-
Question 1
Incorrect
-
A 35-year-old woman is brought in by ambulance following a car accident where her car was hit by a truck. She has sustained severe facial injuries and shows signs of airway obstruction. Her cervical spine is immobilized. The anesthesiologist has attempted to intubate her but is unsuccessful and decides to perform a surgical cricothyroidotomy.
Which of the following statements regarding surgical cricothyroidotomy is FALSE?Your Answer: Laryngeal stenosis is a potential complication
Correct Answer: It is the surgical airway of choice in patients under the age of 12
Explanation:A surgical cricothyroidotomy is a procedure performed in emergency situations to secure the airway by making an incision in the cricothyroid membrane. It is also known as an emergency surgical airway (ESA) and is typically done when intubation and oxygenation are not possible.
There are certain conditions in which a surgical cricothyroidotomy should not be performed. These include patients who are under 12 years old, those with laryngeal fractures or pre-existing or acute laryngeal pathology, individuals with tracheal transection and retraction of the trachea into the mediastinum, and cases where the anatomical landmarks are obscured due to trauma.
The procedure is carried out in the following steps:
1. Gathering and preparing the necessary equipment.
2. Positioning the patient on their back with the neck in a neutral position.
3. Sterilizing the patient’s neck using antiseptic swabs.
4. Administering local anesthesia, if time permits.
5. Locating the cricothyroid membrane, which is situated between the thyroid and cricoid cartilage.
6. Stabilizing the trachea with the left hand until it can be intubated.
7. Making a transverse incision through the cricothyroid membrane.
8. Inserting the scalpel handle into the incision and rotating it 90°. Alternatively, a haemostat can be used to open the airway.
9. Placing a properly-sized, cuffed endotracheal tube (usually a size 5 or 6) into the incision, directing it into the trachea.
10. Inflating the cuff and providing ventilation.
11. Monitoring for chest rise and auscultating the chest to ensure adequate ventilation.
12. Securing the airway to prevent displacement.Potential complications of a surgical cricothyroidotomy include aspiration of blood, creation of a false passage into the tissues, subglottic stenosis or edema, laryngeal stenosis, hemorrhage or hematoma formation, laceration of the esophagus or trachea, mediastinal emphysema, and vocal cord paralysis or hoarseness.
-
This question is part of the following fields:
- Trauma
-
-
Question 2
Incorrect
-
You are summoned to a cardiac arrest in the resuscitation area of your Emergency Department. As part of your treatment, a dose of adrenaline is given.
Which of the following is NOT a beta-adrenergic effect of adrenaline?Your Answer:
Correct Answer: Systemic vasoconstriction
Explanation:The effects of adrenaline on alpha-adrenergic receptors result in the narrowing of blood vessels throughout the body, leading to increased pressure in the coronary and cerebral arteries. On the other hand, the effects of adrenaline on beta-adrenergic receptors enhance the strength of the heart’s contractions and increase the heart rate, which can potentially improve blood flow to the coronary and cerebral arteries. However, it is important to note that these positive effects may be counteracted by the simultaneous increase in oxygen consumption by the heart, the occurrence of abnormal heart rhythms, reduced oxygen levels due to abnormal blood flow patterns, impaired small blood vessel function, and worsened heart function following a cardiac arrest.
-
This question is part of the following fields:
- Trauma
-
-
Question 3
Incorrect
-
You are requested to evaluate a 42-year-old individual with a knee injury sustained from leaping off a tall wall and landing on a leg that was completely extended. It is suspected that the patient may have experienced a quadriceps tendon rupture. Which of the subsequent observations would indicate this diagnosis?
Your Answer:
Correct Answer: Loss of of active knee extension
Explanation:When a complete quadriceps rupture occurs, it leads to the inability to actively extend the knee. Please refer to the following notes for more detailed information.
Further Reading:
A quadriceps tendon tear or rupture is a traumatic lower limb and joint injury that occurs when there is heavy loading on the leg, causing forced contraction of the quadriceps while the foot is planted and the knee is partially bent. These tears most commonly happen at the osteotendinous junction between the tendon and the superior pole of the patella. Quadriceps tendon ruptures are more common than patellar tendon ruptures.
When a quadriceps tendon tear occurs, the patient usually experiences a tearing sensation and immediate pain. They will then typically complain of pain around the knee and over the tendon. Clinically, there will often be a knee effusion and weakness or inability to actively extend the knee.
In cases of complete quadriceps tears, the patella will be displaced distally, resulting in a low lying patella or patella infera, also known as patella baja. Radiological measurements, such as the Insall-Salvati ratio, can be used to measure patella height. The Insall-Salvati ratio is calculated by dividing the patellar tendon length by the patellar length. A normal ratio is between 0.8 to 1.2, while a low lying patella (patella baja) is less than 0.8 and a high lying patella (patella alta) is greater than 1.2.
-
This question is part of the following fields:
- Trauma
-
-
Question 4
Incorrect
-
A child who has been involved in a car accident undergoes a traumatic cardiac arrest. You perform an anterolateral thoracotomy.
What is the accurate anatomical location for the incision that needs to be made?Your Answer:
Correct Answer: 4th intercostal space from the sternum to the posterior axillary line
Explanation:An anterolateral thoracotomy is a surgical procedure performed on the front part of the chest wall. It is commonly used in Emergency Department thoracotomy, with a preference for a left-sided approach in patients with traumatic arrest or left-sided chest injuries. However, in patients with right-sided chest injuries and profound hypotension but have not arrested, a right-sided approach is recommended.
The procedure is carried out in the following steps:
– An incision is made along the 4th or 5th intercostal space, starting from the sternum at the front and extending to the posterior axillary line.
– The incision should be deep enough to partially cut through the latissimus dorsi muscle.
– The skin, subcutaneous fat, and superficial portions of the pectoralis and serratus muscles are divided.
– The parietal pleura is divided, allowing entry into the pleural cavity.
– The intercostal muscles are completely cut, and a rib spreader is placed and opened to provide visualization of the thoracic cavity.
– The anterolateral approach allows access to important anatomical structures during resuscitation, including the pulmonary hilum, heart, and aorta.In cases where there is suspicion of a right-sided heart injury, an additional incision can be made on the right side, extending across the entire chest. This is known as a bilateral anterolateral thoracotomy or a clamshell thoracotomy.
-
This question is part of the following fields:
- Trauma
-
-
Question 5
Incorrect
-
A 35-year-old woman is brought in by ambulance following a car accident where her car was hit by a truck. She has sustained severe facial injuries and shows signs of airway obstruction. Her cervical spine is immobilized. The anesthesiologist has tried to intubate her but is unsuccessful and decides to perform a surgical cricothyroidotomy.
Which of the following statements about surgical cricothyroidotomy is correct?Your Answer:
Correct Answer: It is contraindicated in the presence of a laryngeal fracture
Explanation:A surgical cricothyroidotomy is a procedure performed in emergency situations to secure the airway by making an incision in the cricothyroid membrane. It is also known as an emergency surgical airway (ESA) and is typically done when intubation and oxygenation are not possible.
There are certain conditions in which a surgical cricothyroidotomy should not be performed. These include patients who are under 12 years old, those with laryngeal fractures or pre-existing or acute laryngeal pathology, individuals with tracheal transection and retraction of the trachea into the mediastinum, and cases where the anatomical landmarks are obscured due to trauma.
The procedure is carried out in the following steps:
1. Gathering and preparing the necessary equipment.
2. Positioning the patient on their back with the neck in a neutral position.
3. Sterilizing the patient’s neck using antiseptic swabs.
4. Administering local anesthesia, if time permits.
5. Locating the cricothyroid membrane, which is situated between the thyroid and cricoid cartilage.
6. Stabilizing the trachea with the left hand until it can be intubated.
7. Making a transverse incision through the cricothyroid membrane.
8. Inserting the scalpel handle into the incision and rotating it 90°. Alternatively, a haemostat can be used to open the airway.
9. Placing a properly-sized, cuffed endotracheal tube (usually a size 5 or 6) into the incision, directing it into the trachea.
10. Inflating the cuff and providing ventilation.
11. Monitoring for chest rise and auscultating the chest to ensure adequate ventilation.
12. Securing the airway to prevent displacement.Potential complications of a surgical cricothyroidotomy include aspiration of blood, creation of a false passage into the tissues, subglottic stenosis or edema, laryngeal stenosis, hemorrhage or hematoma formation, laceration of the esophagus or trachea, mediastinal emphysema, and vocal cord paralysis or hoarseness.
-
This question is part of the following fields:
- Trauma
-
-
Question 6
Incorrect
-
A 45-year-old woman is brought into the emergency room by an ambulance after being involved in a car accident. She was hit by a truck while driving her car and is suspected to have a pelvic injury. She is currently immobilized on a backboard with cervical spine protection and a pelvic binder in place.
According to the ATLS guidelines, how much crystalloid fluid should be administered during the initial assessment?Your Answer:
Correct Answer: 1 L
Explanation:ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.
Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.
-
This question is part of the following fields:
- Trauma
-
-
Question 7
Incorrect
-
You are present at a trauma call for an elderly pedestrian who has been hit by a car. She has bruising on the right side of her chest. The primary survey has been completed and you have been asked to perform a secondary survey.
According to the ATLS guidelines, which of the following indicates a potentially life-threatening chest injury that should be identified and treated during the SECONDARY survey?Your Answer:
Correct Answer: Blunt oesophageal rupture
Explanation:The ATLS guidelines categorize chest injuries in trauma into two groups: life-threatening injuries that require immediate identification and treatment in the primary survey, and potentially life-threatening injuries that should be identified and treated in the secondary survey.
During the primary survey, the focus is on identifying and treating life-threatening thoracic injuries. These include airway obstruction, tracheobronchial tree injury, tension pneumothorax, open pneumothorax, massive haemothorax, and cardiac tamponade. Prompt recognition and intervention are crucial in order to prevent further deterioration and potential fatality.
In the secondary survey, attention is given to potentially life-threatening injuries that may not be immediately apparent. These include simple pneumothorax, haemothorax, flail chest, pulmonary contusion, blunt cardiac injury, traumatic aortic disruption, traumatic diaphragmatic injury, and blunt oesophageal rupture. These injuries may not pose an immediate threat to life, but they still require identification and appropriate management to prevent complications and ensure optimal patient outcomes.
By dividing chest injuries into these two categories and addressing them in a systematic manner, healthcare providers can effectively prioritize and manage trauma patients, ultimately improving their chances of survival and recovery.
-
This question is part of the following fields:
- Trauma
-
-
Question 8
Incorrect
-
A 62 year old male is brought into the emergency department after being hit by a car while crossing the street. The patient is breathing rapidly and clinical examination shows a flail segment. What is the most suitable initial intervention to relieve respiratory distress?
Your Answer:
Correct Answer: Positive pressure ventilation
Explanation:To relieve the patient’s respiratory distress, the most suitable initial intervention would be positive pressure ventilation. This involves providing mechanical assistance to the patient’s breathing by delivering air or oxygen under pressure through a mask or endotracheal tube. This helps to improve oxygenation and ventilation, ensuring that the patient’s lungs are adequately supplied with oxygen and carbon dioxide is effectively removed. Positive pressure ventilation can help stabilize the patient’s breathing and alleviate the respiratory distress caused by the flail segment.
Further Reading:
Flail chest is a serious condition that occurs when multiple ribs are fractured in two or more places, causing a segment of the ribcage to no longer expand properly. This condition is typically caused by high-impact thoracic blunt trauma and is often accompanied by other significant injuries to the chest.
The main symptom of flail chest is a chest deformity, where the affected area moves in a paradoxical manner compared to the rest of the ribcage. This can cause chest pain and difficulty breathing, known as dyspnea. X-rays may also show evidence of lung contusion, indicating further damage to the chest.
In terms of management, conservative treatment is usually the first approach. This involves providing adequate pain relief and respiratory support to the patient. However, if there are associated injuries such as a pneumothorax or hemothorax, specific interventions like thoracostomy or surgery may be necessary.
Positive pressure ventilation can be used to provide internal splinting of the airways, helping to prevent atelectasis, a condition where the lungs collapse. Overall, prompt and appropriate management is crucial in order to prevent further complications and improve the patient’s outcome.
-
This question is part of the following fields:
- Trauma
-
-
Question 9
Incorrect
-
A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 125 bpm, BP is 92/46 mmHg, respiratory rate 35 breaths/minute, and her urine output over the past hour has been 10 ml. She is anxious and slightly confused. The patient weighs approximately 70 kg.
How would you classify her hemorrhage according to the ATLS hemorrhagic shock classification?Your Answer:
Correct Answer: Class III
Explanation:This patient is experiencing an increased heart rate and respiratory rate, as well as a decrease in urine output. Additionally, they are feeling anxious and confused. These symptoms indicate that the patient has suffered a class III haemorrhage at this point in time.
Recognizing the extent of blood loss based on vital signs and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification connects the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.
The ATLS haemorrhagic shock classification is summarized as follows:
CLASS I:
– Blood loss: Up to 750 mL
– Blood loss (% blood volume): Up to 15%
– Pulse rate: Less than 100 bpm
– Systolic BP: Normal
– Pulse pressure: Normal (or increased)
– Respiratory rate: 14-20 breaths per minute
– Urine output: Greater than 30 mL/hr
– CNS/mental status: Slightly anxiousCLASS II:
– Blood loss: 750-1500 mL
– Blood loss (% blood volume): 15-30%
– Pulse rate: 100-120 bpm
– Systolic BP: Normal
– Pulse pressure: Decreased
– Respiratory rate: 20-30 breaths per minute
– Urine output: 20-30 mL/hr
– CNS/mental status: Mildly anxiousCLASS III:
– Blood loss: 1500-2000 mL
– Blood loss (% blood volume): 30-40%
– Pulse rate: 120-140 bpm
– Systolic BP: Decreased
– Pulse pressure: Decreased
– Respiratory rate: 30-40 breaths per minute
– Urine output: 5-15 mL/hr
– CNS/mental status: Anxious, confusedCLASS IV:
– Blood loss: More than 2000 mL
– Blood loss (% blood volume): More than 40%
– Pulse rate: More than 140 bpm
– Systolic BP: Decreased
– Pulse pressure: Decreased
– Respiratory rate: More than 40 breaths per minute
– Urine output: Negligible
– CNS/mental status: Confused, leth -
This question is part of the following fields:
- Trauma
-
-
Question 10
Incorrect
-
You are overseeing the care of a 70-year-old male who suffered extensive burns in a residential fire. After careful calculation, you have determined that the patient's fluid requirement for the next 24 hours is 6 liters. How would you prescribe this amount?
Your Answer:
Correct Answer: 50% (3 litres in this case) over first 8 hours then remaining 50% (3 litres in this case) over following 16 hours
Explanation:Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.
When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.
Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.
The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.
Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.
Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.
-
This question is part of the following fields:
- Trauma
-
-
Question 11
Incorrect
-
You are evaluating a 25-year-old male with a puncture wound to the stomach. Which of the following is NOT a reason for immediate laparotomy in cases of penetrating abdominal injury?
Your Answer:
Correct Answer: Negative diagnostic peritoneal lavage
Explanation:Urgent laparotomy is necessary in cases of penetrating abdominal trauma when certain indications are present. These indications include peritonism, the presence of free air under the diaphragm on an upright chest X-ray, evisceration, hypotension or signs of unstable blood flow, a gunshot wound that has penetrated the peritoneum or retroperitoneum, gastrointestinal bleeding following penetrating trauma, genitourinary bleeding following penetrating trauma, the presence of a penetrating object that is still in place (as removal may result in significant bleeding), and the identification of free fluid on a focused assessment with sonography for trauma (FAST) or a positive diagnostic peritoneal lavage (DPL).
Further Reading:
Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.
When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.
In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.
In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.
-
This question is part of the following fields:
- Trauma
-
-
Question 12
Incorrect
-
A 45-year-old presents to the emergency department following a seemingly minor rear-end car accident. There are no reported sensory deficits. What clinical finding would indicate the need for radiological evaluation of the cervical spine in this scenario?
Your Answer:
Correct Answer: Patient unable to actively rotate their neck 45 degrees to the left and right
Explanation:The ability to rotate the neck actively by 45 degrees to the left and right is a crucial distinction between the ‘no risk’ and ‘low risk’ categories when applying the Canadian C-spine rules. In this case, the patient does not exhibit any high-risk factors for cervical spine injury according to the Canadian C-spine rule. However, they do have a low-risk factor due to their involvement in a minor rear-end motor collision. If a patient with a low-risk factor is unable to actively rotate their neck by 45 degrees in either direction, they should undergo imaging. It is important to note that while the patient’s use of anticoagulation medication may affect the need for brain imaging, it typically does not impact the decision to perform a CT scan of the cervical spine.
Further Reading:
When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.
If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.
NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.
Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.
-
This question is part of the following fields:
- Trauma
-
-
Question 13
Incorrect
-
A 42-year-old woman is brought in by ambulance following a high-speed car accident. There was a prolonged extraction at the scene, and a full trauma call is made. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore needles have been inserted in her antecubital fossa, and a complete set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
What approximate percentage of her circulatory volume has she lost?Your Answer:
Correct Answer: 30-40%
Explanation:This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.
Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.
In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.
In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.
The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.
Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.
-
This question is part of the following fields:
- Trauma
-
-
Question 14
Incorrect
-
A 21 year old patient is brought into the emergency department with burns to the left arm. The patient informs you that one of their friends had accidentally set their sleeve on fire with a lighter, causing the material to quickly burn and stick to their skin. The patient's entire left arm is burned, with the front part experiencing superficial partial thickness burns and the back part having areas of deep partial thickness and full thickness burns. What is the estimated total body surface area of burn in this patient?
Your Answer:
Correct Answer: 9%
Explanation:To estimate the total body surface area of burn, we need to consider the rule of nines. This rule divides the body into different regions, each representing a certain percentage of the total body surface area. According to the rule of nines, the left arm accounts for 9% of the total body surface area. Therefore, the estimated total body surface area of burn in this patient is 9%.
Further Reading:
Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.
When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.
Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.
The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.
Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.
Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.
-
This question is part of the following fields:
- Trauma
-
-
Question 15
Incorrect
-
A 32-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. A helical contrast-enhanced CT scan of the chest reveals a traumatic aortic injury. After receiving analgesia, which has effectively controlled her pain, her vital signs are as follows: HR 95, BP 128/88, SaO2 97% on room air, temperature is 37.4ºC.
Which of the following medications would be most appropriate to administer next?Your Answer:
Correct Answer: Esmolol
Explanation:Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.
The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.
Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.
A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.
Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic
-
This question is part of the following fields:
- Trauma
-
-
Question 16
Incorrect
-
A 35 year old male presents to the emergency department after twisting his right ankle while playing basketball. He reports pain on the outer side of his ankle and foot, and experiences discomfort when putting weight on it.
After conducting a physical examination, the healthcare provider decides to order ankle and foot X-rays based on the Ottawa foot & ankle rules. According to these guidelines, which of the following scenarios would warrant a foot X-ray?Your Answer:
Correct Answer: Tenderness over navicular
Explanation:An X-ray of the foot is recommended when there is pain in the base of the fifth metatarsal or the navicular bone, as well as an inability to bear weight immediately after an injury or in the emergency department. The Ottawa ankle rules can also be used to determine if an X-ray is necessary for ankle injuries. These rules focus on two specific areas (the malleolar and midfoot zones) to determine if an X-ray of the ankle or foot is needed. More information on these rules can be found in the notes below.
Further Reading:
Ankle fractures are traumatic lower limb and joint injuries that involve the articulation between the tibia, fibula, and talus bones. The ankle joint allows for plantar and dorsiflexion of the foot. The key bony prominences of the ankle are called malleoli, with the medial and posterior malleolus being prominences of the distal tibia and the lateral malleolus being a prominence of the distal fibula. The distal fibula and tibia are joined together by the distal tibiofibular joint or syndesmosis, which is comprised of three key ligaments. An ankle X-ray series is often used to guide clinical decision making in patients with ankle injuries, using the Ottawa ankle rules to determine if an X-ray is necessary. Ankle fractures are commonly described by the anatomical fracture pattern seen on X-ray relative to the malleoli involved, such as isolated malleolus fractures, bimalleolar fractures, and trimalleolar fractures. The Weber classification is a commonly used system for distal fibula fractures, categorizing them as Weber A, B, or C based on the level and extent of the fracture.
-
This question is part of the following fields:
- Trauma
-
-
Question 17
Incorrect
-
You assess a patient with airway obstruction in the resuscitation area of the Emergency Department at your hospital.
Which of the following is the LEAST probable cause?Your Answer:
Correct Answer: GCS score of 9
Explanation:The airway is deemed at risk when the Glasgow Coma Scale (GCS) falls below 8. There are various factors that can lead to airway obstruction, including the presence of blood or vomit in the airway, a foreign object such as a tooth or food blocking the passage, direct injury to the face or throat, inflammation of the epiglottis (epiglottitis), involuntary closure of the larynx (laryngospasm), constriction of the bronchial tubes (bronchospasm), swelling in the pharynx due to infection or fluid accumulation (oedema), excessive bronchial secretions, and blockage of a tracheostomy tube.
-
This question is part of the following fields:
- Trauma
-
-
Question 18
Incorrect
-
A trauma patient has arrived at the emergency department for evaluation. There is worry about a potential cervical spine injury. What criteria would classify the patient as high risk for cervical spine injury?
Your Answer:
Correct Answer: Age ≥ 65
Explanation:When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.
If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.
NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.
Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.
-
This question is part of the following fields:
- Trauma
-
-
Question 19
Incorrect
-
You evaluate the airway and breathing of a patient who has been brought into the emergency department by an ambulance after being rescued from a house fire. You suspect that the patient may have an obstructed airway.
Which of the following statements about managing the airway and breathing in burn patients is NOT true?Your Answer:
Correct Answer: High tidal volumes should be used in intubated patients
Explanation:Patients who have suffered burns should receive high-flow oxygen (15 L) through a reservoir bag while their breathing is being evaluated. If intubation is necessary, it is crucial to use an appropriately sized endotracheal tube (ETT). Using a tube that is too small can make it difficult or even impossible to ventilate the patient, clear secretions, or perform bronchoscopy.
According to the ATLS guidelines, adults should be intubated using an ETT with an internal diameter (ID) of at least 7.5 mm or larger. Children, on the other hand, should have an ETT with an ID of at least 4.5 mm. Once a patient has been intubated, it is important to continue administering 100% oxygen until their carboxyhemoglobin levels drop to less than 5%.
To protect the lungs, it is recommended to use lung protective ventilation techniques. This involves using low tidal volumes (4-8 mL/kg) and ensuring that peak inspiratory pressures do not exceed 30 cmH2O.
-
This question is part of the following fields:
- Trauma
-
-
Question 20
Incorrect
-
A child presents with a thermal burn affecting her left hand that occurred in the kitchen while baking. You evaluate the burn and observe that it is a deep partial-thickness burn.
Which of the following statements about deep partial-thickness burns is accurate?Your Answer:
Correct Answer: They do not blanch with pressure
Explanation:Assessing the depth of a burn is crucial for determining the severity of the injury and planning appropriate wound care. Burns are typically classified as first-, second-, or third-degree, depending on how deeply they penetrate the skin’s surface.
First-degree burns, also known as superficial burns, only affect the outer layer of skin called the epidermis. These burns are characterized by redness and pain, with dry skin and no blistering. An example of a first-degree burn is mild sunburn. They usually do not require intravenous fluid replacement and are not included in the assessment of the burn’s extent. Long-term tissue damage is rare with these burns.
Second-degree burns, also called partial-thickness burns, involve both the epidermis and part of the dermis layer of skin. They can be further categorized as superficial partial-thickness or deep partial-thickness burns. Superficial partial-thickness burns are moist, hypersensitive, potentially blistered, uniformly pink, and blanch when touched. Deep partial-thickness burns are drier, less painful, potentially blistered, red or mottled in appearance, and do not blanch when touched.
Third-degree burns, also known as full-thickness burns, destroy both the epidermis and dermis layers of skin and extend into the subcutaneous tissue. These burns may also damage underlying bones, muscles, and tendons. The burn site appears translucent or waxy white, or it can be charred. Once the epidermis is removed, the underlying dermis may initially appear red but does not blanch under pressure. This dermis is typically dry and does not produce any fluid. Since the nerve endings are destroyed, there is no sensation in the affected area.
-
This question is part of the following fields:
- Trauma
-
-
Question 21
Incorrect
-
A 4-year-old girl is brought in by an emergency ambulance after being involved in a car accident. A trauma alert is activated, and you are tasked with obtaining intravenous access and administering a fluid bolus. However, you are unable to successfully establish intravenous access and decide to prepare for intraosseous access instead.
Which of the following anatomical sites would be the most appropriate for insertion?Your Answer:
Correct Answer: Proximal humerus
Explanation:Intraosseous access is recommended in trauma, burns, or resuscitation situations when other attempts at venous access fail or would take longer than one minute. It is particularly recommended for circulatory access in pediatric cardiac arrest cases. This technique can also be used when urgent blood sampling or intravenous access is needed and traditional cannulation is difficult and time-consuming. It serves as a temporary measure to stabilize the patient and facilitate long-term intravenous access.
Potential complications of intraosseous access include compartment syndrome, infection, and fracture. Therefore, it is contraindicated to use this method on the side of definitively fractured bones or limbs with possible proximal fractures. It should also not be used at sites of previous attempts or in patients with conditions such as osteogenesis imperfecta or osteopetrosis.
There are several possible sites for intraosseous access insertion. These include the proximal humerus, approximately 1 cm above the surgical neck; the proximal tibia, on the anterior surface, 2-3 cm below the tibial tuberosity; the distal tibia, 3 cm proximal to the most prominent aspect of the medial malleolus; the femoral region, on the anterolateral surface, 3 cm above the lateral condyle; the iliac crest; and the sternum.
-
This question is part of the following fields:
- Trauma
-
-
Question 22
Incorrect
-
A 42-year-old man was involved in a car accident where his vehicle collided with a wall. He was rescued at the scene and has been brought to the hospital by ambulance. He is currently wearing a cervical immobilization device. He is experiencing chest pain on the left side and is having difficulty breathing. As the leader of the trauma response team, his vital signs are as follows: heart rate of 110, blood pressure of 102/63, oxygen saturation of 90% on room air. His Glasgow Coma Scale score is 15 out of 15. Upon examination, he has extensive bruising on the left side of his chest and shows reduced chest expansion, dullness to percussion, and decreased breath sounds throughout the entire left hemithorax.
What is the most likely diagnosis for this patient?Your Answer:
Correct Answer: Massive haemothorax
Explanation:A massive haemothorax occurs when more than 1500 mL of blood, which is about 1/3 of the patient’s blood volume, rapidly accumulates in the chest cavity. The classic signs of a massive haemothorax include decreased chest expansion, decreased breath sounds, and dullness to percussion. Both tension pneumothorax and massive haemothorax can cause decreased breath sounds, but they can be differentiated through percussion. Hyperresonance indicates tension pneumothorax, while dullness suggests a massive haemothorax.
The first step in managing a massive haemothorax is to simultaneously restore blood volume and decompress the chest cavity by inserting a chest drain. In most cases, the bleeding in a haemothorax has already stopped by the time management begins, and simple drainage is sufficient. It is important to use a chest drain of adequate size (preferably 36F) to ensure effective drainage of the haemothorax without clotting.
-
This question is part of the following fields:
- Trauma
-
-
Question 23
Incorrect
-
A 45-year-old woman is brought into the emergency room by an ambulance with sirens blaring after being involved in a car accident. She was hit by a truck while crossing the street and is suspected to have a pelvic injury. Her condition is unstable, and the hospital has activated the massive transfusion protocol. You decide to also administer tranexamic acid and give an initial dose of 1 g intravenously over a period of 10 minutes.
What should be the subsequent dose of tranexamic acid and how long should it be administered for?Your Answer:
Correct Answer: 1 g IV over 8 hours
Explanation:ATLS guidelines now suggest administering only 1 liter of crystalloid fluid during the initial assessment. If patients do not respond to the crystalloid, it is recommended to quickly transition to blood products. Studies have shown that infusing more than 1.5 liters of crystalloid fluid is associated with higher mortality rates in trauma cases. Therefore, it is advised to prioritize the early use of blood products and avoid large volumes of crystalloid fluid in trauma patients. In cases where it is necessary, massive transfusion should be considered, defined as the transfusion of more than 10 units of blood in 24 hours or more than 4 units of blood in one hour. For patients with evidence of Class III and IV hemorrhage, early resuscitation with blood and blood products in low ratios is recommended.
Based on the findings of significant trials, such as the CRASH-2 study, the use of tranexamic acid is now recommended within 3 hours. This involves administering a loading dose of 1 gram intravenously over 10 minutes, followed by an infusion of 1 gram over eight hours. In some regions, tranexamic acid is also being utilized in the prehospital setting.
-
This question is part of the following fields:
- Trauma
-
-
Question 24
Incorrect
-
A 35-year-old man is brought into the emergency room by an ambulance with sirens blaring. He has been in a building fire and has sustained severe burns. Upon assessing his airway, you have concerns about potential airway blockage. You decide to proceed with intubation and begin preparing the required equipment.
What is one reason for performing early intubation in a burn patient?Your Answer:
Correct Answer: Hoarseness of voice
Explanation:Early assessment of the airway is a critical aspect of managing a burned patient. Airway obstruction can occur rapidly due to direct injury or swelling from the burn. If there is a history of trauma, the airway should be evaluated while maintaining cervical spine control.
There are several risk factors for airway obstruction in burned patients, including inhalation injury, soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, and neck, burns inside the mouth, large burn area and increasing burn depth, associated trauma, and a carboxyhemoglobin level above 10%.
In cases where significant swelling is anticipated, it may be necessary to urgently secure the airway with an uncut endotracheal tube before the swelling becomes severe. Delaying recognition of impending airway obstruction can make intubation difficult, and a surgical airway may be required.
The American Burn Life Support (ABLS) guidelines recommend early intubation in certain situations. These include signs of airway obstruction, extensive burns, deep facial burns, burns inside the mouth, significant swelling or risk of swelling, difficulty swallowing, respiratory compromise, decreased level of consciousness, and anticipated transfer of a patient with a large burn and airway issues without qualified personnel to intubate during transport.
Circumferential burns of the neck can cause tissue swelling around the airway, making early intubation necessary in these cases as well.
-
This question is part of the following fields:
- Trauma
-
-
Question 25
Incorrect
-
You are evaluating a 25-year-old patient who has arrived at the emergency department by ambulance following a fall from a second-floor balcony. The patient reports experiencing upper abdominal discomfort, which raises concerns about potential hepatic and splenic injuries. In the trauma setting, which imaging modality would be considered the gold standard for assessing these organs?
Your Answer:
Correct Answer: Computerised tomography
Explanation:CT scan is considered the most reliable imaging technique for diagnosing intra-abdominal conditions. It is also considered the gold standard for evaluating organ damage. However, it is crucial to carefully consider the specific circumstances before using CT scan, as it may not be suitable for unstable patients or those who clearly require immediate surgical intervention. In such cases, other methods like FAST can be used to detect fluid in the abdominal cavity, although it is not as accurate in assessing injuries to solid organs or hollow structures within the abdomen.
Further Reading:
Abdominal trauma can be classified into two categories: blunt trauma and penetrating trauma. Blunt trauma occurs when compressive or deceleration forces are applied to the abdomen, often resulting from road traffic accidents or direct blows during sports. The spleen and liver are the organs most commonly injured in blunt abdominal trauma. On the other hand, penetrating trauma involves injuries that pierce the skin and enter the abdominal cavity, such as stabbings, gunshot wounds, or industrial accidents. The bowel and liver are the organs most commonly affected in penetrating injuries.
When it comes to imaging in blunt abdominal trauma, there are three main modalities that are commonly used: focused assessment with sonography in trauma (FAST), diagnostic peritoneal lavage (DPL), and computed tomography (CT). FAST is a non-invasive and quick method used to detect free intraperitoneal fluid, aiding in the decision on whether a laparotomy is needed. DPL is also used to detect intraperitoneal blood and can be used in both unstable blunt abdominal trauma and penetrating abdominal trauma. However, it is more invasive and time-consuming compared to FAST and has largely been replaced by it. CT, on the other hand, is the gold standard for diagnosing intra-abdominal pathology and is used in stable abdominal trauma patients. It offers high sensitivity and specificity but requires a stable and cooperative patient. It also involves radiation and may have delays in availability.
In the case of penetrating trauma, it is important to assess these injuries with the help of a surgical team. Penetrating objects should not be removed in the emergency department as they may be tamponading underlying vessels. Ideally, these injuries should be explored in the operating theater.
In summary, abdominal trauma can be classified into blunt trauma and penetrating trauma. Blunt trauma is caused by compressive or deceleration forces and commonly affects the spleen and liver. Penetrating trauma involves injuries that pierce the skin and commonly affect the bowel and liver. Imaging modalities such as FAST, DPL, and CT are used to assess and diagnose abdominal trauma, with CT being the gold standard. Penetrating injuries should be assessed by a surgical team and should ideally be explored in the operating theater.
-
This question is part of the following fields:
- Trauma
-
-
Question 26
Incorrect
-
The FY1 doctor seeks your guidance concerning an elderly patient they are managing who has experienced a head injury. They are uncertain whether they should request a CT head scan for their patient. Which of the following is NOT among the clinical criteria for an urgent CT head scan in an elderly individual?
Your Answer:
Correct Answer: 1 episode of vomiting
Explanation:If an adult with a head injury experiences more than one episode of vomiting, it is recommended to undergo a CT scan of the head. There are several criteria for an urgent CT scan in individuals with a head injury, including a Glasgow Coma Scale (GCS) score of less than 13 on initial assessment in the emergency department (ED), a GCS score of less than 15 at 2 hours after the injury on assessment in the ED, suspected open or depressed skull fracture, any sign of basal skull fracture (such as haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, or Battle’s sign), post-traumatic seizure, new focal neurological deficit, and being on anticoagulation medication. If any of these signs are present, a CT scan should be performed within 1 hour, except for patients on anticoagulation medication who should undergo a CT scan within 8 hours if none of the other signs are present. However, if a patient on anticoagulation medication has any of the other signs, the CT scan should be performed within 1 hour.
Further Reading:
Indications for CT Scanning in Head Injuries (Adults):
– CT head scan should be performed within 1 hour if any of the following features are present:
– GCS < 13 on initial assessment in the ED
– GCS < 15 at 2 hours after the injury on assessment in the ED
– Suspected open or depressed skull fracture
– Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
– Post-traumatic seizure
– New focal neurological deficit
– > 1 episode of vomitingIndications for CT Scanning in Head Injuries (Children):
– CT head scan should be performed within 1 hour if any of the features in List 1 are present:
– Suspicion of non-accidental injury
– Post-traumatic seizure but no history of epilepsy
– GCS < 14 on initial assessment in the ED for children more than 1 year of age
– Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
– At 2 hours after the injury, GCS < 15
– Suspected open or depressed skull fracture or tense fontanelle
– Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
– New focal neurological deficit
– For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head– CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
– Loss of consciousness lasting more than 5 minutes (witnessed)
– Abnormal drowsiness
– Three or more discrete episodes of vomiting
– Dangerous mechanism of injury (high-speed road traffic accident, fall from a height. -
This question is part of the following fields:
- Trauma
-
-
Question 27
Incorrect
-
A 45 year old is brought into the emergency department after sustaining a head injury after falling from a staircase. The patient opens his eyes to voice and localises to pain. The patient's speech is slurred and he appears disoriented. What is this patient's Glasgow Coma Score (GCS)?
Your Answer:
Correct Answer: 12
Explanation:In this case, the patient opens his eyes to voice, which corresponds to a score of 3 on the eye opening component. The patient localizes to pain, indicating a purposeful motor response, which corresponds to a score of 5 on the motor response component. However, the patient’s speech is slurred and he appears disoriented, suggesting an impaired verbal response. This would correspond to a score of 4 on the verbal response component.
To calculate the GCS, we sum up the scores from each component. In this case, the patient’s GCS would be 3 + 4 + 5 = 12
Further Reading:
Indications for CT Scanning in Head Injuries (Adults):
– CT head scan should be performed within 1 hour if any of the following features are present:
– GCS < 13 on initial assessment in the ED
– GCS < 15 at 2 hours after the injury on assessment in the ED
– Suspected open or depressed skull fracture
– Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
– Post-traumatic seizure
– New focal neurological deficit
– > 1 episode of vomitingIndications for CT Scanning in Head Injuries (Children):
– CT head scan should be performed within 1 hour if any of the features in List 1 are present:
– Suspicion of non-accidental injury
– Post-traumatic seizure but no history of epilepsy
– GCS < 14 on initial assessment in the ED for children more than 1 year of age
– Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
– At 2 hours after the injury, GCS < 15
– Suspected open or depressed skull fracture or tense fontanelle
– Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
– New focal neurological deficit
– For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head– CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
– Loss of consciousness lasting more than 5 minutes (witnessed)
– Abnormal drowsiness
– Three or more discrete episodes of vomiting
– Dangerous mechanism of injury (high-speed road traffic accident, fall from a height. -
This question is part of the following fields:
- Trauma
-
-
Question 28
Incorrect
-
A 32-year-old woman comes to the emergency department after falling while drunk. She has a 6.5 cm cut on the back of her head and says she feels a tingling sensation in the area of the cut. Which of the following structures provides sensory innervation to the back of the head?
Your Answer:
Correct Answer: C2 and C3 cervical nerves
Explanation:The main sensory supply to the back of the scalp comes from the C2 and C3 cervical nerves. The scalp receives innervation from branches of both the trigeminal nerve and the cervical nerves, as depicted in the illustration in the notes. The C2 and C3 cervical nerves are primarily responsible for supplying sensation to the posterior scalp.
Further Reading:
The scalp is the area of the head that is bordered by the face in the front and the neck on the sides and back. It consists of several layers, including the skin, connective tissue, aponeurosis, loose connective tissue, and periosteum of the skull. These layers provide protection and support to the underlying structures of the head.
The blood supply to the scalp primarily comes from branches of the external carotid artery and the ophthalmic artery, which is a branch of the internal carotid artery. These arteries provide oxygen and nutrients to the scalp tissues.
The scalp also has a complex venous drainage system, which is divided into superficial and deep networks. The superficial veins correspond to the arterial branches and are responsible for draining blood from the scalp. The deep venous network is drained by the pterygoid venous plexus.
In terms of innervation, the scalp receives sensory input from branches of the trigeminal nerve and the cervical nerves. These nerves transmit sensory information from the scalp to the brain, allowing us to perceive touch, pain, and temperature in this area.
-
This question is part of the following fields:
- Trauma
-
-
Question 29
Incorrect
-
A 42-year-old woman was involved in a car accident where her vehicle collided with a wall at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel. She is experiencing severe bruising on her anterior chest wall and is complaining of chest pain. A chest X-ray reveals a significantly widened mediastinum, tracheal deviation to the right, and fractures of the first and second ribs. Her vital signs are as follows: heart rate of 94, blood pressure of 128/73, and oxygen saturation of 99% on high flow oxygen.
What is the SINGLE most likely diagnosis?Your Answer:
Correct Answer: Traumatic aortic rupture
Explanation:Traumatic aortic rupture is a relatively common cause of sudden death following major trauma, especially high-speed road traffic accidents (RTAs). It is estimated that 15-20% of deaths from RTAs are due to this injury. If the aortic rupture is promptly recognized and treated, patients who survive the initial injury can fully recover.
Surviving patients often have an incomplete laceration near the ligamentum arteriosum of the aorta. The continuity is maintained by either an intact adventitial layer or a contained mediastinal hematoma, which prevents immediate exsanguination and death.
Detecting traumatic aortic rupture can be challenging as many patients do not exhibit specific symptoms, and other injuries may also be present, making the diagnosis unclear.
Chest X-ray findings can aid in the diagnosis and include fractures of the 1st and 2nd ribs, a grossly widened mediastinum, a hazy left lung field, obliteration of the aortic knob, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus (or NG tube) to the right.
Helical contrast-enhanced CT scanning is highly sensitive and specific for detecting aortic rupture, but it should only be performed on hemodynamically stable patients.
Treatment options include primary repair or resection of the torn segment with replacement using an interposition graft. Endovascular repair is also now considered an acceptable alternative approach.
-
This question is part of the following fields:
- Trauma
-
-
Question 30
Incorrect
-
A 32 year old male is brought into the emergency department following a car accident. You evaluate the patient's risk of cervical spine injury using the Canadian C-spine rule. What is included in the assessment for the Canadian C-spine rule?
Your Answer:
Correct Answer: Ask patient to rotate their neck 45 degrees to the left and right
Explanation:The Canadian C-spine assessment includes evaluating for tenderness along the midline of the spine, checking for any abnormal sensations in the limbs, and assessing the ability to rotate the neck 45 degrees to the left and right. While a significant portion of the assessment relies on gathering information from the patient’s history, there are also physical examination components involved. These include testing for tenderness along the midline of the cervical spine, asking the patient to perform neck rotations, ensuring they are comfortable in a sitting position, and assessing for any sensory deficits in the limbs. It is important to note that any reported paraesthesia in the upper or lower limbs can also be taken into consideration during the assessment.
Further Reading:
When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.
If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.
NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.
Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.
-
This question is part of the following fields:
- Trauma
-
00
Correct
00
Incorrect
00
:
00
:
00
Session Time
00
:
00
Average Question Time (
Secs)