around the third decade of life, some cases have been reported to occur following trauma. Bilateral cervical ribs are present in up to 70% of cases. Compression of the subclavian artery can lead to absent radial pulse and a positive Adsons test, which involves lateral flexion of the neck towards the symptomatic side and traction of the symptomatic arm. Treatment is usually only necessary when there is evidence of neurovascular compromise, and the traditional operative method for excision is a transaxillary approach.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 21
Correct
-
A 19-year-old male presents to the emergency department with complaints of breathing difficulty. Upon examination, his chest appears normal, but his respiratory rate is 32 breaths per minute. The medical team suspects he may be experiencing a panic attack and subsequent hyperventilation. What impact will this have on his blood gas levels?
Your Answer: Respiratory alkalosis
Explanation:The patient is experiencing a respiratory alkalosis due to their hyperventilation, which is causing a decrease in carbon dioxide levels and resulting in an alkaline state.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 22
Correct
-
A respiratory specialist is conducting a bronchoscopy to determine a suitable biopsy for histological evaluation of suspected bronchial carcinoma in a pediatric patient.
While performing the procedure, the bronchoscope is erroneously inserted through the diaphragm at the T10 level.
Which structure is at the highest risk of being harmed as a result of this error?Your Answer: Oesophagus
Explanation:The oesophagus passes through the diaphragm at the level of T10 along with the vagal trunk, which is the most likely structure to have been damaged. The aorta, on the other hand, perforates the diaphragm at T12 and supplies oxygenated blood to the lower body, while the azygous vein also perforates the diaphragm at T12 and drains the right side of the thorax into the superior vena cava.
Structures Perforating the Diaphragm
The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.
To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 23
Correct
-
A patient is being anaesthetised for a minor bowel surgery. Sarah, a second year medical student is present and is asked to assist the anaesthetist during intubation. The anaesthetist inserts a laryngoscope in the patient's mouth and asks Sarah to identify the larynx.
Which one of the following anatomical landmarks corresponds to the position of the structure being identified by the student?Your Answer: C3-C6
Explanation:The larynx is located in the front of the neck, specifically at the level of the vertebrae C3-C6. This area also includes important anatomical landmarks such as the Atlas and Axis vertebrae (C1-C2), the thyroid cartilage (C5), and the pulmonary hilum (T5-T7).
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 24
Correct
-
The pressure within the pleural space is positive with respect to atmospheric pressure, in which of the following scenarios?
Your Answer: During a Valsalva manoeuvre
Explanation:Extrinsic compression causes an increase in intrapleural pressure during a Valsalva manoeuvre.
Understanding Pleural Pressure
Pleural pressure refers to the pressure surrounding the lungs within the pleural space. The pleura is a thin membrane that invests the lungs and lines the walls of the thoracic cavity. The visceral pleura covers the lung, while the parietal pleura covers the chest wall. The two sides are continuous and meet at the hilum of the lung. The size of the lung is determined by the difference between the alveolar pressure and the pleural pressure, or the transpulmonary pressure.
During quiet breathing, the pleural pressure is negative, meaning it is below atmospheric pressure. However, during active expiration, the abdominal muscles contract to force up the diaphragm, resulting in positive pleural pressure. This may temporarily collapse the bronchi and cause limitation of air flow.
Gravity affects pleural pressure, with the pleural pressure at the base of the lung being greater (less negative) than at its apex in an upright individual. When lying on the back, the pleural pressure becomes greatest along the back. Alveolar pressure is uniform throughout the lung, so the top of the lung generally experiences a greater transpulmonary pressure and is therefore more expanded and less compliant than the bottom of the lung.
In summary, understanding pleural pressure is important in understanding lung function and how it is affected by various factors such as gravity and muscle contraction.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 25
Correct
-
A 75-year-old man presents with a 2-month history of progressive shortness of breath and a recent episode of coughing up blood in the morning. He has also experienced significant weight loss of over 12 lbs and loss of appetite. Upon physical examination, conjunctival pallor is noted. The patient has a 30 pack year history of smoking. A chest x-ray reveals a mediastinal mass and ipsilateral elevation of the right diaphragm. What structure is being compressed by the mediastinal mass to explain these findings?
Your Answer: Phrenic nerve
Explanation:Lung cancer can cause the hemidiaphragm on the same side to rise due to pressure on the phrenic nerve. Haemoptysis is a common symptom of lung cancer, along with significant weight loss and a history of smoking. A chest x-ray can confirm the presence of a mediastinal mass, which is likely to be lung cancer.
A rapidly expanding lung mass can cause compression of surrounding structures, leading to complications. For example, an apical tumor can compress the brachial plexus, causing sensory symptoms in the arms or Erb’s or Klumpke’s palsies. Compression of the cervical sympathetic chain can cause Horner’s syndrome, which includes meiosis, anhidrosis, ptosis, and enophthalmos.
A mediastinal mass can also compress the recurrent laryngeal nerve as it winds around the aortic arch, resulting in hoarseness of voice or aphonia. Superior vena caval syndrome is a medical emergency that can cause swelling of the face, neck, upper chest, and arms, as well as the development of collaterals on the chest wall. Malignancy is the most common cause, but non-malignant causes can include an aortic aneurysm, fibrosing mediastinitis, or iatrogenic factors.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 26
Incorrect
-
What is the anatomical level of the transpyloric plane?
Your Answer: L4
Correct Answer: L1
Explanation:The Transpyloric Plane and its Anatomical Landmarks
The transpyloric plane is an imaginary horizontal line that passes through the body of the first lumbar vertebrae (L1) and the pylorus of the stomach. It is an important anatomical landmark used in clinical practice to locate various organs and structures in the abdomen.
Some of the structures that lie on the transpyloric plane include the left and right kidney hilum (with the left one being at the same level as L1), the fundus of the gallbladder, the neck of the pancreas, the duodenojejunal flexure, the superior mesenteric artery, and the portal vein. The left and right colic flexure, the root of the transverse mesocolon, and the second part of the duodenum also lie on this plane.
In addition, the upper part of the conus medullaris (the tapered end of the spinal cord) and the spleen are also located on the transpyloric plane. Knowing the location of these structures is important for various medical procedures, such as abdominal surgeries and diagnostic imaging.
Overall, the transpyloric plane serves as a useful reference point for clinicians to locate important anatomical structures in the abdomen.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 27
Incorrect
-
A 28-year-old man is found on his bathroom floor next to needles and syringes and is brought into the hospital. He has a Glasgow coma score of 10 and a bedside oxygen saturation of 88%. On physical examination, he has pinpoint pupils and needle track marks on his left arm. His arterial blood gases are as follows: PaO2 7.4 kPa (11.3-12.6), PaCO2 9.6 kPa (4.7-6.0), pH 7.32 (7.36-7.44), and HCO3 25 mmol/L (20-28). What do these results indicate?
Your Answer: Acute type I respiratory failure
Correct Answer: Acute type II respiratory failure
Explanation:Opiate Overdose
Opiate overdose is a common occurrence that can lead to slowed breathing, inadequate oxygen saturation, and CO2 retention. This classic picture of opiate overdose can be reversed with the use of naloxone. The condition is often caused by the use of illicit drugs and can have serious consequences if left untreated.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 28
Incorrect
-
What is the embryonic origin of the pulmonary artery?
Your Answer: Fourth pharyngeal arch
Correct Answer: Sixth pharyngeal arch
Explanation:The right pulmonary artery originates from the proximal portion of the sixth pharyngeal arch on the right side, while the distal portion of the same arch gives rise to the left pulmonary artery and the ductus arteriosus.
The Development and Contributions of Pharyngeal Arches
During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.
Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.
Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 29
Incorrect
-
A 29-year-old man visits his GP with a complaint of a persistent cough. He reports coughing up large amounts of yellow sputum and occasionally blood on a daily basis for the past few years. Lately, he has noticed that his clothes seem loose on him and he frequently feels fatigued.
What is the most probable underlying condition responsible for this patient's symptoms?Your Answer: Goodpasture's disease
Correct Answer: Kartagener's syndrome
Explanation:Kartagener’s syndrome is a condition that can lead to bronchiectasis due to a defect in the cilia, which impairs the lungs’ ability to clear mucus. Bronchiectasis is diagnosed when a person produces large amounts of sputum daily, experiences haemoptysis, and loses weight. While other conditions may cause tiredness, weight loss, or haemoptysis, they are not typically associated with bronchiectasis.
Understanding Kartagener’s Syndrome
Kartagener’s syndrome, also known as primary ciliary dyskinesia, is a rare genetic disorder that was first described in 1933. It is often associated with dextrocardia, which can be detected through quiet heart sounds and small volume complexes in lateral leads during examinations. The pathogenesis of Kartagener’s syndrome is caused by a dynein arm defect, which results in immotile cilia.
The features of Kartagener’s syndrome include dextrocardia or complete situs inversus, bronchiectasis, recurrent sinusitis, and subfertility. The latter is due to diminished sperm motility and defective ciliary action in the fallopian tubes. It is important to note that Kartagener’s syndrome is a rare disorder, and diagnosis can be challenging. However, early detection and management can help improve the quality of life for those affected by this condition.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 30
Incorrect
-
A 38-year-old male presents to the hospital with recurrent nose bleeds, joint pain, chronic sinusitis, and haemoptysis for the past 3 days. During the examination, the doctor observes a saddle-shaped nose and a necrotic, purpuric, and blistering plaque on his wrist. The patient reports that he had a small blister a few weeks ago, which has now progressed to this. The blood test results suggest a possible diagnosis of granulomatosis with polyangiitis, and the patient is referred for a renal biopsy. What biopsy findings would confirm the suspected diagnosis?
Your Answer: Lobular accentuation of enlarged glomeruli with mesangial hypercellularity
Correct Answer: Epithelial crescents in Bowman's capsule
Explanation:Glomerulonephritis is a condition that affects the kidneys and can present with various pathological changes. In rapidly progressive glomerulonephritis, patients may present with respiratory tract symptoms and cutaneous manifestations of vasculitis. Renal biopsy will show epithelial crescents in Bowman’s capsule, indicating severe glomerular injury. Mesangioproliferative glomerulonephritis is characterized by a diffuse increase in mesangial cells and is not associated with respiratory tract symptoms or cutaneous manifestations of vasculitis. Membranoproliferative glomerulonephritis involves deposits in the intraglomerular mesangium and is associated with activation of the complement pathway and glomerular damage. It is unlikely to be the diagnosis in the scenario as it is not associated with vasculitis symptoms. A normal nephron architecture would not explain the patient’s symptoms and is an incorrect answer.
Granulomatosis with Polyangiitis: An Autoimmune Condition
Granulomatosis with polyangiitis, previously known as Wegener’s granulomatosis, is an autoimmune condition that affects the upper and lower respiratory tract as well as the kidneys. It is characterized by a necrotizing granulomatous vasculitis. The condition presents with various symptoms such as epistaxis, sinusitis, nasal crusting, dyspnoea, haemoptysis, and rapidly progressive glomerulonephritis. Other symptoms include a saddle-shape nose deformity, vasculitic rash, eye involvement, and cranial nerve lesions.
To diagnose granulomatosis with polyangiitis, doctors perform various investigations such as cANCA and pANCA tests, chest x-rays, and renal biopsies. The cANCA test is positive in more than 90% of cases, while the pANCA test is positive in 25% of cases. Chest x-rays show a wide variety of presentations, including cavitating lesions. Renal biopsies reveal epithelial crescents in Bowman’s capsule.
The management of granulomatosis with polyangiitis involves the use of steroids, cyclophosphamide, and plasma exchange. Cyclophosphamide has a 90% response rate. The median survival rate for patients with this condition is 8-9 years.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 31
Incorrect
-
A 65-year-old man visits his doctor complaining of a productive cough and difficulty breathing for the past 10 days. The doctor prescribes antibiotics, but after a week, the patient's symptoms persist and he develops a fever and pain when breathing in. The doctor orders a chest x-ray, which indicates the presence of an empyema. What is the probable causative agent responsible for this condition?
Your Answer: Listeria monocytogenes
Correct Answer: Streptococcus pneumoniae
Explanation:An accumulation of pus in the pleural space, known as empyema, is a possible complication of pneumonia and is responsible for the patient’s pleurisy. Streptococcus pneumoniae, the most frequent cause of pneumonia, is also the leading cause of empyema.
Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.
Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.
Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 32
Incorrect
-
A 42-year-old male patient comes to the clinic complaining of shoulder weakness. During the examination, it is observed that he cannot initiate shoulder abduction. Which of the following nerves is most likely to be dysfunctional?
Your Answer: Medial pectoral nerve
Correct Answer: Suprascapular nerve
Explanation:The Suprascapular Nerve and its Function
The suprascapular nerve is a nerve that originates from the upper trunk of the brachial plexus. It is located superior to the trunks of the brachial plexus and runs parallel to them. The nerve passes through the scapular notch, which is located deep to the trapezius muscle. Its main function is to innervate both the supraspinatus and infraspinatus muscles, which are responsible for initiating abduction of the shoulder.
If the suprascapular nerve is damaged, patients may experience difficulty in initiating abduction of the shoulder. However, they may still be able to abduct the shoulder by leaning over the affected side, as the deltoid muscle can then continue to abduct the shoulder. Overall, the suprascapular nerve plays an important role in the movement and function of the shoulder joint.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 33
Correct
-
Which of the structures listed below are not located within the mediastinum?
Your Answer: Vertebral bodies
Explanation:Both the lungs and vertebral bodies are located outside of the mediastinum.
The mediastinum is the area located between the two pulmonary cavities and is covered by the mediastinal pleura. It extends from the thoracic inlet at the top to the diaphragm at the bottom. The mediastinum is divided into four regions: the superior mediastinum, middle mediastinum, posterior mediastinum, and anterior mediastinum.
The superior mediastinum is the area between the manubriosternal angle and T4/5. It contains important structures such as the superior vena cava, brachiocephalic veins, arch of aorta, thoracic duct, trachea, oesophagus, thymus, vagus nerve, left recurrent laryngeal nerve, and phrenic nerve. The anterior mediastinum contains thymic remnants, lymph nodes, and fat. The middle mediastinum contains the pericardium, heart, aortic root, arch of azygos vein, and main bronchi. The posterior mediastinum contains the oesophagus, thoracic aorta, azygos vein, thoracic duct, vagus nerve, sympathetic nerve trunks, and splanchnic nerves.
In summary, the mediastinum is a crucial area in the thorax that contains many important structures and is divided into four regions. Each region contains different structures that are essential for the proper functioning of the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 34
Correct
-
A 26-year-old man is brought to the emergency department after being rescued at sea following a sailing accident. He is currently unresponsive with a Glasgow Coma Score of 9 (E2 V3 M4).
His vital signs include a heart rate of 110 beats per minute, blood pressure of 110/76 mmHg, oxygen saturation of 93%, and temperature of 34.8 ºC. An ECG is unremarkable and venous blood indicates type 2 respiratory failure. The patient's oxygen dissociation curve shows a leftward shift.
What is the cause of the leftward shift in this 26-year-old patient's oxygen dissociation curve?Your Answer: Hypothermia
Explanation:The only answer that causes a leftward shift in the oxygen dissociation curve is hypothermia. When tissues undergo aerobic respiration, they generate heat, which changes the shape of the haemoglobin molecule and reduces its affinity for oxygen. This results in the release of oxygen at respiring tissues. In contrast, lower temperatures in the lungs cause a leftward shift in the oxygen dissociation curve, which increases the binding of oxygen to haemoglobin.
Hypercapnia is not the correct answer because it causes a rightward shift in the oxygen dissociation curve. Hypercapnia lowers blood pH, which changes the shape of haemoglobin and reduces its affinity for oxygen.
Hypoxaemia is not the correct answer because the partial pressure of oxygen does not affect the oxygen dissociation curve. The partial pressure of oxygen does not change the affinity of haemoglobin for oxygen.
Increased concentration of 2,3-diphosphoglycerate (2,3-DPG) is not the correct answer because higher concentrations of 2,3-DPG reduce haemoglobin’s affinity for oxygen, causing a right shift in the oxygen dissociation curve.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 35
Incorrect
-
A 45-year-old man presents to the emergency department with fever, productive cough, and shortness of breath. He has no medical history and takes no regular medications.
Upon examination, coarse crackles and bronchial breathing are heard at the right lung base.
Chest radiography reveals consolidation in the lower right zone.
Arterial blood gas results are as follows:
pH 7.36 (7.35-7.45)
pO2 7.2 kPa (11-13)
pCO2 4.1 kPa (4-6)
SaO2 87% (94-98)
Based on the likely diagnosis, what is the expected initial physiological response?Your Answer: Reduced tidal volume
Correct Answer: Vasoconstriction of the pulmonary arteries
Explanation:When hypoxia is present, the pulmonary arteries undergo vasoconstriction, which is the appropriate response. The patient is exhibiting symptoms of pneumonia and type 1 respiratory failure, as evidenced by clinical and radiographic findings. Vasoconstriction of the small pulmonary arteries helps to redirect blood flow from poorly ventilated regions of the lung to those with better ventilation, resulting in improved gas exchange efficiency between the alveoli and blood.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 36
Incorrect
-
A 35-year-old woman presents with sudden chest pain and difficulty breathing. She recently returned from a trip to Italy with her family. She has no significant medical history but takes oral contraceptives. On examination, her pulse is 100 bpm, temperature is 37°C, oxygen saturation is 95%, respiratory rate is 28/min, and blood pressure is 116/76 mmHg. Chest examination is unremarkable and chest x-ray is normal. What is the most appropriate diagnostic test to confirm the diagnosis?
Your Answer: ECG
Correct Answer: CT pulmonary angiogram (CTPA)
Explanation:Diagnosis of Pulmonary Embolism in a Woman with Chest Pain and Dyspnoea
This woman is experiencing chest pain and difficulty breathing, with a rapid heart rate and breathing rate. However, there are no visible signs on chest examination and her chest x-ray appears normal. Despite having no fever, her oxygen levels are lower than expected for a healthy person. To rule out a pulmonary embolism, doctors must consider risk factors such as recent air travel and use of oral contraceptives.
The gold standard for diagnosing a pulmonary embolism is a CT pulmonary angiogram, as it can detect even large saddle embolus near the pulmonary arteries. While VQ scanning was previously used, it can miss these larger emboli. Additionally, doctors may perform Doppler ultrasounds of the venous system to check for deep vein thrombosis.
This presentation is not indicative of atypical pneumonia, such as Legionella, as the patient’s temperature would be expected to be high and chest signs would be present. Overall, a thorough evaluation is necessary to accurately diagnose and treat a pulmonary embolism in a patient with chest pain and dyspnoea.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 37
Incorrect
-
A 9-month-old infant comes to your clinic with her mother who is concerned about her irritability, lack of appetite, and unusual behavior. The baby has been crying excessively and having trouble sleeping. The mother also noticed her pulling at her right ear. Upon examination, the baby appears tired but not sick and has no fever. During otoscopy, you observe erythema in the external auditory canal, but the tympanic membrane looks normal. Can you identify the correct order of the ossicles from lateral to medial as sound is transmitted?
Your Answer: Stapes, malleus, incus.
Correct Answer: Malleus, incus, stapes.
Explanation:The correct order of the three middle ear bones is malleus, incus, and stapes, with the malleus being the most lateral and attaching to the tympanic membrane. The incus lies between the other two bones and articulates with both the malleus and stapes, while the stapes is the most medial and has a stirrup-like shape, connecting to the oval window of the cochlea. When a young child presents with ear pain, it may not be obvious, so it is important to use an otoscope to examine the ears. In this case, the otoscopy showed redness in the external auditory canal, indicating otitis externa.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 38
Correct
-
What is the term used to describe the area between the vocal cords?
Your Answer: Rima glottidis
Explanation:The narrowest part of the laryngeal cavity is known as the rima glottidis.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 39
Incorrect
-
A 45-year-old businessman is admitted to the emergency department with suspected pneumonia following a lower respiratory tract infection. The patient had returned to the UK three days ago from a business trip to China. He reports experiencing a productive cough and feeling extremely fatigued and short of breath upon waking up. He has no significant medical history and is a non-smoker and non-drinker.
He is taken for a chest X-ray, where he learns that several of his colleagues who were on the same business trip have also been admitted to the emergency department with similar symptoms. The X-ray shows opacification in the right middle and lower zones, indicating consolidation. Initial blood tests reveal hyponatraemia and lymphopenia. Based on his presentation and X-ray findings, he is diagnosed with pneumonia.
Which organism is most likely responsible for causing his pneumonia?Your Answer: Streptococcus pneumoniae
Correct Answer: Legionella pneumophila
Explanation:If multiple individuals in an air conditioned space develop pneumonia, Legionella pneumophila should be considered as a possible cause. Legionella pneumophila is often associated with hyponatremia and lymphopenia. Haemophilus influenzae is a frequent cause of lower respiratory tract infections in patients with COPD. Klebsiella pneumoniae is commonly found in patients with alcohol dependence. Pneumocystis jiroveci is typically observed in HIV-positive patients and is characterized by a dry cough and desaturation during exercise.
Pneumonia is a common condition that affects the alveoli of the lungs, usually caused by a bacterial infection. Other causes include viral and fungal infections. Streptococcus pneumoniae is the most common organism responsible for pneumonia, accounting for 80% of cases. Haemophilus influenzae is common in patients with COPD, while Staphylococcus aureus often occurs in patients following influenzae infection. Mycoplasma pneumoniae and Legionella pneumophilia are atypical pneumonias that present with dry cough and other atypical symptoms. Pneumocystis jiroveci is typically seen in patients with HIV. Idiopathic interstitial pneumonia is a group of non-infective causes of pneumonia.
Patients who develop pneumonia outside of the hospital have community-acquired pneumonia (CAP), while those who develop it within hospitals are said to have hospital-acquired pneumonia. Symptoms of pneumonia include cough, sputum, dyspnoea, chest pain, and fever. Signs of systemic inflammatory response, tachycardia, reduced oxygen saturations, and reduced breath sounds may also be present. Chest x-ray is used to diagnose pneumonia, with consolidation being the classical finding. Blood tests, such as full blood count, urea and electrolytes, and CRP, are also used to check for infection.
Patients with pneumonia require antibiotics to treat the underlying infection and supportive care, such as oxygen therapy and intravenous fluids. Risk stratification is done using a scoring system called CURB-65, which stands for confusion, respiration rate, blood pressure, age, and is used to determine the management of patients with community-acquired pneumonia. Home-based care is recommended for patients with a CRB65 score of 0, while hospital assessment is recommended for all other patients, particularly those with a CRB65 score of 2 or more. The CURB-65 score also correlates with an increased risk of mortality at 30 days.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 40
Correct
-
A 50-year-old woman with a recent diagnosis of COPD is admitted to the hospital for treatment of an exacerbation caused by infection. She reports smoking 10 cigarettes per day and has a family history of lung cancer. Her chest x-ray shows signs of emphysema, and she mentions that her parents and siblings also have the disease. She asks for advice on the best course of action to improve her prognosis.
Your Answer: Stop smoking
Explanation:The most crucial step to enhance the patient’s prognosis is to assist them in quitting smoking. While lung reduction surgery and long-term oxygen therapy may benefit certain patient groups, smoking cessation remains the top priority. Proper inhaler technique and adherence, as well as the use of home nebulizers, can provide symptomatic relief for the patient.
The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.
Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.
If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.
NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.
Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers
-
This question is part of the following fields:
- Respiratory System
-
-
Question 41
Correct
-
A 65-year-old male with a history of chronic obstructive pulmonary disease (COPD) has been admitted and treated for infective exacerbations of COPD three times in the past year. Despite his respiratory issues, he continues to smoke. He is currently receiving only short-acting beta2-agonist therapy. During his COPD patient review with the nurse practitioner at his local general practice, spirometry results reveal a drop in his FEV1 from 65% to 58%.
What is the most effective approach to manage his condition and prevent further decline in his FEV1?Your Answer: Smoking cessation
Explanation:The most effective intervention to slow the decrease in FEV1 experienced by patients with COPD is to stop smoking. If the patient has no asthmatic/steroid-responsive features, the next step in management would be to add a long-acting beta2-agonist (LABA) and a long-acting muscarinic antagonist. If the patient has asthmatic/steroid-responsive features, the next step would be to add a LABA and an inhaled corticosteroid. Oral theophylline is only considered if inhaled therapy is not possible, and oral prednisolone is only used during acute infective exacerbations of COPD to help with inflammation and is not a long-term solution to slow the reduction of FEV1.
The National Institute for Health and Care Excellence (NICE) updated its guidelines on the management of chronic obstructive pulmonary disease (COPD) in 2018. The guidelines recommend general management strategies such as smoking cessation advice, annual influenzae vaccination, and one-off pneumococcal vaccination. Pulmonary rehabilitation is also recommended for patients who view themselves as functionally disabled by COPD.
Bronchodilator therapy is the first-line treatment for patients who remain breathless or have exacerbations despite using short-acting bronchodilators. The next step is determined by whether the patient has asthmatic features or features suggesting steroid responsiveness. NICE suggests several criteria to determine this, including a previous diagnosis of asthma or atopy, a higher blood eosinophil count, substantial variation in FEV1 over time, and substantial diurnal variation in peak expiratory flow.
If the patient does not have asthmatic features or features suggesting steroid responsiveness, a long-acting beta2-agonist (LABA) and long-acting muscarinic antagonist (LAMA) should be added. If the patient is already taking a short-acting muscarinic antagonist (SAMA), it should be discontinued and switched to a short-acting beta2-agonist (SABA). If the patient has asthmatic features or features suggesting steroid responsiveness, a LABA and inhaled corticosteroid (ICS) should be added. If the patient remains breathless or has exacerbations, triple therapy (LAMA + LABA + ICS) should be offered.
NICE only recommends theophylline after trials of short and long-acting bronchodilators or to people who cannot use inhaled therapy. Azithromycin prophylaxis is recommended in select patients who have optimised standard treatments and continue to have exacerbations. Mucolytics should be considered in patients with a chronic productive cough and continued if symptoms improve.
Cor pulmonale features include peripheral oedema, raised jugular venous pressure, systolic parasternal heave, and loud P2. Loop diuretics should be used for oedema, and long-term oxygen therapy should be considered. Smoking cessation, long-term oxygen therapy in eligible patients, and lung volume reduction surgery in selected patients may improve survival in patients with stable COPD. NICE does not recommend the use of ACE-inhibitors, calcium channel blockers, or alpha blockers
-
This question is part of the following fields:
- Respiratory System
-
-
Question 42
Correct
-
A 19-year-old male is admitted with acute asthma. He has been treated with steroid, bronchodilators and 15 l/min of oxygen.
His pulse rate is 125/min, oxygen saturation 89%, respiratory rate 24/min, blood pressure 140/88 mmHg and he has a peak flow rate of 150 l/min. On auscultation of his chest, he has bilateral wheezes.
Arterial blood gas (ABG) result taken on 15 l/min oxygen shows:
pH 7.42 (7.36-7.44)
PaO2 8.4 kPa (11.3-12.6)
PaCO2 5.3 kPa (4.7-6.0)
Standard HCO3 19 mmol/L (20-28)
Base excess −4 (+/-2)
Oxygen saturation 89%
What is the most appropriate action for this man?Your Answer: Call ITU to consider intubation
Explanation:Urgent Need for Ventilation in Life-Threatening Asthma
This patient is experiencing life-threatening asthma with a dangerously low oxygen saturation level of less than 92%. Despite having a normal PaCO2 level, the degree of hypoxia is inappropriate and requires immediate consideration for ventilation. The arterial blood gas (ABG) result is consistent with the clinical presentation, making a venous blood sample unnecessary. Additionally, the ABG and bedside oxygen saturation readings are identical, indicating an arterialised sample.
It is crucial to note that in cases of acute asthma, reducing the amount of oxygen below the maximum available is not recommended. Hypoxia can be fatal and must be addressed promptly. Therefore, urgent intervention is necessary to ensure the patient’s safety and well-being.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 43
Correct
-
A 38-year-old woman visits her GP with a solitary, painless tumour in her left cheek. Upon further examination, she is diagnosed with pleomorphic adenoma. What is the recommended management for this condition?
Your Answer: Surgical resection
Explanation:Surgical resection is the preferred treatment for pleomorphic adenoma, a benign tumor of the parotid gland that may undergo malignant transformation. Chemotherapy and radiotherapy are not effective in managing this condition. Additionally, salivary stone removal is not relevant to the treatment of pleomorphic adenoma.
Understanding Pleomorphic Adenoma
Pleomorphic adenoma, also known as a benign mixed tumour, is a non-cancerous growth that commonly affects the parotid gland. This type of tumour usually develops in individuals aged 40 to 60 years old. The condition is characterized by the proliferation of epithelial and myoepithelial cells of the ducts, as well as an increase in stromal components. The tumour is slow-growing, lobular, and not well encapsulated.
The clinical features of pleomorphic adenoma include a gradual onset of painless unilateral swelling of the parotid gland. The swelling is typically movable on examination rather than fixed. The management of pleomorphic adenoma involves surgical excision. The prognosis is generally good, with a recurrence rate of 1-5% with appropriate excision (parotidectomy). However, recurrence may occur due to capsular disruption during surgery. If left untreated, pleomorphic adenoma may undergo malignant transformation, occurring in 2-10% of adenomas observed for long periods. Carcinoma ex-pleomorphic adenoma is the most common type of malignant transformation, occurring most frequently as adenocarcinoma.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 44
Correct
-
A 44-year-old male singer visits his GP complaining of a hoarse voice that has persisted for a few weeks. He first noticed it after his thyroidectomy. Upon reviewing his post-thyroidectomy report, it was noted that he experienced a complication related to external laryngeal nerve injury. Which muscle's loss of innervation could be responsible for this patient's symptoms?
Your Answer: Cricothyroid
Explanation:The external laryngeal nerve is responsible for innervating the cricothyroid muscle. If this nerve is injured, it can result in paralysis of the cricothyroid muscle, which is often referred to as the tuning fork of the larynx. This can cause hoarseness in the patient. However, over time, the other muscles will compensate for the paralysis, and the hoarseness will improve. It is important to note that the recurrent laryngeal nerve is responsible for innervating the rest of the muscles.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 45
Incorrect
-
A patient in her 50s undergoes spirometry, during which she is instructed to perform a maximum forced exhalation following a maximum inhalation. The volume of exhaled air is measured. What is the term used to describe the difference between this volume and her total lung capacity?
Your Answer: Vital capacity
Correct Answer: Residual volume
Explanation:The total lung capacity can be calculated by adding the vital capacity and residual volume. The expiratory reserve volume refers to the amount of air that can be exhaled after a normal breath compared to a maximal exhalation. The functional residual capacity is the amount of air remaining in the lungs after a normal exhalation. The inspiratory reserve volume is the difference between the amount of air in the lungs after a normal breath and a maximal inhalation. The residual volume is the amount of air left in the lungs after a maximal exhalation, which is the difference between the total lung capacity and vital capacity. The vital capacity is the maximum amount of air that can be inhaled and exhaled, measured by the volume of air exhaled after a maximal inhalation.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 46
Correct
-
A 35-year-old man is stabbed in the right chest and requires a thoracotomy. During the procedure, the right lung is mobilized and the pleural reflection at the lung hilum is opened. Which of the following structures is not located in this area?
Your Answer: Azygos vein
Explanation:The pulmonary ligament extends from the pleural reflections surrounding the hilum of the lung and covers the pulmonary vessels and bronchus. However, it does not contain the azygos vein.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 47
Correct
-
An anxious father brings his 6-month-old to the out of hours GP. The baby has been coughing persistently for the past 2 days and it seems to be getting worse. He also has a runny nose and an audible wheeze. The GP diagnoses bronchiolitis.
What is the most probable causative organism in this case?Your Answer: Respiratory syncytial virus
Explanation:Understanding Bronchiolitis
Bronchiolitis is a condition that is characterized by inflammation of the bronchioles. It is a serious lower respiratory tract infection that is most common in children under the age of one year. The pathogen responsible for 75-80% of cases is respiratory syncytial virus (RSV), while other causes include mycoplasma and adenoviruses. Bronchiolitis is more serious in children with bronchopulmonary dysplasia, congenital heart disease, or cystic fibrosis.
The symptoms of bronchiolitis include coryzal symptoms, dry cough, increasing breathlessness, and wheezing. Fine inspiratory crackles may also be present. Children with bronchiolitis may experience feeding difficulties associated with increasing dyspnoea, which is often the reason for hospital admission.
Immediate referral to hospital is recommended if the child has apnoea, looks seriously unwell to a healthcare professional, has severe respiratory distress, central cyanosis, or persistent oxygen saturation of less than 92% when breathing air. Clinicians should consider referring to hospital if the child has a respiratory rate of over 60 breaths/minute, difficulty with breastfeeding or inadequate oral fluid intake, or clinical dehydration.
The investigation for bronchiolitis involves immunofluorescence of nasopharyngeal secretions, which may show RSV. Management of bronchiolitis is largely supportive, with humidified oxygen given via a head box if oxygen saturations are persistently < 92%. Nasogastric feeding may be needed if children cannot take enough fluid/feed by mouth, and suction is sometimes used for excessive upper airway secretions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 48
Correct
-
A 72-year-old woman is brought to the stroke unit with a suspected stroke. She has a medical history of hypertension, type II diabetes, and hypothyroidism. Additionally, she experienced a myocardial infarction 4 years ago. Upon arrival, the patient exhibited a positive FAST result and an irregular breathing pattern. An urgent brain CT scan was performed and is currently under review. What region of the brainstem is responsible for regulating the fundamental breathing rhythm?
Your Answer: Medulla oblongata
Explanation:The medullary rhythmicity area in the medullary oblongata controls the basic rhythm of breathing through its inspiratory and expiratory neurons. During quiet breathing, the inspiratory area is active for approximately 2 seconds, causing the diaphragm and external intercostals to contract, followed by a period of inactivity lasting around 3 seconds as the muscles relax and there is elastic recoil. Additional brainstem regions can be stimulated to regulate various aspects of breathing, such as extending inspiration in the apneustic area (refer to the table below).
The Control of Ventilation in the Human Body
The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.
The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.
Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.
Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 49
Correct
-
A senior citizen who has been a lifelong smoker visits the respiratory clinic for a check-up on his emphysema. What alterations in his lung function test results would you anticipate?
Your Answer: Increased residual volume and reduced vital capacity
Explanation:Emphysema causes an increase in residual volume, leading to a decrease in vital capacity. This is due to damage to the alveolar walls, which results in the formation of large air sacs called bullae. The lungs lose their compliance, making it difficult to fully exhale and causing air to become trapped in the bullae. As a result, the total volume that can be exhaled is reduced, leading to a decrease in vital capacity.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 50
Incorrect
-
A 10-year-old boy is recuperating the day after a tonsillectomy. His parents report that he hasn't had anything to eat for 6 hours prior to the surgery and he is feeling famished. However, he is declining any attempts to consume food or water. There are no prescribed medications or known drug allergies listed on his medical records.
What would be the most appropriate first step to take?Your Answer: Obtain IV access and start partial nutritional feed
Correct Answer: Prescribe analgesia and encourage oral intake
Explanation:Effective pain management is crucial after a tonsillectomy to promote the consumption of food and fluids.
Prescribing analgesics and encouraging oral intake is the best course of action. This will alleviate pain and enable the patient to eat and drink, which is essential for a speedy recovery.
Starting maintenance fluids or partial nutritional feeds, obtaining IV access, or waiting for two hours before reviewing the patient are not the most appropriate options. Analgesia should be the primary consideration to facilitate oral fluid therapy and promote healing.
Tonsillitis and Tonsillectomy: Complications and Indications
Tonsillitis is a condition that can lead to various complications, including otitis media, peritonsillar abscess, and, in rare cases, rheumatic fever and glomerulonephritis. Tonsillectomy, the surgical removal of the tonsils, is a controversial procedure that should only be considered if the person meets specific criteria. According to NICE, surgery should only be considered if the person experiences sore throats due to tonsillitis, has five or more episodes of sore throat per year, has been experiencing symptoms for at least a year, and the episodes of sore throat are disabling and prevent normal functioning. Other established indications for a tonsillectomy include recurrent febrile convulsions, obstructive sleep apnoea, stridor, dysphagia, and peritonsillar abscess if unresponsive to standard treatment.
Despite the benefits of tonsillectomy, the procedure also carries some risks. Primary complications, which occur within 24 hours of the surgery, include haemorrhage and pain. Secondary complications, which occur between 24 hours to 10 days after the surgery, include haemorrhage (most commonly due to infection) and pain. Therefore, it is essential to weigh the benefits and risks of tonsillectomy before deciding to undergo the procedure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 51
Correct
-
A 6-year-old girl is playing with some small ball bearings. Regrettably, she inhales one. In which of the following lung regions is the ball expected to settle?
Your Answer: Right lower lobe
Explanation:Due to the angle of the right main bronchus from the trachea, small objects are more likely to get stuck in the most dependent part of the right lung. This makes the right lung the preferred location for most objects to enter.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 52
Incorrect
-
During a radical neck dissection, at what age would division of which of the following fascial layers expose the ansa cervicalis?
Your Answer: Prevertebral fascia
Correct Answer: Pretracheal fascia
Explanation:To access the ansa cervicalis, one must cut through the pretracheal fascia on the posterolateral side of the thyroid gland. This nerve is located in front of the carotid sheath. However, it should be noted that the pre vertebral fascia is situated further back and cannot be reached by dividing the investing layer of fascia.
The ansa cervicalis is a nerve that provides innervation to the sternohyoid, sternothyroid, and omohyoid muscles. It is composed of two roots: the superior root, which branches off from C1 and is located anterolateral to the carotid sheath, and the inferior root, which is derived from the C2 and C3 roots and passes posterolateral to the internal jugular vein. The inferior root enters the inferior aspect of the strap muscles, which are located in the neck, and should be divided in their upper half when exposing a large goitre. The ansa cervicalis is situated in front of the carotid sheath and is an important nerve for the proper functioning of the neck muscles.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 53
Incorrect
-
A 27-year-old man with a history of epilepsy is admitted to the hospital after experiencing a tonic-clonic seizure. He is currently taking sodium valproate as his only medication. A venous blood gas is obtained immediately.
What are the expected venous blood gas results for this patient?Your Answer: Low pH, high lactate, normal SaO2
Correct Answer: Low pH, high lactate, low SaO2
Explanation:Acidosis shifts the oxygen dissociation curve to the right, which enhances oxygen delivery to the tissues by causing more oxygen to dissociate from Hb. postictal lactic acidosis is a common occurrence in patients with tonic-clonic seizures, and it is typically managed by monitoring for spontaneous resolution. During a seizure, tissue hypoxia can cause lactic acidosis. Therefore, a venous blood gas test for this patient should show low pH, high lactate, and low SaO2.
If the venous blood gas test shows a high pH, normal lactate, and low SaO2, it would not be consistent with postictal lactic acidosis. This result indicates alkalosis, which can be caused by gastrointestinal losses, renal losses, or Cushing syndrome.
A high pH, normal lactate, and normal SaO2 would also be inconsistent with postictal lactic acidosis because tissue hypoxia would cause an increase in lactate levels.
Similarly, low pH, high lactate, and normal SaO2 would not be expected in postictal lactic acidosis because acidosis would shift the oxygen dissociation curve to the right, decreasing the oxygen saturation of haemoglobin.
Finally, normal pH, normal lactate, and normal SaO2 are unlikely to be found in this patient shortly after a seizure. However, if the venous blood gas test was taken days after the seizure following an uncomplicated clinical course, these findings would be more plausible.
Understanding the Oxygen Dissociation Curve
The oxygen dissociation curve is a graphical representation of the relationship between the percentage of saturated haemoglobin and the partial pressure of oxygen in the blood. It is not influenced by the concentration of haemoglobin. The curve can shift to the left or right, indicating changes in oxygen delivery to tissues. When the curve shifts to the left, there is increased saturation of haemoglobin with oxygen, resulting in decreased oxygen delivery to tissues. Conversely, when the curve shifts to the right, there is reduced saturation of haemoglobin with oxygen, leading to enhanced oxygen delivery to tissues.
The L rule is a helpful mnemonic to remember the factors that cause a shift to the left, resulting in lower oxygen delivery. These factors include low levels of hydrogen ions (alkali), low partial pressure of carbon dioxide, low levels of 2,3-diphosphoglycerate, and low temperature. On the other hand, the mnemonic ‘CADET, face Right!’ can be used to remember the factors that cause a shift to the right, leading to raised oxygen delivery. These factors include carbon dioxide, acid, 2,3-diphosphoglycerate, exercise, and temperature.
Understanding the oxygen dissociation curve is crucial in assessing the oxygen-carrying capacity of the blood and the delivery of oxygen to tissues. By knowing the factors that can shift the curve to the left or right, healthcare professionals can make informed decisions in managing patients with respiratory and cardiovascular diseases.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 54
Incorrect
-
A 4-year-old girl with a known diagnosis of cystic fibrosis presents to her pediatrician with a 2-day history of left-ear pain. Her mother reports that she has been frequently tugging at her left ear and had a fever this morning. Apart from this, she has been healthy. On examination, a red, bulging eardrum is observed. The pediatrician suspects bacterial otitis media. What is the probable causative organism responsible for this patient's symptoms?
Your Answer: Staphylococcus aureus
Correct Answer: Haemophilus influenzae
Explanation:Haemophilus influenzae, Streptococcus pneumoniae, and Moraxella catarrhalis are common bacterial organisms that can cause bacterial otitis media. Pseudomonas aeruginosa can also be a common cause in patients with cystic fibrosis.
The patient’s symptoms are typical of acute otitis media (AOM), which can cause ear pain, fever, and temporary hearing loss. AOM is more common in children due to their short, horizontal eustachian tubes that allow for easier movement of organisms from the upper respiratory tract to the middle ear.
AOM can be caused by either bacteria or viruses, and it can be difficult to distinguish between the two. However, features that may suggest a bacterial cause include the absence of upper respiratory tract infection symptoms and conditions that predispose to bacterial infections. In some cases, viral AOM can increase the risk of bacterial superinfection. Antibiotics may be prescribed for prolonged cases of AOM that do not appear to be resolving within a few days or in patients with immunosuppression.
Escherichia coli and Enterococcus faecalis are not the correct answers as they are not commonly associated with AOM. Haemophilus influenzae is more likely due to the proximity of the middle ear to the upper respiratory tract. Staphylococcus aureus is also an unlikely cause of bacterial AOM.
Acute otitis media is a common condition in young children, often caused by bacterial infections following viral upper respiratory tract infections. Symptoms include ear pain, fever, and hearing loss, and diagnosis is based on criteria such as the presence of a middle ear effusion and inflammation of the tympanic membrane. Antibiotics may be prescribed in certain cases, and complications can include perforation of the tympanic membrane, hearing loss, and more serious conditions such as meningitis and brain abscess.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 55
Correct
-
A 33-year-old male presents to the ED with coughing and wheezing following an episode of alcohol intoxication. Upon examination, decreased breath sounds are noted on one side. Imaging reveals a foreign body obstructing an airway structure. What is the most probable location for this foreign body to be lodged?
Your Answer: Right mainstem bronchus
Explanation:It is rare for a foreign object to become lodged in the left mainstem bronchus due to its greater angle compared to the right mainstem bronchus. A tracheal obstruction would cause reduced breath sounds bilaterally, not just on one side. The right superior lobar bronchus is also unlikely to be affected due to its angle and direction. Therefore, foreign bodies typically get stuck in the right mainstem bronchus in adults because of its wider diameter and lesser angle.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 56
Correct
-
A 59-year-old man has been found to have cancer. He is experiencing a range of symptoms, some of which appear to be unrelated to the location or size of the tumor. This is due to the fact that cancerous tissue can acquire the ability to produce endocrine effects on other cells in the body. Can you provide an instance of this phenomenon?
Your Answer: Production of PTH
Explanation:Paraneoplastic syndrome is a set of symptoms that arise from the secretion of hormones and cytokines by cancer cells or the immune system’s response to the tumor.
Squamous cell lung cancer often produces PTHrP (parathyroid hormone-related protein), which leads to hypercalcemia in affected patients.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 57
Incorrect
-
A senior woman with a history of chronic obstructive pulmonary disease (COPD) arrives at the hospital complaining of worsening shortness of breath and a productive cough. As part of the initial evaluation, a chest X-ray is requested.
What radiographic feature would you anticipate observing on her chest X-ray?Your Answer: Empyema
Correct Answer: Flattened diaphragm
Explanation:The diaphragm of patients with COPD often appears flattened on a chest X-ray due to the chronic expiratory airflow obstruction causing dynamic hyperinflation of the lungs. Pleural effusions are commonly associated with infection, malignancy, or heart failure, while empyema is a result of pus accumulation in the pleural space caused by an infection.
Understanding COPD: Symptoms and Diagnosis
Chronic obstructive pulmonary disease (COPD) is a common medical condition that includes chronic bronchitis and emphysema. Smoking is the leading cause of COPD, and patients with mild disease may only need occasional use of a bronchodilator, while severe cases may result in frequent hospital admissions due to exacerbations. Symptoms of COPD include a productive cough, dyspnea, wheezing, and in severe cases, right-sided heart failure leading to peripheral edema.
To diagnose COPD, doctors may recommend post-bronchodilator spirometry to demonstrate airflow obstruction, a chest x-ray to check for hyperinflation, bullae, and flat hemidiaphragm, and to exclude lung cancer. A full blood count may also be necessary to exclude secondary polycythemia, and body mass index (BMI) calculation is important. The severity of COPD is categorized using the FEV1, with a ratio of less than 70% indicating airflow obstruction. The grading system has changed following the 2010 NICE guidelines, with Stage 1 – mild now including patients with an FEV1 greater than 80% predicted but with a post-bronchodilator FEV1/FVC ratio of less than 0.7. Measuring peak expiratory flow is of limited value in COPD, as it may underestimate the degree of airflow obstruction.
In summary, COPD is a common condition caused by smoking that can result in a range of symptoms and severity. Diagnosis involves various tests to check for airflow obstruction, exclude lung cancer, and determine the severity of the disease.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 58
Incorrect
-
A middle-aged woman who is obese comes in with complaints of polyuria. She has a history of squamous cell lung carcinoma. What could be the possible reason for her polyuria?
Your Answer: Type 2 diabetes mellitus
Correct Answer: Hyperparathyroidism
Explanation:Polyuria is caused by all the options listed above, except for syndrome of inappropriate ADH secretion. However, the patient’s age does not match the typical onset of type 1 diabetes, which usually occurs in young individuals. Furthermore, squamous cell lung carcinoma is commonly associated with a paraneoplastic syndrome that results in the release of excess parathyroid hormone by the tumor, leading to hypercalcemia and subsequent polyuria, along with other symptoms such as renal and biliary stones, bone pain, abdominal discomfort, nausea, vomiting, depression, and anxiety.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 59
Incorrect
-
Cystic fibrosis is caused by a mutation in the CFTR gene. On which chromosome is this gene located?
Your Answer: Chromosome 11
Correct Answer: Chromosome 7
Explanation:Understanding Cystic Fibrosis
Cystic fibrosis is a genetic disorder that causes thickened secretions in the lungs and pancreas. It is an autosomal recessive condition that occurs due to a defect in the cystic fibrosis transmembrane conductance regulator gene (CFTR), which regulates a chloride channel. In the UK, 80% of CF cases are caused by delta F508 on chromosome 7, and the carrier rate is approximately 1 in 25.
CF patients are at risk of colonization by certain organisms, including Staphylococcus aureus, Pseudomonas aeruginosa, Burkholderia cepacia (previously known as Pseudomonas cepacia), and Aspergillus. These organisms can cause infections and exacerbate symptoms in CF patients. It is important for healthcare providers to monitor and manage these infections to prevent further complications.
Overall, understanding cystic fibrosis and its associated risks can help healthcare providers provide better care for patients with this condition.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 60
Correct
-
A 67-year-old female smoker with a two-month history of worsening shortness of breath presents for evaluation. On examination, she appears comfortable at rest with a regular pulse of 72 bpm, respiratory rate of 16/min, and blood pressure of 128/82 mmHg. Physical findings include reduced expansion on the left lower zone, dullness to percussion over this area, and absent breath sounds over the left lower zone with bronchial breath sounds just above this region. What is the likely clinical diagnosis?
Your Answer: Pleural effusion
Explanation:Pleural Effusion and its Investigation
Pleural effusion is a condition where there is an abnormal accumulation of fluid in the pleural space, which is the space between the lungs and the chest wall. This can be caused by various factors such as post-infection, carcinoma, or emboli. To determine the cause of the pleural effusion, a pleural tap is the most appropriate investigation. The sample obtained from the pleural tap is sent for cytology, protein concentration, and culture.
A normal pleural tap would have clear appearance, pH of 7.60-7.64, protein concentration of less than 2%, white blood cells count of less than 1000/mm³, glucose level similar to that of plasma, LDH level of less than 50% of plasma concentration, amylase level of 30-110 U/L, triglycerides level of less than 2 mmol/l, and cholesterol level of 3.5-6.5 mmol/l.
A transudative tap is associated with conditions such as congestive heart failure, liver cirrhosis, severe hypoalbuminemia, and nephrotic syndrome. On the other hand, an exudative tap is associated with malignancy, infection (such as empyema due to bacterial pneumonia), trauma, pulmonary infarction, and pulmonary embolism.
In summary, pleural effusion can be caused by various factors and a pleural tap is the most appropriate investigation to determine the cause. The results of the pleural tap can help differentiate between transudative and exudative effusions, which can provide important information for diagnosis and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 61
Incorrect
-
A 10-year-old boy comes to the clinic with his mother. He complained of ear pain during the night, but there is no discharge, hearing loss, or other symptoms. Upon examination, he has no fever. The pinna of his ear appears red and swollen, and pressing on the tragus causes pain. Otoscopy reveals a healthy tympanic membrane, but the external auditory canal is inflamed. The external auditory canal consists of a cartilaginous outer part and a bony inner part. Which bone does the bony external canal pass through?
Your Answer:
Correct Answer: Temporal bone
Explanation:The temporal bone is the correct answer. It contains the bony external auditory canal and middle ear, which are composed of a cartilaginous outer third and a bony inner two-thirds. The temporal bone articulates with the parietal, occipital, sphenoid, zygomatic, and mandible bones.
The sphenoid bone is a complex bone that articulates with 12 other bones. It is divided into four parts: the body, greater wings, lesser wings, and pterygoid plates.
The zygomatic bone is located on the anterior and lateral aspects of the face and articulates with the frontal, sphenoid, temporal, and maxilla bones.
The parietal bone forms the sides and roof of the cranium and articulates with the parietal on the opposite side, as well as the frontal, temporal, occipital, and sphenoid bones.
The occipital bone is situated at the rear of the cranium and articulates with the temporal, sphenoid, parietals, and the first cervical vertebrae.
The patient’s symptoms of ear pain, erythematous pinna and external auditory canal, and tender tragus on palpation are consistent with otitis externa, which has numerous possible causes. The patient is not febrile and has no loss of hearing or dizziness.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 62
Incorrect
-
A 25-year-old female presents to the emergency department with complaints of shortness of breath that started 2 hours ago. She has no medical history. The results of her arterial blood gas (ABG) test are as follows:
Normal range
pH: 7.49 (7.35 - 7.45)
pO2: 12.2 (10 - 14)kPa
pCO2: 3.4 (4.5 - 6.0)kPa
HCO3: 22 (22 - 26)mmol/l
BE: +2 (-2 to +2)mmol/l
Her temperature is 37ºC, and her pulse is 98 beats/minute and regular. Based on this information, what is the most likely diagnosis?Your Answer:
Correct Answer: Anxiety hyperventilation
Explanation:The patient is exhibiting symptoms and ABG results consistent with respiratory alkalosis. However, it is important to conduct a thorough history and physical examination to rule out any underlying pulmonary pathology or infection. Based on the patient’s history, anxiety-induced hyperventilation is the most probable cause of her condition.
Respiratory Alkalosis: Causes and Examples
Respiratory alkalosis is a condition that occurs when the blood pH level rises above the normal range due to excessive breathing. This can be caused by various factors, including anxiety, pulmonary embolism, CNS disorders, altitude, and pregnancy. Salicylate poisoning can also lead to respiratory alkalosis, but it may also cause metabolic acidosis in the later stages. In this case, the respiratory centre is stimulated early, leading to respiratory alkalosis, while the direct acid effects of salicylates combined with acute renal failure may cause acidosis later on. It is important to identify the underlying cause of respiratory alkalosis to determine the appropriate treatment. Proper management can help prevent complications and improve the patient’s overall health.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 63
Incorrect
-
A 23-year-old woman comes to your clinic with a complaint of ear pain and difficulty hearing on one side. During the examination, you observe that she has a fever and a bulging tympanic membrane. What nerve transmits pain from the middle ear?
Your Answer:
Correct Answer: Glossopharyngeal nerve
Explanation:The correct answer is the glossopharyngeal nerve, which is responsible for carrying sensation from the middle ear.
The ninth cranial nerve, or glossopharyngeal nerve, carries taste and sensation from the posterior one-third of the tongue, as well as sensation from various areas such as the pharyngeal wall, tonsils, pharyngotympanic tube, middle ear, tympanic membrane, external auditory canal, and auricle. It also provides motor fibers to the stylopharyngeus and parasympathetic fibers to the parotid gland. Additionally, it carries information from the baroreceptors and chemoreceptors of the carotid sinus.
On the other hand, the seventh cranial nerve, or facial nerve, innervates the muscles of facial expression, stylohyoid, stapedius, and the posterior belly of digastric. It carries sensation from part of the external acoustic meatus, auricle, and behind the auricle, and taste from the anterior two-thirds of the tongue. It also provides parasympathetic fibers to the submandibular, sublingual, nasal, and lacrimal glands.
The eighth cranial nerve, or vestibulocochlear nerve, has a vestibular component that carries balance information from the labyrinths of the inner ear and a cochlear component that carries hearing information from the cochlea of the inner ear.
The twelfth cranial nerve, or hypoglossal nerve, supplies motor innervation to all of the intrinsic muscles of the tongue and all of the extrinsic muscles of the tongue except for palatoglossus.
Lastly, the maxillary nerve is the second division of the trigeminal nerve, the fifth cranial nerve, which carries sensation from the upper teeth and gingivae, the nasal cavity, and skin across the lower eyelids and cheeks.
Based on the patient’s symptoms of ear pain, the most likely diagnosis is otitis media, as indicated by her fever and the presence of a bulging tympanic membrane on otoscopy.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 64
Incorrect
-
Which of the following physiological changes does not take place after a tracheostomy?
Your Answer:
Correct Answer: Work of breathing is increased.
Explanation:HFNC is a popular option for weaning ventilated patients as it reduces work of breathing and humidified air helps to reduce mucous viscosity.
Anatomy of the Trachea
The trachea, also known as the windpipe, is a tube-like structure that extends from the C6 vertebrae to the upper border of the T5 vertebrae where it bifurcates into the left and right bronchi. It is supplied by the inferior thyroid arteries and the thyroid venous plexus, and innervated by branches of the vagus, sympathetic, and recurrent nerves.
In the neck, the trachea is anterior to the isthmus of the thyroid gland, inferior thyroid veins, and anastomosing branches between the anterior jugular veins. It is also surrounded by the sternothyroid, sternohyoid, and cervical fascia. Posteriorly, it is related to the esophagus, while laterally, it is in close proximity to the common carotid arteries, right and left lobes of the thyroid gland, inferior thyroid arteries, and recurrent laryngeal nerves.
In the thorax, the trachea is anterior to the manubrium, the remains of the thymus, the aortic arch, left common carotid arteries, and the deep cardiac plexus. Laterally, it is related to the pleura and right vagus on the right side, and the left recurrent nerve, aortic arch, and left common carotid and subclavian arteries on the left side.
Overall, understanding the anatomy of the trachea is important for various medical procedures and interventions, such as intubation and tracheostomy.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 65
Incorrect
-
A 50-year-old man visits the GP clinic for a routine hearing examination. He reports no issues with his hearing and has no significant medical history or medication use. After conducting Rinne and Weber tests on the patient, you determine that his hearing is within normal limits.
What are the test findings for this patient?Your Answer:
Correct Answer: Rinne: air conduction > bone conduction bilaterally; Weber: equal in both ears
Explanation:The patient’s hearing exam results indicate normal hearing. The Rinne test showed more air conduction than bone conduction in both ears, which is typical for normal hearing. The Weber test also showed equal results in both ears, indicating no significant difference in hearing between the ears.
Rinne’s and Weber’s Test for Differentiating Conductive and Sensorineural Deafness
Rinne’s and Weber’s tests are used to differentiate between conductive and sensorineural deafness. Rinne’s test involves placing a tuning fork over the mastoid process until the sound is no longer heard, then repositioning it just over the external acoustic meatus. A positive test indicates that air conduction (AC) is better than bone conduction (BC), while a negative test indicates that BC is better than AC, suggesting conductive deafness.
Weber’s test involves placing a tuning fork in the middle of the forehead equidistant from the patient’s ears and asking the patient which side is loudest. In unilateral sensorineural deafness, sound is localized to the unaffected side, while in unilateral conductive deafness, sound is localized to the affected side.
The table below summarizes the interpretation of Rinne and Weber tests. A normal result indicates that AC is greater than BC bilaterally and the sound is midline. Conductive hearing loss is indicated by BC being greater than AC in the affected ear and AC being greater than BC in the unaffected ear, with the sound lateralizing to the affected ear. Sensorineural hearing loss is indicated by AC being greater than BC bilaterally, with the sound lateralizing to the unaffected ear.
Overall, Rinne’s and Weber’s tests are useful tools for differentiating between conductive and sensorineural deafness, allowing for appropriate management and treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 66
Incorrect
-
A 57-year-old woman arrives at the emergency department complaining of difficulty breathing. She has a medical history of idiopathic interstitial lung disease. Upon examination, her temperature is 37.1ºC, oxygen saturation is 76% on air, heart rate is 106 beats per minute, respiratory rate is 26 breaths per minute, and blood pressure is 116/60 mmHg.
What pulmonary alteration would take place in response to her low oxygen saturation?Your Answer:
Correct Answer: Pulmonary artery vasoconstriction
Explanation:Hypoxia causes vasoconstriction in the pulmonary arteries, which can lead to pulmonary artery hypertension in patients with chronic lung disease and chronic hypoxia. Diffuse bronchoconstriction is not a response to hypoxia, but may cause hypoxia in conditions such as acute asthma exacerbation. Hypersecretion of mucus from goblet cells is a characteristic finding in chronic inflammatory lung diseases, but is not a response to hypoxia. Pulmonary artery vasodilation occurs around well-ventilated alveoli to optimize oxygen uptake into the blood.
The Effects of Hypoxia on Pulmonary Arteries
When the partial pressure of oxygen in the blood decreases, the pulmonary arteries undergo vasoconstriction. This means that the blood vessels narrow, allowing blood to be redirected to areas of the lung that are better aerated. This response is a natural mechanism that helps to improve the efficiency of gaseous exchange in the lungs. By diverting blood to areas with more oxygen, the body can ensure that the tissues receive the oxygen they need to function properly. Overall, hypoxia triggers a physiological response that helps to maintain homeostasis in the body.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 67
Incorrect
-
What is the accurate embryonic source of the stapes?
Your Answer:
Correct Answer: Second pharyngeal arch
Explanation:The stapes, which is a cartilaginous element in the ear, originates from the ectoderm covering the outer aspect of the second pharyngeal arch. This strip of ectoderm is located lateral to the metencephalic neural fold. Reicherts cartilage, which extends from the otic capsule to the midline on each side, is responsible for the formation of the stapes. The cartilages of the first and second pharyngeal arches articulate superior to the tubotympanic recess, with the malleus, incus, and stapes being formed from these cartilages. While the malleus is mostly formed from the first arch, the stapes is most likely to arise from the second arch.
The Development and Contributions of Pharyngeal Arches
During the fourth week of embryonic growth, a series of mesodermal outpouchings develop from the pharynx, forming the pharyngeal arches. These arches fuse in the ventral midline, while pharyngeal pouches form on the endodermal side between the arches. There are six pharyngeal arches, with the fifth arch not contributing any useful structures and often fusing with the sixth arch.
Each pharyngeal arch has its own set of muscular and skeletal contributions, as well as an associated endocrine gland, artery, and nerve. The first arch contributes muscles of mastication, the maxilla, Meckel’s cartilage, and the incus and malleus bones. The second arch contributes muscles of facial expression, the stapes bone, and the styloid process and hyoid bone. The third arch contributes the stylopharyngeus muscle, the greater horn and lower part of the hyoid bone, and the thymus gland. The fourth arch contributes the cricothyroid muscle, all intrinsic muscles of the soft palate, the thyroid and epiglottic cartilages, and the superior parathyroids. The sixth arch contributes all intrinsic muscles of the larynx (except the cricothyroid muscle), the cricoid, arytenoid, and corniculate cartilages, and is associated with the pulmonary artery and recurrent laryngeal nerve.
Overall, the development and contributions of pharyngeal arches play a crucial role in the formation of various structures in the head and neck region.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 68
Incorrect
-
A 15-year-old girl presents with difficulty breathing and is unable to speak in full sentences due to panic. She has a history of asthma. Upon examination, her respiratory rate is 28 breaths/minute, heart rate is 105 beats/minute, and her chest is silent. What is the most concerning feature in this girl's history?
Your Answer:
Correct Answer: Silent chest
Explanation:Identify the life-threatening features of an asthma attack.
Assessing the severity of asthma attacks in children is crucial for effective management. The 2016 BTS/SIGN guidelines provide criteria for assessing the severity of asthma in general practice. These criteria include measuring SpO2 levels, PEF (peak expiratory flow) rates, heart rate, respiratory rate, use of accessory neck muscles, and other symptoms such as breathlessness, agitation, altered consciousness, and cyanosis.
A severe asthma attack is characterized by a SpO2 level below 92%, PEF rates between 33-50% of the best or predicted, being too breathless to talk or feed, and a high heart and respiratory rate. On the other hand, a life-threatening asthma attack is indicated by a SpO2 level below 92%, PEF rates below 33% of the best or predicted, a silent chest, poor respiratory effort, use of accessory neck muscles, agitation, altered consciousness, and cyanosis.
It is important for healthcare professionals to be familiar with these criteria to ensure prompt and appropriate management of asthma attacks in children. Early recognition of the severity of an asthma attack can help prevent complications and reduce the risk of hospitalization or death.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 69
Incorrect
-
A 30-year-old woman comes to see her GP with persistent tinnitus and hearing loss in both ears. This is her first time experiencing these symptoms, but she mentions that her older sister has had similar issues. During the examination, the doctor notices a pinkish hue to her eardrums. Audiometry tests confirm that she has conductive deafness. What is the most probable diagnosis?
Your Answer:
Correct Answer: Otosclerosis
Explanation:Nausea and vomiting often accompany migraines, which are characterized by severe headaches that can last for hours or even days. Other symptoms may include sensitivity to light and sound, as well as visual disturbances such as flashing lights or blind spots. Migraines can be triggered by a variety of factors, including stress, certain foods, hormonal changes, and changes in sleep patterns. Treatment options may include medication, lifestyle changes, and alternative therapies.
Understanding Otosclerosis: A Progressive Conductive Deafness
Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.
The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.
Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.
Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 70
Incorrect
-
A 26-year-old man presents to the emergency department with a feeling of food stuck in his throat. He experienced this sensation 2 hours ago after consuming fish at a nearby seafood restaurant. The patient reports no breathing difficulties. Upon laryngoscopy, a fish bone is found lodged in the left piriform recess. While removing the fish bone, a nerve located deep to the mucosa covering the recess is damaged.
Which function is most likely to be affected in this individual?Your Answer:
Correct Answer: Cough reflex
Explanation:Foreign objects lodged in the piriform recess can cause damage to the internal laryngeal nerve, which is located just beneath a thin layer of mucosa covering the recess. This nerve plays a crucial role in the cough reflex, as it carries sensory information from the area above the vocal cords. Attempts to remove foreign objects from the piriform recess can also lead to nerve damage.
Other functions, such as mastication, the pharyngeal reflex, salivation, and taste sensation, are mediated by different nerves and are not directly related to the piriform recess or the internal laryngeal nerve.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 71
Incorrect
-
A 29-year-old man comes to your clinic with a complaint of ear pain that has been bothering him for the past 2 days. He reports no hearing loss or discharge and feels generally healthy. During the physical examination, you observe that he has no fever. When you palpate the tragus of the affected ear, he experiences pain. Upon otoscopy, you notice that the external auditory canal is red. The tympanic membrane is not bulging, and there is no visible fluid level. Which bone can you see pressing against the tympanic membrane?
Your Answer:
Correct Answer: Malleus
Explanation:The ossicle that is in contact with the tympanic membrane is called the malleus. The middle ear contains three bones known as ossicles, which are arranged from lateral to medial. The malleus is the most lateral ossicle and its handle and lateral process attach to the tympanic membrane, making it visible during otoscopy. The head of the malleus articulates with the incus. The incus is located between the other two ossicles and articulates with both. The body of the incus articulates with the malleus, while the long limb of the bone articulates with the stapes. The Latin word for ‘hammer’ is used to describe the malleus, while the Latin word for ‘anvil’ is used to describe the incus.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 72
Incorrect
-
A 72-year-old male has unfortunately been diagnosed with lung cancer after a brief illness during which he visited his GP with a cough and loss of weight. The GP has received the histology report after a recent bronchoscopy, which revealed a squamous cell carcinoma. What symptoms would you anticipate in this patient based on the diagnosis?
Your Answer:
Correct Answer: Clubbing
Explanation:Hypertrophic pulmonary osteoarthropathy (HPOA) is linked to squamous cell carcinoma, while small cell carcinoma of the lung is associated with excessive secretion of ADH and may also cause hypertension, hyperglycemia, and hypokalemia due to excessive ACTH secretion (although this is not typical). Lambert-Eaton syndrome is also linked to small cell carcinoma, while adenocarcinoma of the lung is associated with gynecomastia.
Lung cancer can present with paraneoplastic features, which are symptoms caused by the cancer but not directly related to the tumor itself. Small cell lung cancer can cause the secretion of ADH and, less commonly, ACTH, which can lead to hypertension, hyperglycemia, hypokalemia, alkalosis, and muscle weakness. Lambert-Eaton syndrome is also associated with small cell lung cancer. Squamous cell lung cancer can cause the secretion of parathyroid hormone-related protein, leading to hypercalcemia, as well as clubbing and hypertrophic pulmonary osteoarthropathy. Adenocarcinoma can cause gynecomastia and hypertrophic pulmonary osteoarthropathy. Hypertrophic pulmonary osteoarthropathy is a painful condition involving the proliferation of periosteum in the long bones. Although traditionally associated with squamous cell carcinoma, some studies suggest that adenocarcinoma is the most common cause.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 73
Incorrect
-
A 23-year-old woman comes to your clinic complaining of difficulty hearing her partner at home. She has been experiencing a high-pitched ringing in her left ear for the past 6 months. She attributes this to attending loud concerts frequently and has not sought medical attention until now. She reports that she can hear better when she is outside but struggles in quiet environments. Upon examination, there are no abnormalities seen during otoscopy. One of the possible diagnoses for this patient is otosclerosis, a condition that primarily affects the stapes bone. Which structure does the stapes bone come into contact with in the cochlea?
Your Answer:
Correct Answer: Oval window
Explanation:The oval window is where the stapes connects with the cochlea, and it is the most inner of the ossicles. The stapes has a stirrup-like shape, with a head that articulates with the incus and two limbs that connect it to the base. The base of the stapes is in contact with the oval window, which is one of the only two openings between the middle and inner ear. The organ of Corti, which is responsible for hearing, is located on the basilar membrane within the cochlear duct. The round window is the other opening between the middle and inner ear, and it allows the fluid within the cochlea to move, transmitting sound to the hair cells. The helicotrema is the point where the scala tympani and scala vestibuli meet at the apex of the cochlear labyrinth. The tectorial membrane is a membrane that extends along the entire length of the cochlea. A female in her third decade of life with unilateral conductive hearing loss and a family history of hearing loss is likely to have otosclerosis, a condition that affects the stapes and can cause severe or total hearing loss due to abnormal bone growth and fusion with the cochlea.
Anatomy of the Ear
The ear is divided into three distinct regions: the external ear, middle ear, and internal ear. The external ear consists of the auricle and external auditory meatus, which are innervated by the greater auricular nerve and auriculotemporal branch of the trigeminal nerve. The middle ear is the space between the tympanic membrane and cochlea, and is connected to the nasopharynx by the eustachian tube. The tympanic membrane is composed of three layers and is approximately 1 cm in diameter. The middle ear is innervated by the glossopharyngeal nerve. The ossicles, consisting of the malleus, incus, and stapes, transmit sound vibrations from the tympanic membrane to the inner ear. The internal ear contains the cochlea, which houses the organ of corti, the sense organ of hearing. The vestibule accommodates the utricule and saccule, which contain endolymph and are surrounded by perilymph. The semicircular canals, which share a common opening into the vestibule, lie at various angles to the petrous temporal bone.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 74
Incorrect
-
A 26-year-old male is brought to the emergency department by his mother. He is agitated, restless, and anxious.
Upon examination, dilated pupils are observed, and an ECG reveals sinus tachycardia.
The patient has a medical history of chronic asthma and is currently taking modified-release theophylline tablets.
According to his mother, he returned from a trip to Pakistan last night and has been taking antibiotics for bacterial gastroenteritis for the past four days. He has three days left on his antibiotic course.
What could be the cause of his current presentation?Your Answer:
Correct Answer: Ciprofloxacin
Explanation:Terbinafine is frequently prescribed for the treatment of fungal nail infections as an antifungal medication.
Theophylline and its Poisoning
Theophylline is a naturally occurring methylxanthine that is commonly used as a bronchodilator in the management of asthma and COPD. Its exact mechanism of action is still unknown, but it is believed to be a non-specific inhibitor of phosphodiesterase, resulting in an increase in cAMP. Other proposed mechanisms include antagonism of adenosine and prostaglandin inhibition.
However, theophylline poisoning can occur and is characterized by symptoms such as acidosis, hypokalemia, vomiting, tachycardia, arrhythmias, and seizures. In such cases, gastric lavage may be considered if the ingestion occurred less than an hour prior. Activated charcoal is also recommended, while whole-bowel irrigation can be performed if theophylline is in sustained-release form. Charcoal hemoperfusion is preferable to hemodialysis in managing theophylline poisoning.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 75
Incorrect
-
A 30-year-old female complains of weakness, weight gain, and cold intolerance. You suspect hypothyroidism. What vocal change would you anticipate to have occurred, increasing the probability of this potential diagnosis?
Your Answer:
Correct Answer: Hoarse voice
Explanation:Hoarseness is a symptom that can be caused by hypothyroidism.
When a patient presents with hoarseness, it can be difficult to determine the underlying cause. However, if the hoarseness is accompanied by other symptoms commonly associated with hypothyroidism, it can help narrow down the diagnosis.
The reason for the voice change in hypothyroidism is due to the thickening of the vocal cords caused by the accumulation of mucopolysaccharide. This substance, also known as glycosaminoglycans, is found throughout the body in mucus and joint fluid. When it builds up in the vocal cords, it can lower the pitch of the voice. The thyroid hormone plays a role in preventing this buildup.
Hoarseness can be caused by various factors such as overusing the voice, smoking, viral infections, hypothyroidism, gastro-oesophageal reflux, laryngeal cancer, and lung cancer. It is important to investigate the underlying cause of hoarseness, and a chest x-ray may be necessary to rule out any apical lung lesions.
If laryngeal cancer is suspected, it is recommended to refer the patient to an ENT specialist through a suspected cancer pathway. This referral should be considered for individuals who are 45 years old and above and have persistent unexplained hoarseness or an unexplained lump in the neck. Early detection and treatment of laryngeal cancer can significantly improve the patient’s prognosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 76
Incorrect
-
A 25-year-old man is shot in the chest during a robbery. The right lung is lacerated and is bleeding. An emergency thoracotomy is performed. The surgeons place a clamp over the hilum of the right lung. Which one of the following structures lies most anteriorly at this level?
Your Answer:
Correct Answer: Phrenic nerve
Explanation:At this location, the phrenic nerve is situated in front. The vagus nerve runs in front and then curves backwards just above the base of the left bronchus, releasing the recurrent laryngeal nerve as it curves.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 77
Incorrect
-
A 50-year-old female presents to her GP with complaints of shortness of breath and weakness during mild-moderate exercise. She reports that these episodes have been getting progressively worse and now often result in dizziness. The patient has no significant medical history but was a previous smoker for 15 years, smoking 15 cigarettes per day. Spirometry testing reveals a restrictive lung pattern. What is the most probable diagnosis?
Your Answer:
Correct Answer: Myasthenia gravis
Explanation:Myasthenia gravis can result in a restrictive pattern of lung disease due to weakness of the respiratory muscles, which causes difficulty in breathing air in. Asthma and COPD are incorrect as they cause an obstructive pattern on spirometry, with asthma being characterized by small bronchiole obstruction from inflammation and increased mucus production, and COPD causing small airway inflammation and emphysema that restricts outward airflow. Alpha-1 antitrypsin deficiency also leads to an obstructive pattern, as it results in pulmonary tissue degradation and panlobular emphysema.
Understanding the Differences between Obstructive and Restrictive Lung Diseases
Obstructive and restrictive lung diseases are two distinct categories of respiratory conditions that affect the lungs in different ways. Obstructive lung diseases are characterized by a reduction in the flow of air through the airways due to narrowing or blockage, while restrictive lung diseases are characterized by a decrease in lung volume or capacity, making it difficult to breathe in enough air.
Spirometry is a common diagnostic tool used to differentiate between obstructive and restrictive lung diseases. In obstructive lung diseases, the ratio of forced expiratory volume in one second (FEV1) to forced vital capacity (FVC) is less than 80%, indicating a reduced ability to exhale air. In contrast, restrictive lung diseases are characterized by an FEV1/FVC ratio greater than 80%, indicating a reduced ability to inhale air.
Examples of obstructive lung diseases include chronic obstructive pulmonary disease (COPD), chronic bronchitis, and emphysema, while asthma and bronchiectasis are also considered obstructive. Restrictive lung diseases include intrapulmonary conditions such as idiopathic pulmonary fibrosis, extrinsic allergic alveolitis, and drug-induced fibrosis, as well as extrapulmonary conditions such as neuromuscular diseases, obesity, and scoliosis.
Understanding the differences between obstructive and restrictive lung diseases is important for accurate diagnosis and appropriate treatment. While both types of conditions can cause difficulty breathing, the underlying causes and treatment approaches can vary significantly.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 78
Incorrect
-
An 75-year-old woman presents to her GP with a 4-month history of dysphagia, weight loss, and a change in her voice tone. After a nasendoscopy, laryngeal carcinoma is confirmed. The surgical team plans her operation based on a head and neck CT scan. Which vertebrae are likely located posterior to the carcinoma?
Your Answer:
Correct Answer: C3-C6
Explanation:The larynx is situated in the front of the neck, specifically at the level of the C3-C6 vertebrae. It is positioned below the pharynx and contains the vocal cords that produce sound. The C1-C3 vertebrae are located much higher than the larynx, while the C2-C4 vertebrae cover the area from the oropharynx to the first part of the larynx. The C6-T1 vertebrae are situated behind the larynx and the upper portions of the trachea and esophagus.
Anatomy of the Larynx
The larynx is located in the front of the neck, between the third and sixth cervical vertebrae. It is made up of several cartilaginous segments, including the paired arytenoid, corniculate, and cuneiform cartilages, as well as the single thyroid, cricoid, and epiglottic cartilages. The cricoid cartilage forms a complete ring. The laryngeal cavity extends from the laryngeal inlet to the inferior border of the cricoid cartilage and is divided into three parts: the laryngeal vestibule, the laryngeal ventricle, and the infraglottic cavity.
The vocal folds, also known as the true vocal cords, control sound production. They consist of the vocal ligament and the vocalis muscle, which is the most medial part of the thyroarytenoid muscle. The glottis is composed of the vocal folds, processes, and rima glottidis, which is the narrowest potential site within the larynx.
The larynx is also home to several muscles, including the posterior cricoarytenoid, lateral cricoarytenoid, thyroarytenoid, transverse and oblique arytenoids, vocalis, and cricothyroid muscles. These muscles are responsible for various actions, such as abducting or adducting the vocal folds and relaxing or tensing the vocal ligament.
The larynx receives its arterial supply from the laryngeal arteries, which are branches of the superior and inferior thyroid arteries. Venous drainage is via the superior and inferior laryngeal veins. Lymphatic drainage varies depending on the location within the larynx, with the vocal cords having no lymphatic drainage and the supraglottic and subglottic parts draining into different lymph nodes.
Overall, understanding the anatomy of the larynx is important for proper diagnosis and treatment of various conditions affecting this structure.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 79
Incorrect
-
A 67-year-old man visits the respiratory clinic for spirometry testing to investigate possible COPD. The clinician observes that his breathing appears to be shallow even at rest.
What specific lung volume would accurately describe the clinician's observation?Your Answer:
Correct Answer: Tidal volume (TV)
Explanation:Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 80
Incorrect
-
Which one of the following does not decrease the functional residual capacity?
Your Answer:
Correct Answer: Upright position
Explanation:When a patient is in an upright position, the functional residual capacity (FRC) can increase due to less pressure from the diaphragm and abdominal organs on the lung bases. This increase in FRC can also be caused by emphysema and asthma. On the other hand, factors such as abdominal swelling, pulmonary edema, reduced muscle tone of the diaphragm, and aging can lead to a decrease in FRC. Additionally, laparoscopic surgery, obesity, and muscle relaxants can also contribute to a reduction in FRC.
Understanding Lung Volumes in Respiratory Physiology
In respiratory physiology, lung volumes can be measured to determine the amount of air that moves in and out of the lungs during breathing. The diagram above shows the different lung volumes that can be measured.
Tidal volume (TV) refers to the amount of air that is inspired or expired with each breath at rest. In males, the TV is 500ml while in females, it is 350ml.
Inspiratory reserve volume (IRV) is the maximum volume of air that can be inspired at the end of a normal tidal inspiration. The inspiratory capacity is the sum of TV and IRV. On the other hand, expiratory reserve volume (ERV) is the maximum volume of air that can be expired at the end of a normal tidal expiration.
Residual volume (RV) is the volume of air that remains in the lungs after maximal expiration. It increases with age and can be calculated by subtracting ERV from FRC. Speaking of FRC, it is the volume in the lungs at the end-expiratory position and is equal to the sum of ERV and RV.
Vital capacity (VC) is the maximum volume of air that can be expired after a maximal inspiration. It decreases with age and can be calculated by adding inspiratory capacity and ERV. Lastly, total lung capacity (TLC) is the sum of vital capacity and residual volume.
Physiological dead space (VD) is calculated by multiplying tidal volume by the difference between arterial carbon dioxide pressure (PaCO2) and end-tidal carbon dioxide pressure (PeCO2) and then dividing the result by PaCO2.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 81
Incorrect
-
A 35-year-old man arrives at the emergency department following an assault with a baseball bat. He has significant swelling around his eye, which has caused him to lose vision in that eye. A CT scan reveals a fracture in the floor of the orbit. This type of fracture creates an unusual connection between the orbit and which of the following facial regions?
Your Answer:
Correct Answer: Maxillary sinus
Explanation:The correct answer is the maxillary sinus, which is the largest of the paranasal air sinuses found in the maxillary bone below the orbit. Fractures of the orbit’s floor can lead to herniation of the orbital contents into the maxillary sinus. The ethmoidal air cells are smaller air cells in the ethmoid bone, separated from the orbit by a thin plate of bone called the lamina papyracea. Fractures of the medial wall of the orbit can lead to communication between the ethmoidal air cells and the orbit. The frontal sinuses are located in the frontal bones above the orbits and fractures of the roof of the orbit can lead to communication between the frontal sinus and orbit. The sphenoid sinuses are found in the sphenoid bone and are located in the posterior portion of the roof of the nasal cavity. The nasal cavity is located more medial and inferior than the orbits and is not adjacent to the orbit.
Paranasal Air Sinuses and Carotid Sinus
The paranasal air sinuses are air-filled spaces found in the bones of the skull. They are named after the bone in which they are located and all communicate with the nasal cavity. The four paired paranasal air sinuses are the frontal sinuses, maxillary sinuses, ethmoid air cells, and sphenoid sinuses. The frontal sinuses are located above each eye on the forehead, while the maxillary sinuses are the largest and found in the maxillary bone below the orbit. The ethmoidal air cells are a collection of smaller air cells located lateral to the anterior superior nasal cavity, while the sphenoid sinuses are found in the posterior portion of the roof of the nasal cavity.
On the other hand, the carotid sinus is not a paranasal air sinus. It is a dilatation of the internal carotid artery, located just beyond the bifurcation of the common carotid artery. It contains baroreceptors that enable it to detect changes in arterial pressure.
Overall, understanding the location and function of these sinuses and the carotid sinus is important in various medical procedures and conditions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 82
Incorrect
-
A 20-year-old male arrives at the emergency department with a sudden worsening of his asthma symptoms. He is experiencing difficulty in speaking and breathing, with cyanosis of the lips and a respiratory rate of 33 breaths per minute. He reports feeling lightheaded. Although his airways are open, his chest sounds are faint upon auscultation. The patient is administered oxygen, nebulized salbutamol, and intravenous aminophylline.
What is the mechanism of action of aminophylline?Your Answer:
Correct Answer: Binds to adenosine receptors and blocks adenosine-mediated bronchoconstriction
Explanation:Aminophylline works by binding to adenosine receptors and preventing adenosine-induced bronchoconstriction. This mode of action is different from antihistamines like loratadine, which is an incorrect option. Theophylline, a shorter acting form of aminophylline, competitively inhibits type III and type IV phosphodiesterase enzymes responsible for breaking down cyclic AMP in smooth muscle cells, leading to possible bronchodilation. Additionally, theophylline binds to the adenosine A2B receptor and blocks adenosine-mediated bronchoconstriction. In inflammatory conditions, theophylline activates histone deacetylase, which prevents the transcription of inflammatory genes that require histone acetylation for transcription to begin. Therefore, the last three options are incorrect. (Source: Drugbank)
Aminophylline infusions are utilized to manage acute asthma and COPD. In patients who have not received xanthines (theophylline or aminophylline) before, a loading dose of 5 mg/kg is administered through a slow intravenous injection lasting at least 20 minutes. For the maintenance infusion, 1g of aminophylline is mixed with 1 litre of normal saline to create a solution of 1 mg/ml. The recommended dose is 500-700 mcg/kg/hour, or 300 mcg/kg/hour for elderly patients. It is important to monitor plasma theophylline concentrations.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 83
Incorrect
-
A 16-year-old male presents to the emergency department with a 48-hour history of tachypnea and tachycardia. His blood glucose level is 18mmol/l. While breathing 40% oxygen, an arterial blood sample is taken. The results show a PaO2 of 22kPa, pH of 7.35, PaCO2 of 3.5kPa, and HCO3- of 18.6 mmol/l. How should these blood gas results be interpreted?
Your Answer:
Correct Answer: Metabolic acidosis with full respiratory compensation
Explanation:The patient’s blood gas analysis shows a lower oxygen pressure by about 10kPa than the percentage of oxygen. The PaCo2 level is 3.5, indicating respiratory alkalosis or compensation for metabolic acidosis. The HCO3- level is 18.6, which suggests metabolic acidosis or metabolic compensation for respiratory alkalosis. These results indicate that the patient has metabolic acidosis with complete respiratory compensation. Additionally, the patient’s high blood glucose level suggests that the metabolic acidosis is due to diabetic ketoacidosis.
Arterial Blood Gas Interpretation: A 5-Step Approach
Arterial blood gas interpretation is a crucial aspect of patient care, particularly in critical care settings. The Resuscitation Council (UK) recommends a 5-step approach to interpreting arterial blood gas results. The first step is to assess the patient’s overall condition. The second step is to determine if the patient is hypoxaemic, with a PaO2 on air of less than 10 kPa. The third step is to assess if the patient is acidaemic (pH <7.35) or alkalaemic (pH >7.45).
The fourth step is to evaluate the respiratory component of the arterial blood gas results. A PaCO2 level greater than 6.0 kPa suggests respiratory acidosis, while a PaCO2 level less than 4.7 kPa suggests respiratory alkalosis. The fifth step is to assess the metabolic component of the arterial blood gas results. A bicarbonate level less than 22 mmol/l or a base excess less than -2mmol/l suggests metabolic acidosis, while a bicarbonate level greater than 26 mmol/l or a base excess greater than +2mmol/l suggests metabolic alkalosis.
To remember the relationship between pH, PaCO2, and bicarbonate, the acronym ROME can be used. Respiratory acidosis or alkalosis is opposite to the pH level, while metabolic acidosis or alkalosis is equal to the pH level. This 5-step approach and the ROME acronym can aid healthcare professionals in interpreting arterial blood gas results accurately and efficiently.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 84
Incorrect
-
A 65-year-old man presents with a persistent dry cough and unintentional weight loss of 5kg over the past 3 months. He denies experiencing chest pain, dyspnoea, fever or haemoptysis. The patient has a history of smoking 10 cigarettes a day for the last 50 years and has been diagnosed with COPD. A nodule is detected on chest x-ray, and biopsy results indicate a tumour originating from the bronchial glands.
What is the most probable diagnosis?Your Answer:
Correct Answer: Adenocarcinoma of the lung
Explanation:Adenocarcinoma has become the most prevalent form of lung cancer, originating from the bronchial glands as a type of non-small-cell lung cancer.
While a bronchogenic cyst may cause chest pain and dysphagia, it is typically diagnosed during childhood and does not stem from the bronchial glands.
Sarcoidosis may result in a persistent cough and weight loss, but it typically affects multiple systems and does not involve nodules originating from the bronchial glands.
Small cell carcinoma of the lung is a significant consideration, but given the description of a tumor originating from the bronchial glands, adenocarcinoma is the more probable diagnosis.
Lung cancer can be classified into two main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC is less common, accounting for only 15% of cases, but has a worse prognosis. NSCLC, on the other hand, is more prevalent and can be further broken down into different subtypes. Adenocarcinoma is now the most common type of lung cancer, likely due to the increased use of low-tar cigarettes. It is often seen in non-smokers and accounts for 62% of cases in ‘never’ smokers. Squamous cell carcinoma is another subtype, and cavitating lesions are more common in this type of lung cancer. Large cell carcinoma, alveolar cell carcinoma, bronchial adenoma, and carcinoid are other subtypes of NSCLC. Differentiating between these subtypes is crucial as different drugs are available to treat each subtype.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 85
Incorrect
-
A 55-year-old woman comes to the clinic complaining of a persistent cough and increased production of sputum over the past year. She also reports feeling fatigued and experiencing shortness of breath. The patient mentions having had four chest infections in the last 12 months, all of which were treated with antibiotics. She has no medical or family history and has never smoked.
The healthcare provider suspects that bronchiectasis may be the underlying cause of her symptoms and orders appropriate tests, including a sputum sample.
What is the most likely organism to be identified?Your Answer:
Correct Answer:
Explanation:Bronchiectasis patients may have various bacteria present in their respiratory system, with Haemophilus influenzae and Pseudomonas aeruginosa being the most common. Staphylococcus aureus has also been found but not as frequently. Respiratory syncytial virus has not been detected in acute exacerbations of bronchiectasis. It is crucial to identify the specific bacteria causing exacerbations as antibiotic sensitivity patterns differ, and sputum culture results can impact the effectiveness of treatment. These findings are outlined in the British Thoracic Society’s guideline for non-CF bronchiectasis and a study by Metaxas et al. on the role of atypical bacteria and respiratory syncytial virus in bronchiectasis exacerbations.
Bronchiectasis is a condition where the airways become permanently dilated due to chronic inflammation or infection. Before treatment, it is important to identify any underlying causes that can be addressed, such as immune deficiencies. Management of bronchiectasis includes physical training, such as inspiratory muscle training, which has been shown to be effective for patients without cystic fibrosis. Postural drainage, antibiotics for exacerbations, and long-term rotating antibiotics for severe cases are also recommended. Bronchodilators may be used in selected cases, and immunizations are important to prevent infections. Surgery may be considered for localized disease. The most common organisms isolated from patients with bronchiectasis include Haemophilus influenzae, Pseudomonas aeruginosa, Klebsiella spp., and Streptococcus pneumoniae.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 86
Incorrect
-
Control of ventilation. Which statement is false?
Your Answer:
Correct Answer: Central chemoreceptors respond to changes in O2
Explanation:The central chemoreceptors increase ventilation in response to an increase in H+ in the brain interstitial fluid.
The Control of Ventilation in the Human Body
The control of ventilation in the human body is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration. The respiratory centres, chemoreceptors, lung receptors, and muscles all play a role in this process. The automatic, involuntary control of respiration occurs from the medulla, which is responsible for controlling the respiratory rate and depth of respiration.
The respiratory centres consist of the medullary respiratory centre, apneustic centre, and pneumotaxic centre. The medullary respiratory centre has two groups of neurons, the ventral group, which controls forced voluntary expiration, and the dorsal group, which controls inspiration. The apneustic centre, located in the lower pons, stimulates inspiration and activates and prolongs inhalation. The pneumotaxic centre, located in the upper pons, inhibits inspiration at a certain point and fine-tunes the respiratory rate.
Ventilatory variables, such as the levels of pCO2, are the most important factors in ventilation control, while levels of O2 are less important. Peripheral chemoreceptors, located in the bifurcation of carotid arteries and arch of the aorta, respond to changes in reduced pO2, increased H+, and increased pCO2 in arterial blood. Central chemoreceptors, located in the medulla, respond to increased H+ in brain interstitial fluid to increase ventilation. It is important to note that the central receptors are not influenced by O2 levels.
Lung receptors also play a role in the control of ventilation. Stretch receptors respond to lung stretching, causing a reduced respiratory rate, while irritant receptors respond to smoke, causing bronchospasm. J (juxtacapillary) receptors are also involved in the control of ventilation. Overall, the control of ventilation is a complex process that involves various components working together to regulate the respiratory rate and depth of respiration.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 87
Incorrect
-
A 65-year-old woman comes to the clinic complaining of fever and productive cough for the past two days. She spends most of her time at home watching TV and rarely goes outside. She has no recent travel history. The patient has a history of gastroesophageal reflux disease but has not been compliant with medication and follow-up appointments. Upon physical examination, crackles are heard on the left lower lobe, and her sputum is described as 'red-currant jelly.'
What is the probable causative organism in this case?Your Answer:
Correct Answer: Klebsiella pneumoniae
Explanation:The patient’s history of severe gastro-oesophageal reflux disease (GORD) suggests that she may have aspiration pneumonia, particularly as she had not received appropriate treatment for it. Aspiration of gastric contents is likely to occur in the right lung due to the steep angle of the right bronchus. Klebsiella pneumoniae is a common cause of aspiration pneumonia and is known to produce ‘red-currant jelly’ sputum.
Mycoplasma pneumoniae is a cause of atypical pneumonia, which typically presents with a non-productive cough and clear lung sounds on auscultation. It is more common in younger individuals.
Burkholderia pseudomallei is the causative organism for melioidosis, a condition that is transmitted through exposure to contaminated water or soil, and is more commonly found in Southeast Asia. However, given the patient’s sedentary lifestyle and lack of travel history, it is unlikely to be the cause of her symptoms.
Streptococcus pneumoniae is the most common cause of pneumonia, but it typically produces yellowish-green sputum rather than the red-currant jelly sputum seen in Klebsiella pneumoniae infections. It also presents with fever, productive cough, and crackles on auscultation.
Understanding Klebsiella Pneumoniae
Klebsiella pneumoniae is a type of bacteria that is commonly found in the gut flora of humans. However, it can also cause various infections such as pneumonia and urinary tract infections. It is more prevalent in individuals who have alcoholism or diabetes. Aspiration is a common cause of pneumonia caused by Klebsiella pneumoniae. One of the distinct features of this type of pneumonia is the production of red-currant jelly sputum. It usually affects the upper lobes of the lungs.
The prognosis for Klebsiella pneumoniae infections is not good. It often leads to the formation of lung abscesses and empyema, which can be fatal. The mortality rate for this type of infection is between 30-50%.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 88
Incorrect
-
A 35-year-old man comes to the clinic complaining of worsening retrosternal chest pain that radiates to the neck and shoulders and is pleuritic in nature. During examination, a pericardial friction rub is heard at the end of expiration. The diagnosis is pericarditis. What nerve supplies this area?
Your Answer:
Correct Answer: Phrenic nerve
Explanation:The correct answer is the phrenic nerve, which provides sensory innervation to the pericardium, the central part of the diaphragm, and the mediastinal part of the parietal pleura. It also supplies motor function to the diaphragm. The long thoracic nerve, medial pectoral nerve, thoracodorsal nerve, and vagus nerve are all incorrect answers.
The Phrenic Nerve: Origin, Path, and Supplies
The phrenic nerve is a crucial nerve that originates from the cervical spinal nerves C3, C4, and C5. It supplies the diaphragm and provides sensation to the central diaphragm and pericardium. The nerve passes with the internal jugular vein across scalenus anterior and deep to the prevertebral fascia of the deep cervical fascia.
The right phrenic nerve runs anterior to the first part of the subclavian artery in the superior mediastinum and laterally to the superior vena cava. In the middle mediastinum, it is located to the right of the pericardium and passes over the right atrium to exit the diaphragm at T8. On the other hand, the left phrenic nerve passes lateral to the left subclavian artery, aortic arch, and left ventricle. It passes anterior to the root of the lung and pierces the diaphragm alone.
Understanding the origin, path, and supplies of the phrenic nerve is essential in diagnosing and treating conditions that affect the diaphragm and pericardium.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 89
Incorrect
-
A 70-year-old man is admitted to the respiratory ward with an exacerbation of COPD. He has been experiencing increased breathlessness and a productive cough for the past week. He is currently on day three of his rescue medication regimen consisting of amoxicillin and prednisolone. According to his previous discharge summary, this patient has a history of carbon dioxide retention. He is currently receiving controlled oxygen therapy via a 28% venturi mask. What is the target oxygen saturation level for this patient?
Your Answer:
Correct Answer: 88%-92%
Explanation:As a junior doctor, you will often encounter patients who retain carbon dioxide and depend on their hypoxic drive to breathe. When using Venturi masks to deliver controlled oxygen, it is important to set a target that balances the patient’s need for oxygen with their reliance on hypoxia to stimulate breathing. Answer 4 is the correct choice in this scenario. Providing too much oxygen, as in answers 2 and 3, can cause the patient to lose their hypoxic drive and become drowsy or confused. Answer 5 does not provide enough oxygen to properly perfuse the tissues. Failing to set a target for these patients is not good clinical practice.
Guidelines for Oxygen Therapy in Emergency Situations
In 2017, the British Thoracic Society updated its guidelines for emergency oxygen therapy. The guidelines state that in critically ill patients, such as those experiencing anaphylaxis or shock, oxygen should be administered through a reservoir mask at a rate of 15 liters per minute. However, certain conditions, such as stable myocardial infarction, are excluded from this recommendation.
The guidelines also provide specific oxygen saturation targets for different patient populations. Acutely ill patients should have a saturation level between 94-98%, while patients at risk of hypercapnia, such as those with COPD, should have a saturation level between 88-92%. Oxygen levels should be reduced in stable patients with satisfactory oxygen saturation.
For COPD patients, a 28% Venturi mask at 4 liters per minute should be used prior to the availability of blood gases. The target oxygen saturation level for these patients should be 88-92% if they have risk factors for hypercapnia but no prior history of respiratory acidosis. If the patient’s pCO2 is normal, the target range should be adjusted to 94-98%.
The guidelines also state that oxygen therapy should not be used routinely in certain situations where there is no evidence of hypoxia, such as in cases of myocardial infarction, acute coronary syndromes, stroke, obstetric emergencies, and anxiety-related hyperventilation.
Overall, these guidelines provide important recommendations for the appropriate use of oxygen therapy in emergency situations, taking into account the specific needs of different patient populations.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 90
Incorrect
-
A 56-year-old woman comes to the clinic complaining of a persistent cough and increased production of sputum over the past year. She also reports feeling fatigued and experiencing shortness of breath. The patient mentions having had four chest infections in the last 12 months, all of which were treated with antibiotics. She has no personal or family history of lung issues and has never smoked.
The healthcare provider suspects that bronchiectasis may be the underlying cause of her symptoms and orders appropriate tests.
Which test is most likely to provide a definitive diagnosis?Your Answer:
Correct Answer: High-resolution computerised tomography
Explanation:Bronchiectasis can be diagnosed through various methods, including chest radiography, histopathology, and pulmonary function tests.
Chest radiography can reveal thickened bronchial walls, cystic lesions with fluid levels, collapsed areas with crowded pulmonary vasculature, and scarring, which are characteristic features of bronchiectasis.
Histopathology, which is a more invasive investigation often done through autopsy or surgery, can show irreversible dilation of bronchial airways and bronchial wall thickening.
However, high-resolution computerised tomography is a more favorable imaging technique as it is less invasive than histopathology.
Pulmonary function tests are commonly used to diagnose bronchiectasis, but they should be used in conjunction with other investigations as they are not sensitive or specific enough to provide sufficient diagnostic evidence on their own. An obstructive pattern is the most common pattern encountered, but a restrictive pattern is also possible.
Understanding the Causes of Bronchiectasis
Bronchiectasis is a condition characterized by the permanent dilation of the airways due to chronic inflammation or infection. There are various factors that can lead to this condition, including post-infective causes such as tuberculosis, measles, pertussis, and pneumonia. Cystic fibrosis, bronchial obstruction caused by lung cancer or foreign bodies, and immune deficiencies like selective IgA and hypogammaglobulinaemia can also contribute to bronchiectasis. Additionally, allergic bronchopulmonary aspergillosis (ABPA), ciliary dyskinetic syndromes like Kartagener’s syndrome and Young’s syndrome, and yellow nail syndrome are other potential causes. Understanding the underlying causes of bronchiectasis is crucial in developing effective treatment plans for patients.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 91
Incorrect
-
A 43-year-old woman comes to the respiratory clinic for an outpatient appointment. She has been experiencing increased breathlessness, particularly at night. Her medical history includes long-standing COPD, heart failure, and previous breast cancer that was treated with a mastectomy and radiotherapy. She used to smoke 20 cigarettes a day for 22 years but has since quit.
During the examination, her respiratory rate is 23/min, oxygen saturation is 93%, blood pressure is 124/98mmHg, and temperature is 37.2ºC. A gas transfer test is performed, and her transfer factor is found to be low.
What is the most likely diagnosis?Your Answer:
Correct Answer: Pulmonary oedema
Explanation:TLCO, also known as transfer factor, is a measurement of how quickly gas can move from a person’s lungs into their bloodstream. To test TLCO, a patient inhales a mixture of carbon monoxide and a tracer gas, holds their breath for 10 seconds, and then exhales forcefully. The exhaled gas is analyzed to determine how much tracer gas was absorbed during the 10-second period.
A high TLCO value is associated with conditions such as asthma, pulmonary hemorrhage, left-to-right cardiac shunts, polycythemia, hyperkinetic states, male gender, and exercise. Conversely, most other conditions result in a low TLCO value, including pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary edema, emphysema, and anemia.
Understanding Transfer Factor in Lung Function Testing
The transfer factor is a measure of how quickly a gas diffuses from the alveoli into the bloodstream. This is typically tested using carbon monoxide, and the results can be given as either the total gas transfer (TLCO) or the transfer coefficient corrected for lung volume (KCO). A raised TLCO may be caused by conditions such as asthma, pulmonary haemorrhage, left-to-right cardiac shunts, polycythaemia, hyperkinetic states, male gender, or exercise. On the other hand, a lower TLCO may be indicative of pulmonary fibrosis, pneumonia, pulmonary emboli, pulmonary oedema, emphysema, anaemia, or low cardiac output.
KCO tends to increase with age, and certain conditions may cause an increased KCO with a normal or reduced TLCO. These conditions include pneumonectomy/lobectomy, scoliosis/kyphosis, neuromuscular weakness, and ankylosis of costovertebral joints (such as in ankylosing spondylitis). Understanding transfer factor is important in lung function testing, as it can provide valuable information about a patient’s respiratory health and help guide treatment decisions.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 92
Incorrect
-
How many fissures can be found in the right lung?
At what age do these fissures typically develop?Your Answer:
Correct Answer: Two
Explanation:The oblique and horizontal fissures are present in the right lung. The lower lobe is separated from the middle and upper lobes by the upper oblique fissure. The superior and middle lobes are separated by the short horizontal fissure.
Anatomy of the Lungs
The lungs are a pair of organs located in the chest cavity that play a vital role in respiration. The right lung is composed of three lobes, while the left lung has two lobes. The apex of both lungs is approximately 4 cm superior to the sternocostal joint of the first rib. The base of the lungs is in contact with the diaphragm, while the costal surface corresponds to the cavity of the chest. The mediastinal surface contacts the mediastinal pleura and has the cardiac impression. The hilum is a triangular depression above and behind the concavity, where the structures that form the root of the lung enter and leave the viscus. The right main bronchus is shorter, wider, and more vertical than the left main bronchus. The inferior borders of both lungs are at the 6th rib in the mid clavicular line, 8th rib in the mid axillary line, and 10th rib posteriorly. The pleura runs two ribs lower than the corresponding lung level. The bronchopulmonary segments of the lungs are divided into ten segments, each with a specific function.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 93
Incorrect
-
A 75-year-old man visits his doctor complaining of weight loss and feeling full quickly. During the abdominal examination, the doctor notices a swollen lymph node in the left supraclavicular region. The doctor suspects that this could be a sign of gastric cancer with the spread of tumor emboli through the thoracic duct as it ascends from the abdomen into the mediastinum. Can you name the two other structures that pass through the diaphragm along with the thoracic duct?
Your Answer:
Correct Answer: Aorta and azygous vein
Explanation:The point at which the aorta, thoracic duct, and azygous vein cross the diaphragm is at T12, specifically at the aortic opening. This is also where the oesophageal branches of the left gastric veins, the vagal trunk, and the oesophagus pass through the diaphragm, at the oesophageal opening located at T10. The left phrenic nerve and sympathetic trunk have their own separate openings in the diaphragm. A lymph node in the left supraclavicular fossa, known as Virchow’s node, is a characteristic sign of early gastric carcinoma.
Structures Perforating the Diaphragm
The diaphragm is a dome-shaped muscle that separates the thoracic and abdominal cavities. It plays a crucial role in breathing by contracting and relaxing to create negative pressure in the lungs. However, there are certain structures that perforate the diaphragm, allowing them to pass through from the thoracic to the abdominal cavity. These structures include the inferior vena cava at the level of T8, the esophagus and vagal trunk at T10, and the aorta, thoracic duct, and azygous vein at T12.
To remember these structures and their corresponding levels, a helpful mnemonic is I 8(ate) 10 EGGS AT 12. This means that the inferior vena cava is at T8, the esophagus and vagal trunk are at T10, and the aorta, thoracic duct, and azygous vein are at T12. Knowing these structures and their locations is important for medical professionals, as they may need to access or treat them during surgical procedures or diagnose issues related to them.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 94
Incorrect
-
A 49-year-old man comes to the clinic with recent onset of asthma and frequent nosebleeds. Laboratory results reveal elevated eosinophil counts and a positive pANCA test.
What is the probable diagnosis?Your Answer:
Correct Answer: Eosinophilic granulomatosis with polyangiitis (EGPA)
Explanation:The presence of adult-onset asthma, eosinophilia, and a positive pANCA test strongly suggests a diagnosis of eosinophilic granulomatosis with polyangiitis (EGPA) in this patient.
Although GPA can cause epistaxis, the absence of other characteristic symptoms such as saddle-shaped nose deformity, haemoptysis, renal failure, and positive cANCA make EGPA a more likely diagnosis.
Polyarteritis Nodosa, Temporal Arteritis, and Toxic Epidermal Necrolysis have distinct clinical presentations that do not match the symptoms exhibited by this patient.
Eosinophilic Granulomatosis with Polyangiitis (Churg-Strauss Syndrome)
Eosinophilic granulomatosis with polyangiitis (EGPA), previously known as Churg-Strauss syndrome, is a type of small-medium vessel vasculitis that is associated with ANCA. It is characterized by asthma, blood eosinophilia (more than 10%), paranasal sinusitis, mononeuritis multiplex, and pANCA positivity in 60% of cases.
Compared to granulomatosis with polyangiitis, EGPA is more likely to have blood eosinophilia and asthma as prominent features. Additionally, leukotriene receptor antagonists may trigger the onset of the disease.
Overall, EGPA is a rare but serious condition that requires prompt diagnosis and treatment to prevent complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 95
Incorrect
-
A 36-year-old male patient complains of fever, malaise, weight loss, dyspnoea, and shoulder & hip joint pain. He has raised erythematous lesions on both legs. His blood tests reveal elevated calcium levels and serum ACE levels. A chest x-ray shows bilateral hilar lymphadenopathy.
What is the probable diagnosis?Your Answer:
Correct Answer: Sarcoidosis
Explanation:If a patient presents with raised serum ACE levels, sarcoidosis should be considered as a possible diagnosis. The combination of erythema nodosum and bilateral hilar lymphadenopathy on a chest x-ray is pathognomonic of sarcoidosis. Lung cancer is unlikely in a young patient without a significant smoking history, and tuberculosis would require recent foreign travel to a TB endemic country. Multiple myeloma would not cause the same symptoms as sarcoidosis. Exposure to organic material would not be a likely cause of raised serum ACE levels.
Understanding Sarcoidosis: A Multisystem Disorder
Sarcoidosis is a condition that affects multiple systems in the body and is characterized by the presence of non-caseating granulomas. The exact cause of this disorder is unknown, but it is more commonly seen in young adults and individuals of African descent.
The symptoms of sarcoidosis can vary depending on the severity of the condition. Acute symptoms may include erythema nodosum, bilateral hilar lymphadenopathy, swinging fever, and polyarthralgia. On the other hand, insidious symptoms may include dyspnea, non-productive cough, malaise, and weight loss. Additionally, some individuals may develop skin symptoms such as lupus pernio, while others may experience hypercalcemia due to increased conversion of vitamin D to its active form.
Sarcoidosis is also associated with several syndromes, including Lofgren’s syndrome, Mikulicz syndrome, and Heerfordt’s syndrome. Lofgren’s syndrome is an acute form of the disease that typically presents with bilateral hilar lymphadenopathy, erythema nodosum, fever, and polyarthralgia. Mikulicz syndrome is characterized by enlargement of the parotid and lacrimal glands due to sarcoidosis, tuberculosis, or lymphoma. Finally, Heerfordt’s syndrome, also known as uveoparotid fever, presents with parotid enlargement, fever, and uveitis secondary to sarcoidosis.
In conclusion, sarcoidosis is a complex disorder that can affect multiple systems in the body. While the exact cause is unknown, early diagnosis and treatment can help manage symptoms and improve outcomes.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 96
Incorrect
-
A 55-year-old man presents to his doctor with complaints of vertigo, which worsens when he rolls over in bed. The doctor diagnoses him with benign paroxysmal positional vertigo.
What treatment options are available to alleviate the symptoms of this condition?Your Answer:
Correct Answer: Epley manoeuvre
Explanation:The Epley manoeuvre is a treatment for BPPV, while the Dix-Hallpike manoeuvre is used for diagnosis. The Epley manoeuvre aims to move fluid in the inner ear to dislodge otoliths, while the Dix-Hallpike manoeuvre involves observing the patient for nystagmus when swiftly lowered from a sitting to supine position. Tinel’s sign is positive in those with carpal tunnel syndrome, where tapping the median nerve over the flexor retinaculum causes paraesthesia. The Trendelenburg test is used to assess venous valve competency in patients with varicose veins.
Benign paroxysmal positional vertigo (BPPV) is a common cause of vertigo that occurs suddenly when there is a change in head position. It is more prevalent in individuals over the age of 55 and is less common in younger patients. Symptoms of BPPV include dizziness and vertigo, which can be accompanied by nausea. Each episode typically lasts for 10-20 seconds and can be triggered by rolling over in bed or looking upwards. A positive Dix-Hallpike manoeuvre, which is indicated by vertigo and rotatory nystagmus, can confirm the diagnosis of BPPV.
Fortunately, BPPV has a good prognosis and usually resolves on its own within a few weeks to months. Treatment options include the Epley manoeuvre, which is successful in around 80% of cases, and vestibular rehabilitation exercises such as the Brandt-Daroff exercises. While medication such as Betahistine may be prescribed, it tends to have limited effectiveness. However, it is important to note that around half of individuals with BPPV may experience a recurrence of symptoms 3-5 years after their initial diagnosis.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 97
Incorrect
-
A 55-year-old Caucasian man presents to the ENT clinic with complaints of gradual hearing loss over the past year. He reports having to turn up the volume on his television to the maximum to hear it comfortably. There are no associated symptoms such as tinnitus or dizziness, and the patient has no significant medical history.
Upon examination, a Weber and Rinne test reveal conductive hearing loss in the left ear. Otoscope examination shows no signs of middle ear effusion or tympanic membrane involvement in either ear. A pure tone audiometry confirms conductive hearing loss in the left ear, with a Carhart's notch present.
The physician diagnoses the patient with otosclerosis and discusses treatment options.
What is the underlying pathology of otosclerosis?Your Answer:
Correct Answer: Replacement of normal bone by vascular spongy bone
Explanation:Otosclerosis is a condition where normal bone is replaced by spongy bone with a high vascularity. This leads to progressive conductive hearing loss, without any other neurological impairments. The replacement of the normal endochondral layer of the bony labyrinth by spongy bone affects the ability of the stapes to act as a piston, resulting in the conduction of sound from the middle ear to the inner ear being affected. Caucasians are most commonly affected by this condition.
Benign paroxysmal positional vertigo (BPPV) is caused by the dislodgement of otoliths into the semicircular canals. This condition results in vertiginous dizziness upon positional changes, but does not affect auditory function.
Meniere’s disease is caused by endolymphatic hydrops, which is the accumulation of fluid in the inner ear. The pathophysiology of this condition is not well understood, but it leads to vertigo, tinnitus, hearing loss, and aural fullness.
Cholesteatoma is caused by the accumulation of desquamated, stratified squamous epithelium. This leads to the formation of a mass that can gradually enlarge and erode the ossicle chain, resulting in conductive hearing loss.
Presbycusis is a type of sensorineural hearing loss that occurs as a result of aging. The degeneration of the organ of Corti is one of the underlying pathological mechanisms that causes this condition. This leads to the destruction of outer hair cells and a decrease in hearing sensitivity.
Understanding Otosclerosis: A Progressive Conductive Deafness
Otosclerosis is a medical condition that occurs when normal bone is replaced by vascular spongy bone. This condition leads to a progressive conductive deafness due to the fixation of the stapes at the oval window. It is an autosomal dominant condition that typically affects young adults, with onset usually occurring between the ages of 20-40 years.
The main features of otosclerosis include conductive deafness, tinnitus, a normal tympanic membrane, and a positive family history. In some cases, patients may also experience a flamingo tinge, which is caused by hyperemia and affects around 10% of patients.
Management of otosclerosis typically involves the use of a hearing aid or stapedectomy. A hearing aid can help to improve hearing, while a stapedectomy involves the surgical removal of the stapes bone and replacement with a prosthesis.
Overall, understanding otosclerosis is important for individuals who may be at risk of developing this condition. Early diagnosis and management can help to improve hearing and prevent further complications.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 98
Incorrect
-
A 16-year-old girl presents to the Emergency department with her mother. The mother reports that her daughter has been experiencing worsening breathlessness and facial puffiness for the past 30 minutes. Apart from eczema, the girl has been healthy and is currently taking oral contraceptives. On examination, the girl appears to be in distress, with laboured breathing and stridor but no wheezing. What is the probable cause of her breathlessness?
Your Answer:
Correct Answer: Angio-oedema
Explanation:Noisy Breathing and Atopy in Adolescents
The presence of noisy breathing in an adolescent may indicate the possibility of stridor, which can be caused by an allergic reaction even in an otherwise healthy individual. The history of atopy, or a tendency to develop allergic reactions, further supports the diagnosis of angio-oedema. The sudden onset of symptoms also adds to the likelihood of this diagnosis.
While asthma is a possible differential diagnosis, it typically presents with expiratory wheezing. However, if the chest is silent, it may indicate a severe and life-threatening form of asthma. Therefore, it is important to consider all possible causes of noisy breathing and atopy in adolescents to ensure prompt and appropriate treatment.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 99
Incorrect
-
Which one of the following statements relating to the root of the spine is false?
Your Answer:
Correct Answer: The subclavian artery arches over the first rib anterior to scalenus anterior
Explanation:The suprapleural membrane, also known as Sibson’s fascia, is located above the pleural cavity. The scalenus anterior muscle is positioned in front of the subclavian vein, while the subclavian artery is situated behind it.
Thoracic Outlet: Where the Subclavian Artery and Vein and Brachial Plexus Exit the Thorax
The thoracic outlet is the area where the subclavian artery and vein and the brachial plexus exit the thorax and enter the arm. This passage occurs over the first rib and under the clavicle. The subclavian vein is the most anterior structure and is located immediately in front of scalenus anterior and its attachment to the first rib. Scalenus anterior has two parts, and the subclavian artery leaves the thorax by passing over the first rib and between these two portions of the muscle. At the level of the first rib, the lower cervical nerve roots combine to form the three trunks of the brachial plexus. The lowest trunk is formed by the union of C8 and T1, and this trunk lies directly posterior to the artery and is in contact with the superior surface of the first rib.
Thoracic outlet obstruction can cause neurovascular compromise.
-
This question is part of the following fields:
- Respiratory System
-
-
Question 100
Incorrect
-
A 25-year-old man who is an avid cyclist has been admitted to the hospital with a severe asthma attack. He is currently in the hospital for two days and is able to speak in complete sentences. His bedside oxygen saturation is at 98%, and he has a heart rate of 58 bpm, blood pressure of 110/68 mmHg, and a respiratory rate of 14 bpm. He is not experiencing any fever. Upon physical examination, there are no notable findings. The blood gas results show a PaO2 of 5.4 kPa (11.3-12.6), PaCO2 of 6.0 kPa (4.7-6.0), pH of 7.38 (7.36-7.44), and HCO3 of 27 mmol/L (20-28). What could be the possible explanation for these results?
Your Answer:
Correct Answer: Venous sample
Explanation:Suspecting Venous Blood Sample with Low PaO2 and Good Oxygen Saturation
A low PaO2 level accompanied by a good oxygen saturation reading may indicate that the blood sample was taken from a vein rather than an artery. This suspicion is further supported if the patient appears to be in good health. It is unlikely that a faulty pulse oximeter is the cause of the discrepancy in readings. Therefore, it is important to consider the possibility of a venous blood sample when interpreting these results. Proper identification of the type of blood sample is crucial in accurately diagnosing and treating the patient’s condition.
-
This question is part of the following fields:
- Respiratory System
-
00
Correct
00
Incorrect
00
:
00
:
0
00
Session Time
00
:
00
Average Question Time (
Secs)