00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Mins)
  • Question 1 - A 45-year-old woman is brought into the emergency department after a car accident....

    Correct

    • A 45-year-old woman is brought into the emergency department after a car accident. She has significant bruising on the right side of her chest. You suspect she may have a hemothorax. What clinical signs would you anticipate observing in a patient with a hemothorax?

      Your Answer: Decreased fremitus on affected side

      Explanation:

      Haemothorax often leads to reduced or absent air entry, a dull percussion sound, and decreased fremitus on the affected side. Commonly observed symptoms in patients with haemothorax include decreased or absent air entry, a dull percussion note when the affected side is tapped, reduced fremitus on the affected side, and in cases of massive haemothorax, tracheal deviation away from the affected side. Other signs that may be present include a rapid heart rate (tachycardia), rapid breathing (tachypnoea), low blood pressure (hypotension), and signs of shock.

      Further Reading:

      Haemothorax is the accumulation of blood in the pleural cavity of the chest, usually resulting from chest trauma. It can be difficult to differentiate from other causes of pleural effusion on a chest X-ray. Massive haemothorax refers to a large volume of blood in the pleural space, which can impair physiological function by causing blood loss, reducing lung volume for gas exchange, and compressing thoracic structures such as the heart and IVC.

      The management of haemothorax involves replacing lost blood volume and decompressing the chest. This is done through supplemental oxygen, IV access and cross-matching blood, IV fluid therapy, and the insertion of a chest tube. The chest tube is connected to an underwater seal and helps drain the fluid, pus, air, or blood from the pleural space. In cases where there is prompt drainage of a large amount of blood, ongoing significant blood loss, or the need for blood transfusion, thoracotomy and ligation of bleeding thoracic vessels may be necessary. It is important to have two IV accesses prior to inserting the chest drain to prevent a drop in blood pressure.

      In summary, haemothorax is the accumulation of blood in the pleural cavity due to chest trauma. Managing haemothorax involves replacing lost blood volume and decompressing the chest through various interventions, including the insertion of a chest tube. Prompt intervention may be required in cases of significant blood loss or ongoing need for blood transfusion.

    • This question is part of the following fields:

      • Trauma
      25.4
      Seconds
  • Question 2 - A 32-year-old woman comes to the emergency department after falling while drunk. She...

    Incorrect

    • A 32-year-old woman comes to the emergency department after falling while drunk. She has a 6.5 cm cut on the back of her head and says she feels a tingling sensation in the area of the cut. Which of the following structures provides sensory innervation to the back of the head?

      Your Answer: Auriculo-temporal branch of fifth cranial nerve

      Correct Answer: C2 and C3 cervical nerves

      Explanation:

      The main sensory supply to the back of the scalp comes from the C2 and C3 cervical nerves. The scalp receives innervation from branches of both the trigeminal nerve and the cervical nerves, as depicted in the illustration in the notes. The C2 and C3 cervical nerves are primarily responsible for supplying sensation to the posterior scalp.

      Further Reading:

      The scalp is the area of the head that is bordered by the face in the front and the neck on the sides and back. It consists of several layers, including the skin, connective tissue, aponeurosis, loose connective tissue, and periosteum of the skull. These layers provide protection and support to the underlying structures of the head.

      The blood supply to the scalp primarily comes from branches of the external carotid artery and the ophthalmic artery, which is a branch of the internal carotid artery. These arteries provide oxygen and nutrients to the scalp tissues.

      The scalp also has a complex venous drainage system, which is divided into superficial and deep networks. The superficial veins correspond to the arterial branches and are responsible for draining blood from the scalp. The deep venous network is drained by the pterygoid venous plexus.

      In terms of innervation, the scalp receives sensory input from branches of the trigeminal nerve and the cervical nerves. These nerves transmit sensory information from the scalp to the brain, allowing us to perceive touch, pain, and temperature in this area.

    • This question is part of the following fields:

      • Trauma
      81.9
      Seconds
  • Question 3 - The FY1 doctor seeks your guidance concerning an elderly patient they are managing...

    Correct

    • The FY1 doctor seeks your guidance concerning an elderly patient they are managing who has experienced a head injury. They are uncertain whether they should request a CT head scan for their patient. Which of the following is NOT among the clinical criteria for an urgent CT head scan in an elderly individual?

      Your Answer: 1 episode of vomiting

      Explanation:

      If an adult with a head injury experiences more than one episode of vomiting, it is recommended to undergo a CT scan of the head. There are several criteria for an urgent CT scan in individuals with a head injury, including a Glasgow Coma Scale (GCS) score of less than 13 on initial assessment in the emergency department (ED), a GCS score of less than 15 at 2 hours after the injury on assessment in the ED, suspected open or depressed skull fracture, any sign of basal skull fracture (such as haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, or Battle’s sign), post-traumatic seizure, new focal neurological deficit, and being on anticoagulation medication. If any of these signs are present, a CT scan should be performed within 1 hour, except for patients on anticoagulation medication who should undergo a CT scan within 8 hours if none of the other signs are present. However, if a patient on anticoagulation medication has any of the other signs, the CT scan should be performed within 1 hour.

      Further Reading:

      Indications for CT Scanning in Head Injuries (Adults):
      – CT head scan should be performed within 1 hour if any of the following features are present:
      – GCS < 13 on initial assessment in the ED
      – GCS < 15 at 2 hours after the injury on assessment in the ED
      – Suspected open or depressed skull fracture
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – Post-traumatic seizure
      – New focal neurological deficit
      – > 1 episode of vomiting

      Indications for CT Scanning in Head Injuries (Children):
      – CT head scan should be performed within 1 hour if any of the features in List 1 are present:
      – Suspicion of non-accidental injury
      – Post-traumatic seizure but no history of epilepsy
      – GCS < 14 on initial assessment in the ED for children more than 1 year of age
      – Paediatric GCS < 15 on initial assessment in the ED for children under 1 year of age
      – At 2 hours after the injury, GCS < 15
      – Suspected open or depressed skull fracture or tense fontanelle
      – Any sign of basal skull fracture (haemotympanum, ‘panda’ eyes, cerebrospinal fluid leakage from the ear or nose, Battle’s sign)
      – New focal neurological deficit
      – For children under 1 year, presence of bruise, swelling or laceration of more than 5 cm on the head

      – CT head scan should be performed within 1 hour if none of the above features are present but two or more of the features in List 2 are present:
      – Loss of consciousness lasting more than 5 minutes (witnessed)
      – Abnormal drowsiness
      – Three or more discrete episodes of vomiting
      – Dangerous mechanism of injury (high-speed road traffic accident, fall from a height.

    • This question is part of the following fields:

      • Trauma
      30.8
      Seconds
  • Question 4 - A 32 year old woman is brought into the emergency department with burns...

    Correct

    • A 32 year old woman is brought into the emergency department with burns to her chest and arms. The patient was trying to handle a grease fire but accidentally spilled the burning contents onto herself. Your consultant requests you to evaluate the severity of the burns. What is used to estimate the extent of a burn injury?

      Your Answer: Lund and Browder chart

      Explanation:

      TBSA, or Total Body Surface Area, is a method commonly used to estimate the size of small burns and very large burns by including the area of unburnt skin. However, it is not considered a reliable method for medium-sized burns.

      Further Reading:

      Burn injuries can be classified based on their type (degree, partial thickness or full thickness), extent as a percentage of total body surface area (TBSA), and severity (minor, moderate, major/severe). Severe burns are defined as a >10% TBSA in a child and >15% TBSA in an adult.

      When assessing a burn, it is important to consider airway injury, carbon monoxide poisoning, type of burn, extent of burn, special considerations, and fluid status. Special considerations may include head and neck burns, circumferential burns, thorax burns, electrical burns, hand burns, and burns to the genitalia.

      Airway management is a priority in burn injuries. Inhalation of hot particles can cause damage to the respiratory epithelium and lead to airway compromise. Signs of inhalation injury include visible burns or erythema to the face, soot around the nostrils and mouth, burnt/singed nasal hairs, hoarse voice, wheeze or stridor, swollen tissues in the mouth or nostrils, and tachypnea and tachycardia. Supplemental oxygen should be provided, and endotracheal intubation may be necessary if there is airway obstruction or impending obstruction.

      The initial management of a patient with burn injuries involves conserving body heat, covering burns with clean or sterile coverings, establishing IV access, providing pain relief, initiating fluid resuscitation, measuring urinary output with a catheter, maintaining nil by mouth status, closely monitoring vital signs and urine output, monitoring the airway, preparing for surgery if necessary, and administering medications.

      Burns can be classified based on the depth of injury, ranging from simple erythema to full thickness burns that penetrate into subcutaneous tissue. The extent of a burn can be estimated using methods such as the rule of nines or the Lund and Browder chart, which takes into account age-specific body proportions.

      Fluid management is crucial in burn injuries due to significant fluid losses. Evaporative fluid loss from burnt skin and increased permeability of blood vessels can lead to reduced intravascular volume and tissue perfusion. Fluid resuscitation should be aggressive in severe burns, while burns <15% in adults and <10% in children may not require immediate fluid resuscitation. The Parkland formula can be used to calculate the intravenous fluid requirements for someone with a significant burn injury.

    • This question is part of the following fields:

      • Trauma
      22.8
      Seconds
  • Question 5 - A 35-year-old man is brought into the emergency room by an ambulance with...

    Incorrect

    • A 35-year-old man is brought into the emergency room by an ambulance with flashing lights. He has been involved in a building fire and has sustained severe burns. You evaluate his airway and have concerns about potential airway blockage. You decide to perform intubation on the patient and begin preparing the required equipment.
      Which of the following is NOT a reason for performing early intubation in a burn patient?

      Your Answer: Stridor

      Correct Answer: Superficial partial-thickness circumferential neck burns

      Explanation:

      Early assessment of the airway is a critical aspect of managing a burned patient. Airway obstruction can occur rapidly due to direct injury or swelling from the burn. If there is a history of trauma, the airway should be evaluated while maintaining cervical spine control.

      There are several risk factors for airway obstruction in burned patients, including inhalation injury, soot in the mouth or nostrils, singed nasal hairs, burns to the head, face, and neck, burns inside the mouth, large burn area and increasing burn depth, associated trauma, and a carboxyhemoglobin level above 10%.

      In cases where significant swelling is anticipated, it may be necessary to urgently secure the airway with an uncut endotracheal tube before the swelling becomes severe. Delaying recognition of impending airway obstruction can make intubation difficult, and a surgical airway may be required.

      The American Burn Life Support (ABLS) guidelines recommend early intubation in certain situations. These include signs of airway obstruction, extensive burns, deep facial burns, burns inside the mouth, significant swelling or risk of swelling, difficulty swallowing, respiratory compromise, decreased level of consciousness, and anticipated transfer of a patient with a large burn and airway issues without qualified personnel to intubate during transport.

      Circumferential burns of the neck can cause tissue swelling around the airway, making early intubation necessary in these cases as well.

    • This question is part of the following fields:

      • Trauma
      50.8
      Seconds
  • Question 6 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Incorrect

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 125 bpm, BP is 92/46 mmHg, respiratory rate 35 breaths/minute, and her urine output over the past hour has been 10 ml. She is anxious and slightly confused. The patient weighs approximately 70 kg.
      How would you classify her hemorrhage according to the ATLS hemorrhagic shock classification?

      Your Answer:

      Correct Answer: Class III

      Explanation:

      This patient is experiencing an increased heart rate and respiratory rate, as well as a decrease in urine output. Additionally, they are feeling anxious and confused. These symptoms indicate that the patient has suffered a class III haemorrhage at this point in time.

      Recognizing the extent of blood loss based on vital signs and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification connects the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, leth

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 7 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Incorrect

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 110 bpm, BP is 120/80 mmHg, respiratory rate 20 breaths/minute, and her urine output over the past hour has been 30 ml. She is currently mildly anxious. The patient weighs approximately 65 kg.
      How would you classify her haemorrhage according to the ATLS haemorrhagic shock classification?

      Your Answer:

      Correct Answer: Class II

      Explanation:

      This patient is showing a slightly elevated heart rate and respiratory rate, as well as a slightly reduced urine output. These signs indicate that the patient has experienced a class II haemorrhage at this point. It is important to be able to recognize the degree of blood loss based on vital sign and mental status abnormalities. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification provides a way to link the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 8 - A 42-year-old woman is brought in by ambulance following a high-speed car accident....

    Incorrect

    • A 42-year-old woman is brought in by ambulance following a high-speed car accident. There was a prolonged extraction at the scene, and a full trauma call is made. She is disoriented and slightly restless. Her vital signs are as follows: heart rate 125, blood pressure 83/45, oxygen saturation 98% on high-flow oxygen, respiratory rate 31, temperature 36.1°C. Her capillary refill time is 5 seconds, and her extremities appear pale and cool to the touch. Her cervical spine is immobilized with triple precautions. The airway is clear, and her chest examination is normal. Two large-bore needles have been inserted in her antecubital fossa, and a complete set of blood tests, including a request for a cross-match, has been sent to the laboratory. She experiences significant tenderness in the suprapubic area upon abdominal palpation, and noticeable bruising is evident around her pelvis. A pelvic X-ray reveals a vertical shear type pelvic fracture.
      What approximate percentage of her circulatory volume has she lost?

      Your Answer:

      Correct Answer: 30-40%

      Explanation:

      This patient is currently experiencing moderate shock, classified as class III. This level of shock corresponds to a loss of 30-40% of their circulatory volume, which is equivalent to a blood loss of 1500-2000 mL.

      Hemorrhage can be categorized into four different classes based on physiological parameters and clinical signs. These classes are classified as class I, class II, class III, and class IV.

      In class I hemorrhage, the blood loss is up to 750 mL or up to 15% of the blood volume. The pulse rate is less than 100 beats per minute, and the systolic blood pressure is normal. The pulse pressure may be normal or increased, and the respiratory rate is within the range of 14-20 breaths per minute. The urine output is greater than 30 mL per hour, and the patient’s CNS/mental status is slightly anxious.

      In class II hemorrhage, the blood loss ranges from 750-1500 mL or 15-30% of the blood volume. The pulse rate is between 100-120 beats per minute, and the systolic blood pressure remains normal. The pulse pressure is decreased, and the respiratory rate increases to 20-30 breaths per minute. The urine output decreases to 20-30 mL per hour, and the patient may experience mild anxiety.

      The patient in this case is in class III hemorrhage, with a blood loss of 1500-2000 mL or 30-40% of the blood volume. The pulse rate is elevated, ranging from 120-140 beats per minute, and the systolic blood pressure is decreased. The pulse pressure is also decreased, and the respiratory rate is elevated to 30-40 breaths per minute. The urine output decreases significantly to 5-15 mL per hour, and the patient may experience anxiety and confusion.

      Class IV hemorrhage represents the most severe level of blood loss, with a loss of over 40% of the blood volume. The pulse rate is greater than 140 beats per minute, and the systolic blood pressure is significantly decreased. The pulse pressure is decreased, and the respiratory rate is over 40 breaths per minute. The urine output becomes negligible, and the patient may become confused and lethargic.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 9 - A 45-year-old woman was involved in a car accident where her car collided...

    Incorrect

    • A 45-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. Her chest X-ray in the emergency room reveals evidence of a traumatic aortic injury.
      Which of the following fractures are most indicative of this injury?

      Your Answer:

      Correct Answer: 1st and 2nd ribs

      Explanation:

      Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.

      The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.

      Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.

      A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.

      Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic

    • This question is part of the following fields:

      • Trauma
      0
      Seconds
  • Question 10 - A 47-year-old man with a past medical history of alcohol-related visits to the...

    Incorrect

    • A 47-year-old man with a past medical history of alcohol-related visits to the emergency department presents to the ED after falling while intoxicated. He has a 6 cm laceration on the occipital region of his scalp. You examine the wound under local anesthesia. As you remove the dressing and clean away a significant blood clot, you notice pulsatile bleeding from the wound. Which arteries provide blood supply to the posterior scalp?

      Your Answer:

      Correct Answer: External carotid

      Explanation:

      The scalp is primarily supplied with blood from branches of the external carotid artery. The posterior half of the scalp is specifically supplied by three branches of the external carotid artery. These branches are the superficial temporal artery, which supplies blood to the frontal and temporal regions of the scalp, the posterior auricular artery, which supplies blood to the area above and behind the external ear, and the occipital artery, which supplies blood to the back of the scalp.

      Further Reading:

      The scalp is the area of the head that is bordered by the face in the front and the neck on the sides and back. It consists of several layers, including the skin, connective tissue, aponeurosis, loose connective tissue, and periosteum of the skull. These layers provide protection and support to the underlying structures of the head.

      The blood supply to the scalp primarily comes from branches of the external carotid artery and the ophthalmic artery, which is a branch of the internal carotid artery. These arteries provide oxygen and nutrients to the scalp tissues.

      The scalp also has a complex venous drainage system, which is divided into superficial and deep networks. The superficial veins correspond to the arterial branches and are responsible for draining blood from the scalp. The deep venous network is drained by the pterygoid venous plexus.

      In terms of innervation, the scalp receives sensory input from branches of the trigeminal nerve and the cervical nerves. These nerves transmit sensory information from the scalp to the brain, allowing us to perceive touch, pain, and temperature in this area.

    • This question is part of the following fields:

      • Trauma
      0
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Trauma (3/5) 60%
Passmed