00
Correct
00
Incorrect
00 : 00 : 00
Session Time
00 : 00
Average Question Time ( Secs)
  • Question 1 - A 47-year-old man with a past medical history of alcohol-related visits to the...

    Correct

    • A 47-year-old man with a past medical history of alcohol-related visits to the emergency department presents to the ED after falling while intoxicated. He has a 6 cm laceration on the occipital region of his scalp. You examine the wound under local anesthesia. As you remove the dressing and clean away a significant blood clot, you notice pulsatile bleeding from the wound. Which arteries provide blood supply to the posterior scalp?

      Your Answer: External carotid

      Explanation:

      The scalp is primarily supplied with blood from branches of the external carotid artery. The posterior half of the scalp is specifically supplied by three branches of the external carotid artery. These branches are the superficial temporal artery, which supplies blood to the frontal and temporal regions of the scalp, the posterior auricular artery, which supplies blood to the area above and behind the external ear, and the occipital artery, which supplies blood to the back of the scalp.

      Further Reading:

      The scalp is the area of the head that is bordered by the face in the front and the neck on the sides and back. It consists of several layers, including the skin, connective tissue, aponeurosis, loose connective tissue, and periosteum of the skull. These layers provide protection and support to the underlying structures of the head.

      The blood supply to the scalp primarily comes from branches of the external carotid artery and the ophthalmic artery, which is a branch of the internal carotid artery. These arteries provide oxygen and nutrients to the scalp tissues.

      The scalp also has a complex venous drainage system, which is divided into superficial and deep networks. The superficial veins correspond to the arterial branches and are responsible for draining blood from the scalp. The deep venous network is drained by the pterygoid venous plexus.

      In terms of innervation, the scalp receives sensory input from branches of the trigeminal nerve and the cervical nerves. These nerves transmit sensory information from the scalp to the brain, allowing us to perceive touch, pain, and temperature in this area.

    • This question is part of the following fields:

      • Trauma
      12.7
      Seconds
  • Question 2 - A 35-year-old woman that has been involved in a car accident is estimated...

    Correct

    • A 35-year-old woman that has been involved in a car accident is estimated to have suffered a class II haemorrhage according to the Advanced Trauma Life Support (ATLS) haemorrhagic shock classification. The patient weighs approximately 60 kg.
      Which of the following physiological parameters is consistent with a diagnosis of class II haemorrhage?

      Your Answer: Heart rate of 110 bpm

      Explanation:

      Recognizing the extent of blood loss based on vital sign and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) classification for hemorrhagic shock correlates the amount of blood loss with expected physiological responses in a healthy individual weighing 70 kg. In terms of body weight, the total circulating blood volume accounts for approximately 7%, which is roughly equivalent to five liters in an average 70 kg male patient.

      The ATLS classification for hemorrhagic shock is as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 beats per minute (bpm)
      – Systolic blood pressure: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic blood pressure: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic blood pressure: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      12.7
      Seconds
  • Question 3 - A trauma patient has arrived at the emergency department for evaluation. There is...

    Correct

    • A trauma patient has arrived at the emergency department for evaluation. There is worry about a potential cervical spine injury. What criteria would classify the patient as high risk for cervical spine injury?

      Your Answer: Age ≥ 65

      Explanation:

      When assessing for cervical spine injury, it is recommended to use the Canadian C-spine rules. These rules help determine the risk level for a potential injury. High-risk factors include being over the age of 65, experiencing a dangerous mechanism of injury (such as a fall from a height or a high-speed motor vehicle collision), or having paraesthesia in the upper or lower limbs. Low-risk factors include being involved in a minor rear-end motor vehicle collision, being comfortable in a sitting position, being ambulatory since the injury, having no midline cervical spine tenderness, or experiencing a delayed onset of neck pain. If a person is unable to actively rotate their neck 45 degrees to the left and right, their risk level is considered low. If they have one of the low-risk factors and can actively rotate their neck, their risk level remains low.

      If a high-risk factor is identified or if a low-risk factor is identified and the person is unable to actively rotate their neck, full in-line spinal immobilization should be maintained and imaging should be requested. Additionally, if a patient has risk factors for thoracic or lumbar spine injury, imaging should be requested. However, if a patient has low-risk factors for cervical spine injury, is pain-free, and can actively rotate their neck, full in-line spinal immobilization and imaging are not necessary.

      NICE recommends CT as the primary imaging modality for cervical spine injury in adults aged 16 and older, while MRI is recommended as the primary imaging modality for children under 16.

      Different mechanisms of spinal trauma can cause injury to the spine in predictable ways. The majority of cervical spine injuries are caused by flexion combined with rotation. Hyperflexion can result in compression of the anterior aspects of the vertebral bodies, stretching and tearing of the posterior ligament complex, chance fractures (also known as seatbelt fractures), flexion teardrop fractures, and odontoid peg fractures. Flexion and rotation can lead to disruption of the posterior ligament complex and posterior column, fractures of facet joints, lamina, transverse processes, and vertebral bodies, and avulsion of spinous processes. Hyperextension can cause injury to the anterior column, anterior fractures of the vertebral body, and potential retropulsion of bony fragments or discs into the spinal canal. Rotation can result in injury to the posterior ligament complex and facet joint dislocation.

    • This question is part of the following fields:

      • Trauma
      8
      Seconds
  • Question 4 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Correct

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 110 bpm, BP is 120/80 mmHg, respiratory rate 20 breaths/minute, and her urine output over the past hour has been 30 ml. She is currently mildly anxious. The patient weighs approximately 65 kg.
      How would you classify her haemorrhage according to the ATLS haemorrhagic shock classification?

      Your Answer: Class II

      Explanation:

      This patient is showing a slightly elevated heart rate and respiratory rate, as well as a slightly reduced urine output. These signs indicate that the patient has experienced a class II haemorrhage at this point. It is important to be able to recognize the degree of blood loss based on vital sign and mental status abnormalities. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification provides a way to link the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, lethargic

    • This question is part of the following fields:

      • Trauma
      11.7
      Seconds
  • Question 5 - A 42-year-old woman was involved in a car accident where her vehicle collided...

    Correct

    • A 42-year-old woman was involved in a car accident where her vehicle collided with a wall at a high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel. She is experiencing severe bruising on her anterior chest wall and is complaining of chest pain. A chest X-ray reveals a significantly widened mediastinum, tracheal deviation to the right, and fractures of the first and second ribs. Her vital signs are as follows: heart rate of 94, blood pressure of 128/73, and oxygen saturation of 99% on high flow oxygen.

      What is the SINGLE most likely diagnosis?

      Your Answer: Traumatic aortic rupture

      Explanation:

      Traumatic aortic rupture is a relatively common cause of sudden death following major trauma, especially high-speed road traffic accidents (RTAs). It is estimated that 15-20% of deaths from RTAs are due to this injury. If the aortic rupture is promptly recognized and treated, patients who survive the initial injury can fully recover.

      Surviving patients often have an incomplete laceration near the ligamentum arteriosum of the aorta. The continuity is maintained by either an intact adventitial layer or a contained mediastinal hematoma, which prevents immediate exsanguination and death.

      Detecting traumatic aortic rupture can be challenging as many patients do not exhibit specific symptoms, and other injuries may also be present, making the diagnosis unclear.

      Chest X-ray findings can aid in the diagnosis and include fractures of the 1st and 2nd ribs, a grossly widened mediastinum, a hazy left lung field, obliteration of the aortic knob, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus (or NG tube) to the right.

      Helical contrast-enhanced CT scanning is highly sensitive and specific for detecting aortic rupture, but it should only be performed on hemodynamically stable patients.

      Treatment options include primary repair or resection of the torn segment with replacement using an interposition graft. Endovascular repair is also now considered an acceptable alternative approach.

    • This question is part of the following fields:

      • Trauma
      6
      Seconds
  • Question 6 - You evaluate a 38-year-old woman who was hit on the side of her...

    Correct

    • You evaluate a 38-year-old woman who was hit on the side of her leg by a soccer player while spectating the match from the sidelines. You suspect a tibial plateau fracture and order an X-ray of the affected knee. Besides the fracture line, what other radiographic indication is frequently observed in individuals with acute tibial plateau fractures?

      Your Answer: Lipohaemathrosis evident in suprapatellar pouch

      Explanation:

      Lipohaemathrosis is commonly seen in the suprapatellar pouch in individuals who have tibial plateau fractures. Notable X-ray characteristics of tibial plateau fractures include a visible fracture of the tibial plateau and the presence of lipohaemathrosis in the suprapatellar pouch.

      Further Reading:

      Tibial plateau fractures are a type of traumatic lower limb and joint injury that can involve the medial or lateral tibial plateau, or both. These fractures are classified using the Schatzker classification, with higher grades indicating a worse prognosis. X-ray imaging can show visible fractures of the tibial plateau and the presence of lipohaemathrosis in the suprapatellar pouch. However, X-rays often underestimate the severity of these fractures, so CT scans are typically used for a more accurate assessment.

      Tibial spine fractures, on the other hand, are separate from tibial plateau fractures. They occur when the tibial spine is avulsed by the anterior cruciate ligament (ACL). This can happen due to forced knee hyperextension or a direct blow to the femur when the knee is flexed. These fractures are most common in children aged 8-14.

      Tibial tuberosity avulsion fractures primarily affect adolescent boys and are often caused by jumping or landing from a jump. These fractures can be associated with Osgood-Schlatter disease. The treatment for these fractures depends on their grading. Low-grade fractures may be managed with immobilization for 4-6 weeks, while more significant avulsions are best treated with surgical fixation.

    • This question is part of the following fields:

      • Trauma
      7.8
      Seconds
  • Question 7 - A 45-year-old woman was involved in a car accident where her car collided...

    Correct

    • A 45-year-old woman was involved in a car accident where her car collided with a tree at high speed. She was not wearing a seatbelt and was thrown forward onto the steering wheel of her car. She has bruising over her anterior chest wall and is experiencing chest pain. Her chest X-ray in the emergency room reveals evidence of a traumatic aortic injury.
      Which of the following fractures are most indicative of this injury?

      Your Answer: 1st and 2nd ribs

      Explanation:

      Traumatic aortic rupture, also known as traumatic aortic disruption or transection, occurs when the aorta is torn or ruptured due to physical trauma. This condition often leads to sudden death because of severe bleeding. Motor vehicle accidents and falls from great heights are the most common causes of this injury.

      The patients with the highest chances of survival are those who have an incomplete tear near the ligamentum arteriosum of the proximal descending aorta, close to where the left subclavian artery branches off. The presence of an intact adventitial layer or contained mediastinal hematoma helps maintain continuity and prevents immediate bleeding and death. If promptly identified and treated, survivors of these injuries can recover. In cases where traumatic aortic rupture leads to sudden death, approximately 50% of patients have damage at the aortic isthmus, while around 15% have damage in either the ascending aorta or the aortic arch.

      Initial chest X-rays may show signs consistent with a traumatic aortic injury. However, false-positive and false-negative results can occur, and sometimes there may be no abnormalities visible on the X-ray. Some of the possible X-ray findings include a widened mediastinum, hazy left lung field, obliteration of the aortic knob, fractures of the 1st and 2nd ribs, deviation of the trachea to the right, presence of a pleural cap, elevation and rightward shift of the right mainstem bronchus, depression of the left mainstem bronchus, obliteration of the space between the pulmonary artery and aorta, and deviation of the esophagus or NG tube to the right.

      A helical contrast-enhanced CT scan of the chest is the preferred initial investigation for suspected blunt aortic injury. It has proven to be highly accurate, with close to 100% sensitivity and specificity. CT scanning should be performed liberally, as chest X-ray findings can be unreliable. However, hemodynamically unstable patients should not be placed in a CT scanner. If the CT results are inconclusive, aortography or trans-oesophageal echo can be performed for further evaluation.

      Immediate surgical intervention is necessary for these injuries. Endovascular repair is the most common method used and has excellent short-term outcomes. Open repair may also be performed depending on the circumstances. It is important to control heart rate and blood pressure during stabilization to reduce the risk of rupture. Pain should be managed with appropriate analgesic

    • This question is part of the following fields:

      • Trauma
      16.1
      Seconds
  • Question 8 - A 5-year-old child is brought into the emergency room by an ambulance with...

    Correct

    • A 5-year-old child is brought into the emergency room by an ambulance with sirens blaring. The child has been in a house fire and has sustained severe burns. The anesthesiologist examines the child's airway and is worried about the potential for airway blockage. Intubation is scheduled for the patient, and the necessary equipment is being prepared.
      As per the ATLS recommendations, what is the smallest internal diameter endotracheal tube that should be utilized?

      Your Answer: 4.5 mm

      Explanation:

      Patients who have suffered burns should receive high-flow oxygen (15 L) through a reservoir bag while their breathing is being evaluated. If intubation is necessary, it is crucial to use an appropriately sized endotracheal tube (ETT). Using a tube that is too small can make it difficult or even impossible to ventilate the patient, clear secretions, or perform bronchoscopy.

      According to the ATLS guidelines, adults should be intubated using an ETT with an internal diameter (ID) of at least 7.5 mm or larger. Children, on the other hand, should have an ETT with an ID of at least 4.5 mm. Once a patient has been intubated, it is important to continue administering 100% oxygen until their carboxyhemoglobin levels drop to less than 5%.

      To protect the lungs, it is recommended to use lung protective ventilation techniques. This involves using low tidal volumes (4-8 mL/kg) and ensuring that peak inspiratory pressures do not exceed 30 cmH2O.

    • This question is part of the following fields:

      • Trauma
      22.7
      Seconds
  • Question 9 - You are present at a trauma call for an elderly pedestrian who has...

    Incorrect

    • You are present at a trauma call for an elderly pedestrian who has been hit by a vehicle. She exhibits bruising on the right side of her chest. The primary survey has been conducted, and you have been tasked with conducting a secondary survey.
      As per the ATLS guidelines, which of the following would be considered a potentially life-threatening chest injury that should be identified and addressed during the SECONDARY survey?

      Your Answer: Tracheobronchial tree injury

      Correct Answer: Traumatic aortic disruption

      Explanation:

      The ATLS guidelines categorize chest injuries in trauma into two groups: life-threatening injuries that require immediate identification and treatment in the primary survey, and potentially life-threatening injuries that should be identified and treated in the secondary survey.

      During the primary survey, the focus is on identifying and treating life-threatening thoracic injuries. These include airway obstruction, tracheobronchial tree injury, tension pneumothorax, open pneumothorax, massive haemothorax, and cardiac tamponade. Prompt recognition and intervention are crucial in order to prevent further deterioration and potential fatality.

      In the secondary survey, attention is given to potentially life-threatening injuries that may not be immediately apparent. These include simple pneumothorax, haemothorax, flail chest, pulmonary contusion, blunt cardiac injury, traumatic aortic disruption, traumatic diaphragmatic injury, and blunt oesophageal rupture. These injuries may not pose an immediate threat to life, but they still require identification and appropriate management to prevent complications and ensure optimal patient outcomes.

      By dividing chest injuries into these two categories and addressing them in a systematic manner, healthcare providers can effectively prioritize and manage trauma patients, ultimately improving their chances of survival and recovery.

    • This question is part of the following fields:

      • Trauma
      15.3
      Seconds
  • Question 10 - A 35-year-old woman is involved in a car accident. Her observations are taken...

    Correct

    • A 35-year-old woman is involved in a car accident. Her observations are taken one hour after arriving in the Emergency Department. Her pulse rate is 125 bpm, BP is 92/46 mmHg, respiratory rate 35 breaths/minute, and her urine output over the past hour has been 10 ml. She is anxious and slightly confused. The patient weighs approximately 70 kg.
      How would you classify her hemorrhage according to the ATLS hemorrhagic shock classification?

      Your Answer: Class III

      Explanation:

      This patient is experiencing an increased heart rate and respiratory rate, as well as a decrease in urine output. Additionally, they are feeling anxious and confused. These symptoms indicate that the patient has suffered a class III haemorrhage at this point in time.

      Recognizing the extent of blood loss based on vital signs and mental status abnormalities is a crucial skill. The Advanced Trauma Life Support (ATLS) haemorrhagic shock classification connects the amount of blood loss to expected physiological responses in a healthy 70 kg patient. In a 70 kg male patient, the total circulating blood volume is approximately five liters, which accounts for about 7% of their total body weight.

      The ATLS haemorrhagic shock classification is summarized as follows:

      CLASS I:
      – Blood loss: Up to 750 mL
      – Blood loss (% blood volume): Up to 15%
      – Pulse rate: Less than 100 bpm
      – Systolic BP: Normal
      – Pulse pressure: Normal (or increased)
      – Respiratory rate: 14-20 breaths per minute
      – Urine output: Greater than 30 mL/hr
      – CNS/mental status: Slightly anxious

      CLASS II:
      – Blood loss: 750-1500 mL
      – Blood loss (% blood volume): 15-30%
      – Pulse rate: 100-120 bpm
      – Systolic BP: Normal
      – Pulse pressure: Decreased
      – Respiratory rate: 20-30 breaths per minute
      – Urine output: 20-30 mL/hr
      – CNS/mental status: Mildly anxious

      CLASS III:
      – Blood loss: 1500-2000 mL
      – Blood loss (% blood volume): 30-40%
      – Pulse rate: 120-140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: 30-40 breaths per minute
      – Urine output: 5-15 mL/hr
      – CNS/mental status: Anxious, confused

      CLASS IV:
      – Blood loss: More than 2000 mL
      – Blood loss (% blood volume): More than 40%
      – Pulse rate: More than 140 bpm
      – Systolic BP: Decreased
      – Pulse pressure: Decreased
      – Respiratory rate: More than 40 breaths per minute
      – Urine output: Negligible
      – CNS/mental status: Confused, leth

    • This question is part of the following fields:

      • Trauma
      25.3
      Seconds

SESSION STATS - PERFORMANCE PER SPECIALTY

Trauma (9/10) 90%
Passmed